Recent Progress Concerning the N-Arylation of Indoles
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
34443667
PubMed Central
PMC8402097
DOI
10.3390/molecules26165079
PII: molecules26165079
Knihovny.cz E-resources
- Keywords
- Buchwald–Hartwig amination, Chan–Lam coupling, N-arylation, Ullmann condensation, indole,
- Publication type
- Journal Article MeSH
- Review MeSH
This review summarizes the current state-of-the-art procedures in terms of the preparation of N-arylindoles. After a short introduction, the transition-metal-free procedures available for the N-arylation of indoles are briefly discussed. Then, the nickel-catalyzed and palladium-catalyzed N-arylation of indoles are both discussed. In the next section, copper-catalyzed procedures for the N-arylation of indoles are described. The final section focuses on recent findings in the field of biologically active N-arylindoles.
See more in PubMed
Lampis G., Deidda D., Maullu C., Madeddu M.A., Pompei R., Delle Monachie F., Satta G. Sattabacins and Sattazolins: New Biologically Active Compounds with Antiviral Properties Extracted from a Bacillus sp. J. Antibiot. 1995;48:967–972. doi: 10.7164/antibiotics.48.967. PubMed DOI
Haviernik J., Stefanik M., Fojtikova M., Kali S., Tordo N., Rudolf I., Hubalek Z., Eyer L., Ruzek D. Arbidol (Umifenovir): A Broad-Spectrum Antiviral Drug That Inhibits Medically Important Arthropod-Borne Flaviviruses. Viruses. 2018;10:184. doi: 10.3390/v10040184. PubMed DOI PMC
Lewis R., Bagnall A.M., Leitner M. Sertindole for schizophrenia. Cochrane Database Syst. Rev. 2005;3 doi: 10.1002/14651858.CD001715.pub2. PubMed DOI PMC
Bhattacharjee P., Bora U. Organocatalytic Dimensions to the C–H Functionalization of the Carbocyclic Core in Indoles: A Review Update. Org. Chem. Front. 2021;8:2343–2365. doi: 10.1039/D0QO01466D. DOI
Čubiňák M., Edlová T., Polák P., Tobrman T. Indolylboronic Acids: Preparation and Applications. Molecules. 2019;24:3523. doi: 10.3390/molecules24193523. PubMed DOI PMC
Trubitsõn D., Kanger T. Enantioselective Catalytic Synthesis of N-Alkylated Indoles. Symmetry. 2020;12:1184. doi: 10.3390/sym12071184. DOI
Urbina K., Tresp D., Sipps K., Szostak M. Recent Advances in Metal-Catalyzed Functionalization of Indoles. Adv. Synth. Catal. 2021;363:2723–2739. doi: 10.1002/adsc.202100116. DOI
Wen J., Shi Z. From C4 to C7: Innovative Strategies for Site-Selective Functionalization of Indole C-H Bonds. Acc. Chem Res. 2021;54:1723–1736. doi: 10.1021/acs.accounts.0c00888. PubMed DOI
Polák P., Čejka J., Tobrman T. Formal Transition-Metal-Catalyzed Phosphole C-H Activation for the Synthesis of Pentasubstituted Phospholes. Org. Lett. 2020;22:2187–2190. doi: 10.1021/acs.orglett.0c00359. PubMed DOI
Keglevich G. 1-(2,4,6-Trialkylphenyl)-1H-Phospholes with a Flattened P-Pyramid: Synthesis and Reactivity. In: Bansal R., editor. Phosphorus Heterocycles II. Volume 21. Springer; Berlin/Heidelberg, Germany: 2010. pp. 149–173. Topics in Heterocyclic Chemistry.
