Evolution of tertiary structure of viral RNA dependent polymerases
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24816789
PubMed Central
PMC4015915
DOI
10.1371/journal.pone.0096070
PII: PONE-D-13-52585
Knihovny.cz E-zdroje
- MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- molekulární evoluce * MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- RNA-dependentní RNA-polymerasa chemie genetika MeSH
- RNA-viry klasifikace enzymologie genetika MeSH
- sekundární struktura proteinů MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- terciární struktura proteinů * MeSH
- vazebná místa genetika MeSH
- virové proteiny chemie genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA-dependentní RNA-polymerasa MeSH
- virové proteiny MeSH
Viral RNA dependent polymerases (vRdPs) are present in all RNA viruses; unfortunately, their sequence similarity is too low for phylogenetic studies. Nevertheless, vRdP protein structures are remarkably conserved. In this study, we used the structural similarity of vRdPs to reconstruct their evolutionary history. The major strength of this work is in unifying sequence and structural data into a single quantitative phylogenetic analysis, using powerful a Bayesian approach. The resulting phylogram of vRdPs demonstrates that RNA-dependent DNA polymerases (RdDPs) of viruses within Retroviridae family cluster in a clearly separated group of vRdPs, while RNA-dependent RNA polymerases (RdRPs) of dsRNA and +ssRNA viruses are mixed together. This evidence supports the hypothesis that RdRPs replicating +ssRNA viruses evolved multiple times from RdRPs replicating +dsRNA viruses, and vice versa. Moreover, our phylogram may be presented as a scheme for RNA virus evolution. The results are in concordance with the actual concept of RNA virus evolution. Finally, the methods used in our work provide a new direction for studying ancient virus evolution.
Zobrazit více v PubMed
Steinhauer DA, Domingo E, Holland JJ (1992) Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase. Gene 122: 281–288. PubMed
Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R (2006) Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439: 344–348. PubMed PMC
Cabanillas L, Arribas M, Lázaro E (2013) Evolution at increased error rate leads to the coexistence of multiple adaptive pathways in an RNA virus. BMC Evol Biol 13: 11. PubMed PMC
Smith DB, McFadden N, Blundell RJ, Meredith A, Simmonds P (2012) Diversity of murine norovirus in wild-rodent populations: species-specific associations suggest an ancient divergence. J Gen Virol 93: 259–266. PubMed
Pickett BE, Striker R, Lefkowitz EJ (2011) Evidence for separation of HCV subtype 1a into two distinct clades. J Viral Hepat 18: 608–618. PubMed PMC
Krupovič M, Bamford DH (2010) Order to the viral universe. J Virol 84: 12476–12479. PubMed PMC
Koonin EV, Dolja VV (1993) Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28: 375–430. PubMed
Illergård K, Ardell DH, Elofsson A (2009) Structure is three to ten times more conserved than sequence–a study of structural response in protein cores. Proteins 77: 499–508. PubMed
Holm L, Sander C (1996) Mapping the protein universe. Science 273: 595–603. PubMed
Wiens J (2004) The role of morphological data in phylogeny reconstruction. Syst Biol 53: 653–661. PubMed
Nylander JA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53: 47–67. PubMed
McGowen MR, Spaulding M, Gatesy J (2009) Divergence date estimation and a comprehensive molecular tree of extant cetaceans. Mol Phylogenet Evol 53: 891–906. PubMed
Aravind L, Anantharaman V, Koonin EV (2002) Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: implications for protein evolution in the RNA. Proteins 48: 1–14. PubMed
Scheeff ED, Bourne PE (2005) Structural evolution of the protein kinase-like superfamily. PLoS Comput Biol 1: e49. PubMed PMC
Baltimore D (1971) Expression of animal virus genomes. Bacteriol Rev 35: 235–241. PubMed PMC
Poch O, Sauvaget I, Delarue M, Tordo N (1989) Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J 8: 3867–3874. PubMed PMC
