Arbidol (Umifenovir): A Broad-Spectrum Antiviral Drug That Inhibits Medically Important Arthropod-Borne Flaviviruses

. 2018 Apr 10 ; 10 (4) : . [epub] 20180410

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29642580

Arthropod-borne flaviviruses are human pathogens of global medical importance, against which no effective small molecule-based antiviral therapy has currently been reported. Arbidol (umifenovir) is a broad-spectrum antiviral compound approved in Russia and China for prophylaxis and treatment of influenza. This compound shows activities against numerous DNA and RNA viruses. The mode of action is based predominantly on impairment of critical steps in virus-cell interactions. Here we demonstrate that arbidol possesses micromolar-level anti-viral effects (EC50 values ranging from 10.57 ± 0.74 to 19.16 ± 0.29 µM) in Vero cells infected with Zika virus, West Nile virus, and tick-borne encephalitis virus, three medically important representatives of the arthropod-borne flaviviruses. Interestingly, no antiviral effects of arbidol are observed in virus infected porcine stable kidney cells (PS), human neuroblastoma cells (UKF-NB-4), and human hepatoma cells (Huh-7 cells) indicating that the antiviral effect of arbidol is strongly cell-type dependent. Arbidol shows increasing cytotoxicity when tested in various cell lines, in the order: Huh-7 < HBCA < PS < UKF-NB-4 < Vero with CC50 values ranging from 18.69 ± 0.1 to 89.72 ± 0.19 µM. Antiviral activities and acceptable cytotoxicity profiles suggest that arbidol could be a promising candidate for further investigation as a potential therapeutic agent in selective treatment of flaviviral infections.

Zobrazit více v PubMed

Baier A. Flaviviral infections and potential targets for antiviral therapy. In: Ruzek D., editor. Flavivirus Encephalitis. 1st ed. InTech; Rijeka, Croatia: 2011. pp. 89–104.

Lazear H.M., Stringer E.M., de Silva A.M. The Emerging Zika Virus Epidemic in the Americas Research Priorities. JAMA. 2016;315:1945–1946. doi: 10.1001/jama.2016.2899. PubMed DOI

Hayes E.B., Sejvar J., Zaki S.R., Lanciotti R.S., Bode A.V., Campbell G.L. Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg. Infect. Dis. 2005;11:1174–1179. doi: 10.3201/eid1108.050289b. PubMed DOI PMC

Samuel M.A., Diamond M.S. Pathogenesis of West Nile virus infection: A balance between virulence, innate and adaptive immunity, and viral evasion. J. Virol. 2006;80:9349–9360. doi: 10.1128/JVI.01122-06. PubMed DOI PMC

Malone R.W., Homan J., Callahan M.V., Glasspool-Malone J., Damodaran L., Schneider Ade B., Zimler R., Talton J., Cobb R.R., Ruzic I., et al. Zika Virus: Medical Countermeasure Development Challenges. PLoS Negl. Trop. Dis. 2016;10:e0004530. doi: 10.1371/journal.pntd.0004530. PubMed DOI PMC

Panisheva E.K., Mikerova N.I., Nikolayeva I.S., Fomina A.N., Cherkasova A.A., Golovanova E.A., Krylova L.Y. Synthesis and Antiviral Activity of 5-Hydroxyindole Derivatives. Pharm. Chem. 1988;22:1455–1458.

Boriskin Y.S., Leneva I.A., Pecheur E.I., Polyak S.J. Arbidol: A broad-spectrum antiviral compound that blocks viral fusion. Curr. Med. Chem. 2008;15:997–1005. doi: 10.2174/092986708784049658. PubMed DOI

Pecheur E.I., Borisevich V., Halfmann P., Morrey J.D., Smee D.F., Prichard M., Mire C.E., Kawaoka Y., Geisbert T.W., Polyak S.J. The Synthetic Antiviral Drug Arbidol Inhibits Globally Prevalent Pathogenic Viruses. J. Virol. 2016;90:3086–3092. doi: 10.1128/JVI.02077-15. PubMed DOI PMC