Quin L.D. The Continuing Development of the Chemistry of Phospholes. Curr. Org. Chem. 2006;10:43–78. doi: 10.2174/138527206775192997. DOI
Romero-Nieto C., Baumgartner T. Dithieno[3,2-b:2′,3′-d]phospholes: A Look Back at the First Decade. Synlett. 2013;24:920–937. doi: 10.1055/s-0032-1317804. DOI
Zagidullin A.A., Bezkishko I.A., Miluykov V.A., Sinyashin O.G. Phospholes—Development and Recent Advances. Mendeleev Commun. 2013;23:117–130. doi: 10.1016/j.mencom.2013.05.001. DOI
Ding Z., Nie N., Chen T., Meng L., Wang G., Chen Z., Hu J. L-Proline N-Oxide Dihydrazides as an Efficient Ligand for Cross-Coupling Reactions of Aryl Iodides and Bromides with Amines and Phenols. Tetrahedron. 2021;79:131826. doi: 10.1016/j.tet.2020.131826. DOI
Antilla J.C., Baskin J.M., Barder T.E., Buchwald S.L. Copper-Diamine-Catalyzed N-Arylation of Pyrroles, Pyrazoles, Indazoles, Imidazoles, and Triazoles. J. Org. Chem. 2004;69:5578–5587. doi: 10.1021/jo049658b. PubMed DOI
Chen W., Li H.J., Cheng Y.F., Wu Y.C. Direct C2-Arylation of N-Acyl Pyrroles with Aryl Halides under Palladium Catalysis. Org. Biomol. Chem. 2021;19:1555–1564. doi: 10.1039/D0OB02579H. PubMed DOI
Kaloğlu M., Düşünceli S.D., Özdemir İ. The First Used Butylene Linked bis(N-Heterocyclic Carbene)-Palladium-PEPPSI Complexes in the Direct Arylation of Furan and Pyrrole. J. Organomet. Chem. 2020;915:121236. doi: 10.1016/j.jorganchem.2020.121236. DOI
Chen D., Li J., Shan Y., Cui P., Zhao Y., Tian L., Qiu G. Halogen-Radical-Promoted Dearomative Aza-Spirocyclization of Alkynylimines: An Efficient Approach to 3-Halo-Spirocyclohexadienones. Synthesis. 2020;52:609–618. doi: 10.1055/s-0039-1690746. DOI
Polák P., Tobrman T. Dearomatization Strategy for the Synthesis of Arylated 2H-Pyrroles and 2,3,5-Trisubstituted 1H-Pyrroles. Org. Lett. 2017;19:4608–4611. doi: 10.1021/acs.orglett.7b02219. PubMed DOI
Zhuo C.-X., Cheng Q., Liu W.-B., Zhao Q., You S.-L. Enantioselective Synthesis of Pyrrole-Based Spiro- and Polycyclic Derivatives by Iridium-Catalyzed Asymmetric Allylic Dearomatization and Controllable Migration Reactions. Angew. Chem. Int. Ed. 2015;54:8475–8479. doi: 10.1002/anie.201502259. PubMed DOI
Zhuo C.-X., Liu W.-B., Wu Q.-F., You S.-L. Asymmetric dearomatization of pyrroles via Ir-catalyzed allylic substitution reaction: Enantioselective synthesis of spiro-2H-pyrroles. Chem. Sci. 2012;3:205–208. doi: 10.1039/C1SC00517K. DOI
Zhuo C.-X., Zhou Y., You S.-L. Highly Regio- and Enantioselective Synthesis of Polysubstituted 2H-Pyrroles via Pd-Catalyzed Intermolecular Asymmetric Allylic Dearomatization of Pyrroles. J. Am. Chem. Soc. 2014;136:6590–6593. doi: 10.1021/ja5028138. PubMed DOI
Kunz K., Scholz U., Ganzer D. Renaissance of Ullmann and Goldberg Reactions—Progress in Copper Catalyzed C–N-, C–O- and C–S-Coupling. Synlett. 2003:2428–2439. doi: 10.1055/s-2003-42473. DOI
Sambiagio C., Marsden S.P., Blacker A.J., McGowan P.C. Copper Catalysed Ullmann Type Chemistry: From Mechanistic Aspects to Modern Development. Chem. Soc. Rev. 2014;43:3525–3550. doi: 10.1039/C3CS60289C. PubMed DOI