Bruenn JA (2003) A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases. Nucleic Acids Res 31: 1821–1829. PubMed PMC
Gohara DW, Crotty S, Arnold JJ, Yoder JD, Andino R, et al. (2000) Poliovirus RNA-dependent RNA polymerase (3Dpol): structural, biochemical, and biological analysis of conserved structural motifs A and B. J Biol Chem 275: 25523–25532. PubMed
Korneeva VS, Cameron CE (2007) Structure-function relationships of the viral RNA-dependent RNA polymerase: fidelity, replication speed, and initiation mechanism determined by a residue in the ribose-binding pocket. J Biol Chem 282: 16135–16145. PubMed PMC
Hansen JL, Long AM, Schultz SC (1997) Structure of the RNA-dependent RNA polymerase of poliovirus. Structure 5: 1109–1122. PubMed
Ferrer-Orta C, Arias A, Escarmís C, Verdaguer N (2006) A comparison of viral RNA-dependent RNA polymerases. Curr Opin Struct Biol 16: 27–34. PubMed
Shatskaya GS, Dmitrieva TM (2013) Structural organization of viral RNA-dependent RNA polymerases. Biochemistry (Mosc) 78: 231–235. PubMed
Ng KK, Arnold JJ, Cameron CE (2008) Structure-function relationships among RNA-dependent RNA polymerases. Curr Top Microbiol Immunol 320: 137–156. PubMed PMC
Lang DM, Zemla AT, Zhou CL (2013) Highly similar structural frames link the template tunnel and NTP entry tunnel to the exterior surface in RNA-dependent RNA polymerases. Nucleic Acids Res 41: 1464–1482. PubMed PMC
Dolja VV, Carrington JC (1992) Evolution of positive-strand RNA viruses. Seminars in Virology. pp. 315–326.
Eickbush TH (1994) Origin and evolutionary relationships of retroelements. In: Morse SS, The evolutionary biology of viruses: Raven Press, 1185 Avenue of the Americas, New York, New York 10036-2806, USA. pp. 121–157.
Goldbach R, Wellink J, Verver J, van Kammen A, Kasteel D, et al. (1994) Adaptation of positive-strand RNA viruses to plants. Arch Virol Suppl 9: 87–97. PubMed
Ward CW (1993) Progress towards a higher taxonomy of viruses. Res Virol 144: 419–453. PubMed PMC
Koonin EV (1991) The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol 72 (Pt 9): 2197–2206. PubMed
Bruenn JA (1991) Relationships among the positive strand and double-strand RNA viruses as viewed through their RNA-dependent RNA polymerases. Nucleic Acids Res 19: 217–226. PubMed PMC
Gorbalenya AE, Pringle FM, Zeddam JL, Luke BT, Cameron CE, et al. (2002) The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage. J Mol Biol 324: 47–62. PubMed PMC
Zanotto PM, Gibbs MJ, Gould EA, Holmes EC (1996) A reevaluation of the higher taxonomy of viruses based on RNA polymerases. J Virol 70: 6083–6096. PubMed PMC
Holm L, Rosenström P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38: W545–549. PubMed PMC
King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (2012) Virus taxonomy: classification and nomenclature of viruses: Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, San Diego, USA.
Armougom F, Moretti S, Poirot O, Audic S, Dumas P, et al. (2006) Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee. Nucleic Acids Res 34: W604–608. PubMed PMC
Ferrer-Orta C, Arias A, Perez-Luque R, Escarmís C, Domingo E, et al. (2004) Structure of foot-and-mouth disease virus RNA-dependent RNA polymerase and its complex with a template-primer RNA. J Biol Chem 279: 47212–47221. PubMed
Pan J, Vakharia VN, Tao YJ (2007) The structure of a birnavirus polymerase reveals a distinct active site topology. Proc Natl Acad Sci U S A 104: 7385–7390. PubMed PMC
Mizuguchi K, Deane CM, Blundell TL, Johnson MS, Overington JP (1998) JOY: protein sequence-structure representation and analysis. Bioinformatics 14: 617–623. PubMed
Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577–2637. PubMed
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612. PubMed
Meng EC, Pettersen EF, Couch GS, Huang CC, Ferrin TE (2006) Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinformatics 7: 339. PubMed PMC
Gong P, Peersen OB (2010) Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A 107: 22505–22510. PubMed PMC
Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21: 2104–2105. PubMed
Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723.