Villalain J. Membranotropic Effects of Arbidol, a Broad Anti-Viral Molecule, on Phospholipid Model Membranes. J. Phys. Chem. B. 2010;114:8544–8554. doi: 10.1021/jp102619w. PubMed DOI

Leneva I.A., Russell R.J., Boriskin Y.S., Hay A.J. Characteristics of arbidol-resistant mutants of influenza virus: Implications for the mechanism of anti-influenza action of arbidol. Antivir. Res. 2009;81:132–140. doi: 10.1016/j.antiviral.2008.10.009. PubMed DOI

Boriskin Y.S., Pecheur E.I., Polyak S.J. Arbidol: A broad-spectrum antiviral that inhibits acute and chronic HCV infection. Virol. J. 2006;3:56. doi: 10.1186/1743-422X-3-56. PubMed DOI PMC

Pecheur E.I., Lavillette D., Alcaras F., Molle J., Boriskin Y.S., Roberts M., Cosset F.L., Polyak S.J. Biochemical mechanism of hepatitis C virus inhibition by the broad-spectrum antiviral arbidol. Biochemistry. 2007;46:6050–6059. doi: 10.1021/bi700181j. PubMed DOI PMC

Liu Q., Xiong H.R., Lu L., Liu Y.Y., Luo F., Hou W., Yang Z.Q. Antiviral and anti-inflammatory activity of arbidol hydrochloride in influenza A (H1N1) virus infection. Acta Pharmacol. Sin. 2013;34:1075–1083. doi: 10.1038/aps.2013.54. PubMed DOI PMC

Lane A.N., Fan T.W.M. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 2015;43:2466–2485. doi: 10.1093/nar/gkv047. PubMed DOI PMC

Peterson L.W., McKenna C.E. Prodrug approaches to improving the oral absorption of antiviral nucleotide analogues. Expert Opin. Drug Deliv. 2009;6:405–420. doi: 10.1517/17425240902824808. PubMed DOI PMC

Kozuch O., Mayer V. Pig Kidney Epithelial (Ps) Cells—Perfect Tool for Study of Flaviviruses and Some Other Arboviruses. Acta Virol. 1975;19:498. PubMed

Ruzek D., Vancova M., Tesarova M., Ahantarig A., Kopecky J., Grubhoffer L. Morphological changes in human neural cells following tick-borne encephalitis virus infection. J. Gen. Virol. 2009;90:1649–1658. doi: 10.1099/vir.0.010058-0. PubMed DOI

DeMadrid A.T., Porterfield J.S. A Simple Micro-Culture Method for Study of Group B Arboviruses. Bull. World Health Organ. 1969;40:113–121. PubMed PMC

Eyer L., Valdés J.J., Gil V.A., Nencka R., Hřebabecký H., Šála M., Salát J., Černý J., Palus M., de Clercq E., Růžek D. Nucleoside Inhibitors of Tick-Borne Encephalitis Virus. Antimicrob. Agents Chemother. 2015;59:5483–5493. doi: 10.1128/AAC.00807-15. PubMed DOI PMC

Chapel C., Zitzmann N., Zoulim F., Durantel D. Virus morphogenesis and viral entry as alternative targets for novel hepatitis C antivirals. Future Virol. 2006;1:197–209. doi: 10.2217/17460794.1.2.197. DOI

Eyer L., Nencka R., de Clercq E., Seley-Radtke K., Ruzek D. Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne Flaviviruses. Antivir. Chem. Chemother. 2018 doi: 10.1177/2040206618761299. PubMed DOI PMC

Becher F., Landman R., Mboup S., Kane C.N., Canestri A., Liegeois F., Vray M., Prevot M.H., Leleu G., Benech H. Monitoring of didanosine and stavudine intracellular trisphosphorylated anabolite concentrations in HIV-infected patients. AIDS. 2004;18:181–187. doi: 10.1097/00002030-200401230-00006. PubMed DOI