Sperotto E., van Klink G.P.M., van Koten G., de Vries J.G. The Mechanism of the Modified Ullmann Reaction. Dalton Trans. 2010;39:10338–10351. doi: 10.1039/c0dt00674b. PubMed DOI
Dorel R., Grugel C.P., Haydl A.M. The Buchwald–Hartwig Amination after 25 Years. Angew. Chem. Int. Ed. 2019;58:17118–17129. doi: 10.1002/anie.201904795. PubMed DOI
Forero-Cortés P.A., Haydl A.M. The 25th Anniversary of the Buchwald–Hartwig Amination: Development, Applications, and Outlook. Org. Proc. Res. Develop. 2019;23:1478–1483. doi: 10.1021/acs.oprd.9b00161. DOI
Heravi M.M., Kheilkordi Z., Zadsirjan V., Heydari M., Malmir M. Buchwald-Hartwig reaction: An overview. J. Organomet. Chem. 2018;861:17–104. doi: 10.1016/j.jorganchem.2018.02.023. DOI
Chen J.-Q., Li J.-H., Dong Z.-B. A Review on the Latest Progress of Chan-Lam Coupling Reaction. Adv. Synth. Catal. 2020;362:3311–3331. doi: 10.1002/adsc.202000495. DOI
Munir I., Zahoor A.F., Rasool N., Naqvi S.A.R., Zia K.M., Ahmad R. Synthetic Applications and Methodology Development of Chan–Lam Coupling: A Review. Mol. Divers. 2019;23:215–259. doi: 10.1007/s11030-018-9870-z. PubMed DOI
West M.J., Fyfe J.W.B., Vantourout J.C., Watson A.J.B. Mechanistic Development and Recent Applications of the Chan–Lam Amination. Chem. Rev. 2019;119:12491–12523. doi: 10.1021/acs.chemrev.9b00491. PubMed DOI
Joucla L., Djakovitch L. Transition Metal-Catalysed Direct and Site-Selective N1-, C2- or C3-Arylation of the Indole Nucleus: 20 Years of Improvements. Adv. Synth. Catal. 2009;351:673–714. doi: 10.1002/adsc.200900059. DOI
Xu H. Advances on N-Arylation of Indoles by Cross-Coupling Reactions. Mini-Rev. Org. Chem. 2009;6:367–377. doi: 10.2174/157019309789371613. DOI
Halder P., Roy T., Das P. Recent developments in selective N-arylation of azoles. Chem. Commun. 2021;57:5235–5249. doi: 10.1039/D1CC01265G. PubMed DOI
Chang D., Gao F., Shi L. Potassium tert-butoxide-mediated generation of arynes from o-bromoacetophenone derivatives. Tetrahedron. 2018;74:2428–2434. doi: 10.1016/j.tet.2018.03.058. DOI
Chen J., Wu J. Transition-Metal-Free C3 Arylation of Indoles with Aryl Halides. Angew. Chem. Int. Ed. 2017;56:3951–3955. doi: 10.1002/anie.201612311. PubMed DOI PMC
Hu F., Liu H., Jia J., Ma C. Transition-metal-free synthesis of indole-fused dibenzo[b,f][1,4]oxazepines via Smiles rearrangement. Org. Biomol. Chem. 2016;14:11076–11079. doi: 10.1039/C6OB02098D. PubMed DOI
Annareddygari S., Kasireddy V.R., Reddy J. Transition-Metal-Free N-Arylation: A General Approach to Aza-Fused Poly-heteroaromatics. J. Heterocycl. Chem. 2019;56:3267–3276. doi: 10.1002/jhet.3722. DOI
Huang A., Liu F., Zhan C., Liu Y., Ma C. One-Pot Synthesis of Pyrrolo[1,2-a]quinoxalines. Org. Biomol. Chem. 2011;9:7351–7357. doi: 10.1039/c1ob05936j. PubMed DOI
Thanetchaiyakup A., Rattanarat H., Chuanopparat N., Ngernmeesri P. One-Pot Synthesis of Substituted Indolo[1,2-a]quinolines under Transition-Metal-Free Conditions. Tetrahedron Lett. 2018;59:1014–1018. doi: 10.1016/j.tetlet.2018.01.085. DOI
Xu H., Sun L., Song C. Base-Mediated N-Arylation for the Synthesis of 9H-Pyrrolo[1,2-a]indol-9-ones and 10H-Indolo[1,2-a]indol-10-ones. Helv. Chim. Acta. 2019;102:e1800195. doi: 10.1002/hlca.201800195. DOI