Schwarz G (1978) Estimating the Dimension of a Model. Annals of Statistics 6: 461–464.
Lanave C, Preparata G, Saccone C, Serio G (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20: 86–93. PubMed
Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39: 306–314. PubMed
Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. PubMed
Wilgenbusch JC, Warren DL, Swofford DL (2004) AWTY: A system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. PubMed
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The Protein Data Bank. Nucleic Acids Res 28: 235–242. PubMed PMC
Ferrero D, Buxaderas M, Rodriguez JF, Verdaguer N (2012) Purification, crystallization and preliminary X-ray diffraction analysis of the RNA-dependent RNA polymerase from Thosea asigna virus. Acta Crystallogr Sect F Struct Biol Cryst Commun 68: 1263–1266. PubMed PMC
Salgado PS, Koivunen MR, Makeyev EV, Bamford DH, Stuart DI, et al. (2006) The structure of an RNAi polymerase links RNA silencing and transcription. PLoS Biol 4: e434. PubMed PMC
Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. PubMed
Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA (1992) Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256: 1783–1790. PubMed
Kidmose RT, Vasiliev NN, Chetverin AB, Andersen GR, Knudsen CR (2010) Structure of the Qbeta replicase, an RNA-dependent RNA polymerase consisting of viral and host proteins. Proc Natl Acad Sci U S A 107: 10884–10889. PubMed PMC
Takeshita D, Tomita K (2010) Assembly of Q{beta} viral RNA polymerase with host translational elongation factors EF-Tu and -Ts. Proc Natl Acad Sci U S A 107: 15733–15738. PubMed PMC
van Duin J, Tsareva N (2006) Single-stranded RNA phages. In: Calendar RL, The Bacteriophages (Second ed): Oxford University Press.
Forterre P (2002) The origin of DNA genomes and DNA replication proteins. Curr Opin Microbiol 5: 525–532. PubMed
Cho MW, Richards OC, Dmitrieva TM, Agol V, Ehrenfeld E (1993) RNA duplex unwinding activity of poliovirus RNA-dependent RNA polymerase 3Dpol. J Virol 67: 3010–3018. PubMed PMC
van Dijk AA, Makeyev EV, Bamford DH (2004) Initiation of viral RNA-dependent RNA polymerization. J Gen Virol 85: 1077–1093. PubMed
Makeyev EV, Bamford DH (2002) Cellular RNA-dependent RNA polymerase involved in posttranscriptional gene silencing has two distinct activity modes. Mol Cell 10: 1417–1427. PubMed
Butcher SJ, Grimes JM, Makeyev EV, Bamford DH, Stuart DI (2001) A mechanism for initiating RNA-dependent RNA polymerization. Nature 410: 235–240. PubMed
Ahlquist P (2006) Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nat Rev Microbiol 4: 371–382. PubMed PMC
Bamford DH, Grimes JM, Stuart DI (2005) What does structure tell us about virus evolution? Curr Opin Struct Biol 15: 655–663. PubMed
Scheel TK, Galli A, Li YP, Mikkelsen LS, Gottwein JM, et al. (2013) Productive homologous and non-homologous recombination of hepatitis C virus in cell culture. PLoS Pathog 9: e1003228. PubMed PMC
Smith LM, McWhorter AR, Shellam GR, Redwood AJ (2013) The genome of murine cytomegalovirus is shaped by purifying selection and extensive recombination. Virology 435: 258–268. PubMed
Pond SL, Murrell B, Poon AF (2012) Evolution of viral genomes: interplay between selection, recombination, and other forces. Methods Mol Biol 856: 239–272. PubMed
Dolja VV, Koonin EV (2011) Common origins and host-dependent diversity of plant and animal viromes. Curr Opin Virol 1: 322–331. PubMed PMC