Gao W.Y., Shirasaka T., Johns D.G., Broder S., Mitsuya H. Differential Phosphorylation of Azidothymidine, Dideoxycytidine, and Dideoxyinosine in Resting and Activated Peripheral-Blood Mononuclear-Cells. J. Clin. Investig. 1993;91:2326–2333. doi: 10.1172/JCI116463. PubMed DOI PMC

Mumtaz N., Jimmerson L.C., Bushman L.R., Kiser J.J., Aron G., Reusken C.B.E.M., Koopmans M.P.G., van Kampen J.J.A. Cell-line dependent antiviral activity of sofosbuvir against Zika virus. Antivir. Res. 2017;146:161–163. doi: 10.1016/j.antiviral.2017.09.004. PubMed DOI

Deng Y.Q., Zhang N.N., Li C.F., Tian M., Hao J.N., Xie X.P., Shi P.Y., Qin C.F. Adenosine Analog NITD008 Is a Potent Inhibitor of Zika Virus. Open Forum Infect. Dis. 2016;3:ofw175. doi: 10.1093/ofid/ofw175. PubMed DOI PMC

Eyer L., Nencka R., Huvarová I., Palus M., Joao Alves M., Gould E.A., de Clercq E., Růžek D. Nucleoside Inhibitors of Zika Virus. J. Infect. Dis. 2016;214:707–711. doi: 10.1093/infdis/jiw226. PubMed DOI

Julander J.G., Siddharthan V., Evans J., Taylor R., Tolbert K., Apuli C., Stewart J., Collins P., Gebre M., Neilson S., et al. Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model. Antivir. Res. 2017;137:14–22. doi: 10.1016/j.antiviral.2016.11.003. PubMed DOI PMC

Sacramento C.Q., de Melo G.R., de Freitas C.S., Rocha N., Hoelz L.V., Miranda M., Fintelman-Rodrigues N., Marttorelli A., Ferreira A.C., Barbosa-Lima G., et al. The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication. Sci. Rep. 2017;7:40920. doi: 10.1038/srep40920. PubMed DOI PMC

Leneva I.A., Fedyakina I.T., Guskova T.A., Glushkov R.G. Sensitivity of various influenza virus strains to arbidol. Influence of arbidol combination with different antiviral drugs on reproduction of influenza virus A. Terapevticheskii arkhiv. 2005;77:84–88. PubMed

Delogu I., Pastorino B., Baronti C., Nougairede A., Bonnet E., De Lamballerie X. In vitro antiviral activity of arbidol against Chikungunya virus and characteristics of a selected resistant mutant. Antivir. Res. 2011;90:99–107. doi: 10.1016/j.antiviral.2011.03.182. PubMed DOI

Oestereich L., Rieger T., Neumann M., Bernreuther C., Lehmann M., Krasemann S., Wurr S., Emmerich P., de Lamballerie X., Ölschläger S., Günther S. Evaluation of Antiviral Efficacy of Ribavirin, Arbidol, and T-705 (Favipiravir) in a Mouse Model for Crimean-Congo Hemorrhagic Fever. PLoS Negl. Trop. Dis. 2014;8:e2804. doi: 10.1371/journal.pntd.0002804. PubMed DOI PMC

Deng H.Y., Luo F., Shi L.Q., Zhong Q., Liu Y.J., Yang Z.Q. Efficacy of arbidol on lethal hantaan virus infections in suckling mice and in vitro. Acta Pharmacol. Sin. 2009;30:1015–1024. doi: 10.1038/aps.2009.53. PubMed DOI PMC

Shi L., Xiong H., He J., Deng H., Li Q., Zhong Q., Hou W., Cheng L., Xiao H., Yang Z. Antiviral activity of arbidol against influenza A virus, respiratory syncytial virus, rhinovirus, coxsackie virus and adenovirus in vitro and in vivo. Arch. Virol. 2007;152:1447–1455. doi: 10.1007/s00705-007-0974-5. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace