Arbidol (Umifenovir): A Broad-Spectrum Antiviral Drug That Inhibits Medically Important Arthropod-Borne Flaviviruses
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29642580
PubMed Central
PMC5923478
DOI
10.3390/v10040184
PII: v10040184
Knihovny.cz E-zdroje
- Klíčová slova
- antiviral activity, arbidol, cell-type dependent antiviral effect, cytotoxicity, flavivirus, umifenovir,
- MeSH
- antivirové látky farmakologie toxicita MeSH
- buněčné linie MeSH
- Cercopithecus aethiops MeSH
- členovci - vektory virologie MeSH
- Flavivirus účinky léků genetika MeSH
- indoly farmakologie toxicita MeSH
- infekce viry z rodu Flavivirus virologie MeSH
- inhibiční koncentrace 50 MeSH
- lidé MeSH
- proteiny virového obalu genetika MeSH
- regulace exprese virových genů účinky léků MeSH
- Vero buňky MeSH
- viabilita buněk účinky léků MeSH
- virus západního Nilu účinky léků genetika MeSH
- virus zika účinky léků genetika MeSH
- viry klíšťové encefalitidy účinky léků genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antivirové látky MeSH
- indoly MeSH
- proteiny virového obalu MeSH
- umifenovir MeSH Prohlížeč
Arthropod-borne flaviviruses are human pathogens of global medical importance, against which no effective small molecule-based antiviral therapy has currently been reported. Arbidol (umifenovir) is a broad-spectrum antiviral compound approved in Russia and China for prophylaxis and treatment of influenza. This compound shows activities against numerous DNA and RNA viruses. The mode of action is based predominantly on impairment of critical steps in virus-cell interactions. Here we demonstrate that arbidol possesses micromolar-level anti-viral effects (EC50 values ranging from 10.57 ± 0.74 to 19.16 ± 0.29 µM) in Vero cells infected with Zika virus, West Nile virus, and tick-borne encephalitis virus, three medically important representatives of the arthropod-borne flaviviruses. Interestingly, no antiviral effects of arbidol are observed in virus infected porcine stable kidney cells (PS), human neuroblastoma cells (UKF-NB-4), and human hepatoma cells (Huh-7 cells) indicating that the antiviral effect of arbidol is strongly cell-type dependent. Arbidol shows increasing cytotoxicity when tested in various cell lines, in the order: Huh-7 < HBCA < PS < UKF-NB-4 < Vero with CC50 values ranging from 18.69 ± 0.1 to 89.72 ± 0.19 µM. Antiviral activities and acceptable cytotoxicity profiles suggest that arbidol could be a promising candidate for further investigation as a potential therapeutic agent in selective treatment of flaviviral infections.
Department of Virology Veterinary Research Institute Hudcova 70 CZ 62100 Brno Czech Republic
Insitut Pasteur de Guinée route de Donka Conakry Guinea
Institute of Vertebrate Biology Czech Academy of Sciences Kvetna 8 CZ 60365 Brno Czech Republic
Unit Antiviral Strategies Institut Pasteur 25 Dr Roux 75724 Paris CEDEX 15 France
Zobrazit více v PubMed
Baier A. Flaviviral infections and potential targets for antiviral therapy. In: Ruzek D., editor. Flavivirus Encephalitis. 1st ed. InTech; Rijeka, Croatia: 2011. pp. 89–104.
Lazear H.M., Stringer E.M., de Silva A.M. The Emerging Zika Virus Epidemic in the Americas Research Priorities. JAMA. 2016;315:1945–1946. doi: 10.1001/jama.2016.2899. PubMed DOI
Hayes E.B., Sejvar J., Zaki S.R., Lanciotti R.S., Bode A.V., Campbell G.L. Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg. Infect. Dis. 2005;11:1174–1179. doi: 10.3201/eid1108.050289b. PubMed DOI PMC
Samuel M.A., Diamond M.S. Pathogenesis of West Nile virus infection: A balance between virulence, innate and adaptive immunity, and viral evasion. J. Virol. 2006;80:9349–9360. doi: 10.1128/JVI.01122-06. PubMed DOI PMC
Malone R.W., Homan J., Callahan M.V., Glasspool-Malone J., Damodaran L., Schneider Ade B., Zimler R., Talton J., Cobb R.R., Ruzic I., et al. Zika Virus: Medical Countermeasure Development Challenges. PLoS Negl. Trop. Dis. 2016;10:e0004530. doi: 10.1371/journal.pntd.0004530. PubMed DOI PMC
Panisheva E.K., Mikerova N.I., Nikolayeva I.S., Fomina A.N., Cherkasova A.A., Golovanova E.A., Krylova L.Y. Synthesis and Antiviral Activity of 5-Hydroxyindole Derivatives. Pharm. Chem. 1988;22:1455–1458.