Koonin EV, Dolja VV (2012) Expanding networks of RNA virus evolution. BMC Biol 10: 54. PubMed PMC
Koonin EV, Wolf YI, Nagasaki K, Dolja VV (2008) The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nat Rev Microbiol 6: 925–939. PubMed
Ravantti J, Bamford D, Stuart DI (2013) Automatic comparison and classification of protein structures. J Struct Biol 183: 47–56. PubMed
Poranen MM, Bamford DH (2012) Assembly of large icosahedral double-stranded RNA viruses. Adv Exp Med Biol 726: 379–402. PubMed
Lawton JA, Estes MK, Prasad BV (2000) Mechanism of genome transcription in segmented dsRNA viruses. Adv Virus Res 55: 185–229. PubMed PMC
Cortez-San Martín M, Villanueva RA, Jashés M, Sandino AM (2009) Molecular characterization of IPNV RNA replication intermediates during the viral infective cycle. Virus Res 144: 344–349. PubMed
Dobos P (1995) Protein-primed RNA synthesis in vitro by the virion-associated RNA polymerase of infectious pancreatic necrosis virus. Virology 208: 19–25. PubMed
Wimmer E, Hellen CU, Cao X (1993) Genetics of poliovirus. Annu Rev Genet 27: 353–436. PubMed
Buck KW (1996) Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv Virus Res 47: 159–251. PubMed PMC
Urcuqui-Inchima S, Patiño C, Torres S, Haenni AL, Díaz FJ (2010) Recent developments in understanding dengue virus replication. Adv Virus Res 77: 1–39. PubMed
Rice CM (2011) New insights into HCV replication: potential antiviral targets. Top Antivir Med 19: 117–120. PubMed PMC
Wang C, Sarnow P, Siddiqui A (1993) Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. J Virol 67: 3338–3344. PubMed PMC
Pérard J, Leyrat C, Baudin F, Drouet E, Jamin M (2013) Structure of the full-length HCV IRES in solution. Nat Commun 4: 1612. PubMed
Cleaves GR, Dubin DT (1979) Methylation status of intracellular dengue type 2 40 S RNA. Virology 96: 159–165. PubMed
Goodfellow I (2011) The genome-linked protein VPg of vertebrate viruses - a multifaceted protein. Curr Opin Virol 1: 355–362. PubMed PMC
Gorbalenya AE, Koonin EV (1988) Birnavirus RNA polymerase is related to polymerases of positive strand RNA viruses. Nucleic Acids Res 16: 7735. PubMed PMC
Koonin EV, Dolja VV (2006) Evolution of complexity in the viral world: the dawn of a new vision. Virus Res 117: 1–4. PubMed
Holmes EC (2011) What does virus evolution tell us about virus origins? J Virol 85: 5247–5251. PubMed PMC
Poch O, Blumberg BM, Bougueleret L, Tordo N (1990) Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. J Gen Virol 71 (Pt 5): 1153–1162. PubMed
Müller R, Poch O, Delarue M, Bishop DH, Bouloy M (1994) Rift Valley fever virus L segment: correction of the sequence and possible functional role of newly identified regions conserved in RNA-dependent polymerases. J Gen Virol 75 (Pt 6): 1345–1352. PubMed
Lukashevich IS, Djavani M, Shapiro K, Sanchez A, Ravkov E, et al. (1997) The Lassa fever virus L gene: nucleotide sequence, comparison, and precipitation of a predicted 250 kDa protein with monospecific antiserum. J Gen Virol 78 (Pt 3): 547–551. PubMed PMC
Ng KK, Cherney MM, Vazquez AL, Machin A, Alonso JM, et al. (2002) Crystal structures of active and inactive conformations of a caliciviral RNA-dependent RNA polymerase. J Biol Chem 277: 1381–1387. PubMed
Mastrangelo E, Pezzullo M, Tarantino D, Petazzi R, Germani F, et al. (2012) Structure-based inhibition of Norovirus RNA-dependent RNA polymerases. J Mol Biol 419: 198–210. PubMed