Diness F., Begtrup M. Sequential Direct SNAr Reactions of Pentafluorobenzenes with Azole or Indole Derivatives. Org. Lett. 2014;16:3130–3133. doi: 10.1021/ol5012554. PubMed DOI
Diness F., Fairlie D.P. Catalyst-Free N-Arylation Using Unactivated Fluorobenzenes. Angew. Chem. Int. Ed. 2012;51:8012–8016. doi: 10.1002/anie.201202149. PubMed DOI
Chang G., Yang L., Liu S., Luo X., Lin R., Zhang L. Synthesis of indole-based functional polymers with well-defined structures via a catalyst-free C–N coupling reaction. RSC Adv. 2014;4:30630–30637. doi: 10.1039/C4RA03602F. DOI
Liu C., Wang H., Xing X., Xu Y., Ma J.-A., Zhang B. Selective C4–F bond cleavage of pentafluorobenzene: Synthesis of N-tetrafluoroarylated heterocyclic compounds. Tetrahedron Lett. 2013;54:4649–4652. doi: 10.1016/j.tetlet.2013.06.055. DOI
Iqbal M.A., Mehmood H., Lv J., Hua R. Base-Promoted SNAr Reactions of Fluoro- and Chloroarenes as a Route to N-Aryl Indoles and Carbazoles. Molecules. 2019;24:1145. doi: 10.3390/molecules24061145. PubMed DOI PMC
Maiti B., Sun C.-M. Novel Approach Towards the Synthesis of Skeletally Diverse Benzimidazole-pyrrolo[1,2-a]quinoxaline by SNAr/Pictet–Spengler Reaction under Focused Microwave Irradiation. New J. Chem. 2011;35:1385–1396. doi: 10.1039/c1nj20153k. DOI
Ricci P., Krämer K., Cambeiro X.C., Larrosa I. Arene–Metal π-Complexation as a Traceless Reactivity Enhancer for C–H Arylation. J. Am. Chem. Soc. 2013;135:13258–13261. doi: 10.1021/ja405936s. PubMed DOI
Su J., Chen Q., Lu L., Ma Y., Auyoung G.H.L., Hua R. Base-Promoted Nucleophilic Fluoroarenes Substitution of CF Bonds. Tetrahedron. 2018;74:303–307. doi: 10.1016/j.tet.2017.11.067. DOI
Tian Z.-Y., Ming X.-X., Teng H.-B., Hu Y.-T., Zhang C.-P. Transition-Metal-Free N-Arylation of Amines by Triarylsulfonium Triflates. Chem. Eur. J. 2018;24:13744–13748. doi: 10.1002/chem.201802269. PubMed DOI
Xia W., An Q.-J., Xiang S.-H., Li S., Wang Y.-B., Tan B. Chiral Phosphoric Acid Catalyzed Atroposelective C−H Amination of Arenes. Angew. Chem. Int. Ed. 2020;59:6775–6779. doi: 10.1002/anie.202000585. PubMed DOI
Chittimalla S.K., Nakka S., Koodalingam M., Bandi C. N-Arylation of Heterocycles by a Tandem Aza-Michael Addition Reaction and Aromatization Sequence. Synlett. 2018;29:57–64. doi: 10.1055/s-0036-1588538. DOI
Li S., Wu X.-X., Chen S. Base-Promoted Direct Synthesis of Functionalized N-Arylindoles via the Cascade Reactions of Allenic Ketones with Indoles. Org. Biomol. Chem. 2019;17:789–793. doi: 10.1039/C8OB02921K. PubMed DOI
Rull S.G., Blandez J.F., Fructos M.R., Belderrain T.R., Nicasio M.C. C–N Coupling of Indoles and Carbazoles with Aromatic Chlorides Catalyzed by a Single-Component NHC-Nickel(0) Precursor. Adv. Synth. Catal. 2015;357:907–911. doi: 10.1002/adsc.201500030. DOI
Clark J.S.K., Voth C.N., Ferguson M.J., Stradiotto M. Evaluating 1,1′-Bis(phosphino)ferrocene Ancillary Ligand Variants in the Nickel-Catalyzed C–N Cross-Coupling of (Hetero)aryl Chlorides. Organometallics. 2017;36:679–686. doi: 10.1021/acs.organomet.6b00885. DOI