Boriskin Y.S., Leneva I.A., Pecheur E.I., Polyak S.J. Arbidol: A broad-spectrum antiviral compound that blocks viral fusion. Curr. Med. Chem. 2008;15:997–1005. doi: 10.2174/092986708784049658. PubMed DOI
Pecheur E.I., Borisevich V., Halfmann P., Morrey J.D., Smee D.F., Prichard M., Mire C.E., Kawaoka Y., Geisbert T.W., Polyak S.J. The Synthetic Antiviral Drug Arbidol Inhibits Globally Prevalent Pathogenic Viruses. J. Virol. 2016;90:3086–3092. doi: 10.1128/JVI.02077-15. PubMed DOI PMC
Villalain J. Membranotropic Effects of Arbidol, a Broad Anti-Viral Molecule, on Phospholipid Model Membranes. J. Phys. Chem. B. 2010;114:8544–8554. doi: 10.1021/jp102619w. PubMed DOI
Leneva I.A., Russell R.J., Boriskin Y.S., Hay A.J. Characteristics of arbidol-resistant mutants of influenza virus: Implications for the mechanism of anti-influenza action of arbidol. Antivir. Res. 2009;81:132–140. doi: 10.1016/j.antiviral.2008.10.009. PubMed DOI
Boriskin Y.S., Pecheur E.I., Polyak S.J. Arbidol: A broad-spectrum antiviral that inhibits acute and chronic HCV infection. Virol. J. 2006;3:56. doi: 10.1186/1743-422X-3-56. PubMed DOI PMC
Pecheur E.I., Lavillette D., Alcaras F., Molle J., Boriskin Y.S., Roberts M., Cosset F.L., Polyak S.J. Biochemical mechanism of hepatitis C virus inhibition by the broad-spectrum antiviral arbidol. Biochemistry. 2007;46:6050–6059. doi: 10.1021/bi700181j. PubMed DOI PMC
Liu Q., Xiong H.R., Lu L., Liu Y.Y., Luo F., Hou W., Yang Z.Q. Antiviral and anti-inflammatory activity of arbidol hydrochloride in influenza A (H1N1) virus infection. Acta Pharmacol. Sin. 2013;34:1075–1083. doi: 10.1038/aps.2013.54. PubMed DOI PMC
Lane A.N., Fan T.W.M. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 2015;43:2466–2485. doi: 10.1093/nar/gkv047. PubMed DOI PMC
Peterson L.W., McKenna C.E. Prodrug approaches to improving the oral absorption of antiviral nucleotide analogues. Expert Opin. Drug Deliv. 2009;6:405–420. doi: 10.1517/17425240902824808. PubMed DOI PMC
Kozuch O., Mayer V. Pig Kidney Epithelial (Ps) Cells—Perfect Tool for Study of Flaviviruses and Some Other Arboviruses. Acta Virol. 1975;19:498. PubMed
Ruzek D., Vancova M., Tesarova M., Ahantarig A., Kopecky J., Grubhoffer L. Morphological changes in human neural cells following tick-borne encephalitis virus infection. J. Gen. Virol. 2009;90:1649–1658. doi: 10.1099/vir.0.010058-0. PubMed DOI
DeMadrid A.T., Porterfield J.S. A Simple Micro-Culture Method for Study of Group B Arboviruses. Bull. World Health Organ. 1969;40:113–121. PubMed PMC
Eyer L., Valdés J.J., Gil V.A., Nencka R., Hřebabecký H., Šála M., Salát J., Černý J., Palus M., de Clercq E., Růžek D. Nucleoside Inhibitors of Tick-Borne Encephalitis Virus. Antimicrob. Agents Chemother. 2015;59:5483–5493. doi: 10.1128/AAC.00807-15. PubMed DOI PMC
Chapel C., Zitzmann N., Zoulim F., Durantel D. Virus morphogenesis and viral entry as alternative targets for novel hepatitis C antivirals. Future Virol. 2006;1:197–209. doi: 10.2217/17460794.1.2.197. DOI
Eyer L., Nencka R., de Clercq E., Seley-Radtke K., Ruzek D. Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne Flaviviruses. Antivir. Chem. Chemother. 2018 doi: 10.1177/2040206618761299. PubMed DOI PMC