Zamyatkin DF, Parra F, Alonso JM, Harki DA, Peterson BR, et al. (2008) Structural insights into mechanisms of catalysis and inhibition in Norwalk virus polymerase. J Biol Chem 283: 7705–7712. PubMed
Fullerton SW, Blaschke M, Coutard B, Gebhardt J, Gorbalenya A, et al. (2007) Structural and functional characterization of sapovirus RNA-dependent RNA polymerase. J Virol 81: 1858–1871. PubMed PMC
Yap TL, Xu T, Chen YL, Malet H, Egloff MP, et al. (2007) Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J Virol 81: 4753–4765. PubMed PMC
Lu G, Gong P (2013) Crystal Structure of the full-length Japanese encephalitis virus NS5 reveals a conserved methyltransferase-polymerase interface. PLoS Pathog 9: e1003549. PubMed PMC
O'Farrell D, Trowbridge R, Rowlands D, Jäger J (2003) Substrate complexes of hepatitis C virus RNA polymerase (HC-J4): structural evidence for nucleotide import and de-novo initiation. J Mol Biol 326: 1025–1035. PubMed
Choi KH, Groarke JM, Young DC, Rossmann MG, Pevear DC, et al. (2004) Design, expression, and purification of a Flaviviridae polymerase using a high-throughput approach to facilitate crystal structure determination. Protein Sci 13: 2685–2692. PubMed PMC
Takeshita D, Tomita K (2012) Molecular basis for RNA polymerization by Qβ replicase. Nat Struct Mol Biol 19: 229–237. PubMed
Ferrer-Orta C, Arias A, Pérez-Luque R, Escarmís C, Domingo E, et al. (2007) Sequential structures provide insights into the fidelity of RNA replication. Proc Natl Acad Sci U S A 104: 9463–9468. PubMed PMC
Love RA, Maegley KA, Yu X, Ferre RA, Lingardo LK, et al. (2004) The crystal structure of the RNA-dependent RNA polymerase from human rhinovirus: a dual function target for common cold antiviral therapy. Structure 12: 1533–1544. PubMed
Gruez A, Selisko B, Roberts M, Bricogne G, Bussetta C, et al. (2008) The crystal structure of coxsackievirus B3 RNA-dependent RNA polymerase in complex with its protein primer VPg confirms the existence of a second VPg binding site on Picornaviridae polymerases. J Virol 82: 9577–9590. PubMed PMC
Graham SC, Sarin LP, Bahar MW, Myers RA, Stuart DI, et al. (2011) The N-terminus of the RNA polymerase from infectious pancreatic necrosis virus is the determinant of genome attachment. PLoS Pathog 7: e1002085. PubMed PMC
Garriga D, Navarro A, Querol-Audí J, Abaitua F, Rodríguez JF, et al. (2007) Activation mechanism of a noncanonical RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A 104: 20540–20545. PubMed PMC
Tao Y, Farsetta DL, Nibert ML, Harrison SC (2002) RNA synthesis in a cage—structural studies of reovirus polymerase lambda3. Cell 111: 733–745. PubMed
Lu X, McDonald SM, Tortorici MA, Tao YJ, Vasquez-Del Carpio R, et al. (2008) Mechanism for coordinated RNA packaging and genome replication by rotavirus polymerase VP1. Structure 16: 1678–1688. PubMed PMC
Das D, Georgiadis MM (2004) The crystal structure of the monomeric reverse transcriptase from Moloney murine leukemia virus. Structure 12: 819–829. PubMed
Ren J, Bird LE, Chamberlain PP, Stewart-Jones GB, Stuart DI, et al. (2002) Structure of HIV-2 reverse transcriptase at 2.35-A resolution and the mechanism of resistance to non-nucleoside inhibitors. Proc Natl Acad Sci U S A 99: 14410–14415. PubMed PMC
Das K, Martinez SE, Bauman JD, Arnold E (2012) HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism. Nat Struct Mol Biol 19: 253–259. PubMed PMC