Iranpoor N., Panahi F. Direct Nickel-Catalyzed Amination of Phenols via C–O Bond Activation using 2,4,6-Trichloro-1,3,5-triazine (TCT) as Reagent. Adv. Synth. Catal. 2014;356:3067–3073. doi: 10.1002/adsc.201400460. DOI
Morioka T., Nakatani S., Sakamoto Y., Kodama T., Ogoshi S., Chatani N., Tobisu M. Nickel-Catalyzed Decarbonylation of N-Acylated N-Heteroarenes. Chem. Sci. 2019;10:6666–6671. doi: 10.1039/C9SC02035G. PubMed DOI PMC
Krishnaveni T., Lakshmi K., Kadirvelu K., Kaveri M.V. Exploration of Catalytic Activity of Quercetin Mediated Hydrothermally Synthesized NiO Nanoparticles Towards C–N Coupling of Nitrogen Heterocycles. Catal. Lett. 2020;150:1628–1640. doi: 10.1007/s10562-019-03037-6. DOI
Gatien A.V., Lavoie C.M., Bennett R.N., Ferguson M.J., McDonald R., Johnson E.R., Speed A.W.H., Stradiotto M. Application of Diazaphospholidine/Diazaphospholene-Based Bisphosphines in Room-Temperature Nickel-Catalyzed C(sp2)–N Cross-Couplings of Primary Alkylamines with (Hetero)aryl Chlorides and Bromides. ACS Catal. 2018;8:5328–5339. doi: 10.1021/acscatal.8b01005. DOI
Park N.H., Teverovskiy G., Buchwald S.L. Development of an Air-Stable Nickel Precatalyst for the Amination of Aryl Chlorides, Sulfamates, Mesylates, and Triflates. Org. Lett. 2014;16:220–223. doi: 10.1021/ol403209k. PubMed DOI PMC
Liu R.Y., Dennis J.M., Buchwald S.L. The Quest for the Ideal Base: Rational Design of a Nickel Precatalyst Enables Mild, Homogeneous C–N Cross-Coupling. J. Am. Chem. Soc. 2020;142:4500–4507. doi: 10.1021/jacs.0c00286. PubMed DOI PMC
Sawatzky R.S., Ferguson M.J., Stradiotto M. Thieme Chemistry Journals Awardees—Where Are They Now? Efficient Cross-Coupling of Secondary Amines/Azoles and Activated (Hetero)Aryl Chlorides Using an Air-Stable DPEPhos/Nickel Pre-Catalyst. Synlett. 2017;28:1586–1591.
Panahi F., Roozbin F., Rahimi S., Moayyed M., Valaei A., Iranpoor N. A Triazine-Phosphite Polymeric Ligand Bearing Cage-Like P,N-Ligation Sites: An Efficient Ligand in the Nickel-Catalyzed Amination of Aryl Chlorides and Phenols. RSC Adv. 2016;6:80670–80678. doi: 10.1039/C6RA14367A. DOI
Malapit C.A., Borrell M., Milbauer M.W., Brigham C.E., Sanford M.S. Nickel-Catalyzed Decarbonylative Amination of Carboxylic Acid Esters. J. Am. Chem. Soc. 2020;142:5918–5923. doi: 10.1021/jacs.9b13531. PubMed DOI PMC
Lokhande† S.K., Vaidya† G.N., Satpute D.P., Venkatesh A., Kumar S., Kumar D. Structure Ligation Relationship of Amino Acids for the Selective Indole C−H Arylation Reaction: L-Aspartic acid as Sustainable Alternative of Phosphine Ligands. Adv. Synth. Catal. 2020;362:2857–2863. doi: 10.1002/adsc.202000426. DOI
Mohr Y., Renom-Carrasco M., Demarcy C., Quadrelli E.A., Camp C., Wisser F.M., Clot E., Thieuleux C., Canivet J. Regiospecificity in Ligand-Free Pd-Catalyzed C–H Arylation of Indoles: LiHMDS as Base and Transient Directing Group. ACS Catal. 2020;10:2713–2719. doi: 10.1021/acscatal.9b04864. DOI
Yamaguchi M., Suzuki K., Sato Y., Manabe K. Palladium-Catalyzed Direct C3-Selective Arylation of N-Unsubstituted Indoles with Aryl Chlorides and Triflates. Org. Lett. 2017;19:5388–5391. doi: 10.1021/acs.orglett.7b02669. PubMed DOI