Becher F., Landman R., Mboup S., Kane C.N., Canestri A., Liegeois F., Vray M., Prevot M.H., Leleu G., Benech H. Monitoring of didanosine and stavudine intracellular trisphosphorylated anabolite concentrations in HIV-infected patients. AIDS. 2004;18:181–187. doi: 10.1097/00002030-200401230-00006. PubMed DOI
Gao W.Y., Shirasaka T., Johns D.G., Broder S., Mitsuya H. Differential Phosphorylation of Azidothymidine, Dideoxycytidine, and Dideoxyinosine in Resting and Activated Peripheral-Blood Mononuclear-Cells. J. Clin. Investig. 1993;91:2326–2333. doi: 10.1172/JCI116463. PubMed DOI PMC
Mumtaz N., Jimmerson L.C., Bushman L.R., Kiser J.J., Aron G., Reusken C.B.E.M., Koopmans M.P.G., van Kampen J.J.A. Cell-line dependent antiviral activity of sofosbuvir against Zika virus. Antivir. Res. 2017;146:161–163. doi: 10.1016/j.antiviral.2017.09.004. PubMed DOI
Deng Y.Q., Zhang N.N., Li C.F., Tian M., Hao J.N., Xie X.P., Shi P.Y., Qin C.F. Adenosine Analog NITD008 Is a Potent Inhibitor of Zika Virus. Open Forum Infect. Dis. 2016;3:ofw175. doi: 10.1093/ofid/ofw175. PubMed DOI PMC
Eyer L., Nencka R., Huvarová I., Palus M., Joao Alves M., Gould E.A., de Clercq E., Růžek D. Nucleoside Inhibitors of Zika Virus. J. Infect. Dis. 2016;214:707–711. doi: 10.1093/infdis/jiw226. PubMed DOI
Julander J.G., Siddharthan V., Evans J., Taylor R., Tolbert K., Apuli C., Stewart J., Collins P., Gebre M., Neilson S., et al. Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model. Antivir. Res. 2017;137:14–22. doi: 10.1016/j.antiviral.2016.11.003. PubMed DOI PMC
Sacramento C.Q., de Melo G.R., de Freitas C.S., Rocha N., Hoelz L.V., Miranda M., Fintelman-Rodrigues N., Marttorelli A., Ferreira A.C., Barbosa-Lima G., et al. The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication. Sci. Rep. 2017;7:40920. doi: 10.1038/srep40920. PubMed DOI PMC
Leneva I.A., Fedyakina I.T., Guskova T.A., Glushkov R.G. Sensitivity of various influenza virus strains to arbidol. Influence of arbidol combination with different antiviral drugs on reproduction of influenza virus A. Terapevticheskii arkhiv. 2005;77:84–88. PubMed
Delogu I., Pastorino B., Baronti C., Nougairede A., Bonnet E., De Lamballerie X. In vitro antiviral activity of arbidol against Chikungunya virus and characteristics of a selected resistant mutant. Antivir. Res. 2011;90:99–107. doi: 10.1016/j.antiviral.2011.03.182. PubMed DOI
Oestereich L., Rieger T., Neumann M., Bernreuther C., Lehmann M., Krasemann S., Wurr S., Emmerich P., de Lamballerie X., Ölschläger S., Günther S. Evaluation of Antiviral Efficacy of Ribavirin, Arbidol, and T-705 (Favipiravir) in a Mouse Model for Crimean-Congo Hemorrhagic Fever. PLoS Negl. Trop. Dis. 2014;8:e2804. doi: 10.1371/journal.pntd.0002804. PubMed DOI PMC
Deng H.Y., Luo F., Shi L.Q., Zhong Q., Liu Y.J., Yang Z.Q. Efficacy of arbidol on lethal hantaan virus infections in suckling mice and in vitro. Acta Pharmacol. Sin. 2009;30:1015–1024. doi: 10.1038/aps.2009.53. PubMed DOI PMC
Shi L., Xiong H., He J., Deng H., Li Q., Zhong Q., Hou W., Cheng L., Xiao H., Yang Z. Antiviral activity of arbidol against influenza A virus, respiratory syncytial virus, rhinovirus, coxsackie virus and adenovirus in vitro and in vivo. Arch. Virol. 2007;152:1447–1455. doi: 10.1007/s00705-007-0974-5. PubMed DOI
History of Arbovirus Research in the Czech Republic
Recent Progress Concerning the N-Arylation of Indoles