Ye Z., Li Y., Xu K., Chen N., Zhang F. Cascade π-Extended Decarboxylative Annulation Involving Cyclic Diaryliodonium Salts: Site-Selective Synthesis of Phenanthridines and Benzocarbazoles via a Traceless Directing Group Strategy. Org. Lett. 2019;21:9869–9873. doi: 10.1021/acs.orglett.9b03775. PubMed DOI
Mayer L., Kohlbecher R., Müller T.J.J. Concatenating Suzuki Arylation and Buchwald–Hartwig Amination by a Sequentially Pd-Catalyzed One-Pot Process—Consecutive Three-Component Synthesis of C,N-Diarylated Heterocycles. Chem. Eur. J. 2020;26:15130–15134. doi: 10.1002/chem.202003837. PubMed DOI PMC
Chen H., Yang H., Li N., Xue X., He Z., Zeng Q. Palladium-Catalyzed C–N Cross-Coupling of NH-Heteroarenes and Quaternary Ammonium Salts via C–N Bond Cleavage. Org.Process Res. Develop. 2019;23:1679–1685. doi: 10.1021/acs.oprd.9b00194. DOI
Ye X., Huang J., Deng Z., Yuan J., Peng Y. Palladium-Catalyzed Cross-Coupling Reactions of 4-Tosyl-oxyquinazolines with Indoles: An Efficient Approach to 4-(1H-Indol-1-yl)quinazolines. Synthesis. 2021;53:383–390.
Choy P.Y., Chung K.H., Yang Q., So C.M., Sun R.W.-Y., Kwong F.Y. A General Palladium–Phosphine Complex to Explore Aryl Tosylates in the N-Arylation of Amines: Scope and Limitations. Chem. Asian J. 2018;13:2465–2474. doi: 10.1002/asia.201800575. PubMed DOI
Chen X., Yang Z., Chen X., Liang W., Zhu Z., Xie F., Li Y. Hydrogen-Transfer-Mediated N-Arylation of Naphthols Using Indolines as Hydrogen Donors. J. Org. Chem. 2020;85:508–514. doi: 10.1021/acs.joc.9b02558. PubMed DOI
Monguchi Y., Marumoto T., Takamatsu H., Sawama Y., Sajiki H. Palladium on Carbon-Catalyzed One-Pot N-Arylindole Synthesis: Intramolecular Aromatic Amination, Aromatization, and Intermolecular Aromatic Amination. Adv. Synth. Catal. 2014;356:1866–1872. doi: 10.1002/adsc.201301168. DOI
Crawford S.M., Lavery C.B., Stradiotto M. BippyPhos: A Single Ligand With Unprecedented Scope in the Buchwald–Hartwig Amination of (Hetero)aryl Chlorides. Chem. Eur. J. 2013;19:16760–16771. doi: 10.1002/chem.201302453. PubMed DOI
Ghorbani-Vaghei R., Hemmati S., Hamelian M., Veisi H. An Efficient, Mild and Selective Ullmann-Type N-Arylation of Indoles Catalysed by Pd Immobilized on Amidoxime-Functionalized Mesoporous SBA-15 as Heterogeneous and Recyclable Nanocatalyst. Appl. Organomet. Chem. 2015;29:195–199. doi: 10.1002/aoc.3264. DOI
Veisi H., Poor Heravi M.R., Hamelian M. SBA-15-Functionalized Melamine–Pyridine Group-Supported Palladium(0) as an Efficient Heterogeneous and Recyclable Nanocatalyst for N-Arylation of Indoles through Ullmann-Type Coupling Reactions. Appl. Organomet. Chem. 2015;29:334–337. doi: 10.1002/aoc.3296. DOI
Veisi H., Morakabati N. Palladium Nanoparticles Supported on Modified Single-Walled Carbon Nanotubes: A Heterogeneous and Reusable Catalyst in the Ullmann-Type N-Arylation of Imidazoles and Indoles. New J. Chem. 2015;39:2901–2907. doi: 10.1039/C4NJ02108H. DOI
Ghorbani-Vaghei R., Hemmati S., Hekmati M. Pd Immobilized on Modified Magnetic Fe3O4 Nanoparticles: Magnetically Recoverable and Reusable Pd Nanocatalyst for Suzuki-Miyaura Coupling Reactions and Ullmann-Type N-Arylation of Indoles. J. Chem. Sci. 2016;128:1157–1162. doi: 10.1007/s12039-016-1098-9. DOI
Boyd E.M., Sperry J. Total Synthesis of (−)-Aspergilazine A. Org. Lett. 2014;16:5056–5059. doi: 10.1021/ol5024097. PubMed DOI
Hajipour A.R., Dordahan F., Rafiee F. Synthesis of Tertiary Aryl Amines of Various Aryl Halides and Secondary Amines using Ortho-Palladated Complex of Tribenzylamine. Appl. Organomet. Chem. 2013;27:704–706. doi: 10.1002/aoc.3044. DOI
Monti A., Rama R.J., Gómez B., Maya C., Álvarez E., Carmona E., Nicasio M.C. N-Substituted Aminobiphenyl Palladacycles Stabilized by Dialkylterphenyl Phosphanes: Preparation and Applications in CN Cross-Coupling Reactions. Inorg. Chim. Acta. 2021;518:120214. doi: 10.1016/j.ica.2020.120214. DOI
Wagner P., Bollenbach M., Doebelin C., Bihel F., Bourguignon J.-J., Salomé C., Schmitt M. t-BuXPhos: A Highly Efficient Ligand for Buchwald–Hartwig Coupling in Water. Green Chem. 2014;16:4170–4178. doi: 10.1039/C4GC00853G. DOI
Izquierdo J., Jain A.D., Abdulkadir S.A., Schiltz G.E. Palladium-Catalyzed Coupling Reactions on Functionalized 2-Trifluoromethyl-4-chromenone Scaffolds: Synthesis of Highly Functionalized Trifluoromethyl Heterocycles. Synthesis. 2019;51:1342–1352. doi: 10.1055/s-0037-1610669. PubMed DOI PMC
Grimm J.B., Lavis L.D. Synthesis of Rhodamines from Fluoresceins Using Pd-Catalyzed C–N Cross-Coupling. Org. Lett. 2011;13:6354–6357. doi: 10.1021/ol202618t. PubMed DOI PMC
Shimizu K., Minami Y., Goto O., Ikehira H., Hiyama T. Silicon-based C–N Cross-coupling Reaction. Chem. Lett. 2014;43:438–440. doi: 10.1246/cl.131075. DOI
Minami Y., Komiyama T., Shimizu K., Hiyama T., Goto O., Ikehira H. Catalytic Carbon–Nitrogen Bond-Forming Cross-Coupling Using N-Trimethylsilylamines. Bull. Chem. Soc. Japan. 2015;88:1437–1446. doi: 10.1246/bcsj.20150179. DOI
Hosseini-Sarvari M., Razmi Z. Highly Active Recyclable Heterogeneous Pd/ZnO Nanoparticle Catalyst: Sustainable Developments for the C–O and C–N Bond Cross-Coupling Reactions of Aryl Halides under Ligand-Free Conditions. RSC Adv. 2014;4:44105–44116. doi: 10.1039/C4RA06486K. DOI
Fareghi-Alamdari R., Haqiqi M.G., Zekri N. Immobilized Pd(0) Nanoparticles on Phosphine-Functionalized Graphene as a Highly Active Catalyst for Heck, Suzuki and N-Arylation Reactions. New J. Chem. 2016;40:1287–1296. doi: 10.1039/C5NJ02227D. DOI
Panahi F., Daneshgar F., Haghighi F., Khalafi-Nezhad A. Immobilized Pd Nanoparticles on Silica-Starch Substrate (PNP-SSS): Efficient Heterogeneous Catalyst in Buchwald–Hartwig C–N Cross-Coupling Reaction. J. Organomet. Chem. 2017;851:210–217. doi: 10.1016/j.jorganchem.2017.09.037. DOI
Yong F.-F., Teo Y.-C., Tay S.-H., Tan B.Y.-H., Lim K.-H. A Ligand-Free Copper(I) Oxide Catalyzed Strategy for the N-Arylation of Azoles in Water. Tetrahedron Lett. 2011;52:1161–1164. doi: 10.1016/j.tetlet.2011.01.005. DOI
Liu L., Wu F., Liu Y., Xie J., Dai B., Zhou Z. Copper-Catalysed N-Arylation of Pyrrole with Aryl Iodides Under Ligand-Free Conditions. J. Chem. Res. 2019;38:180–182. doi: 10.3184/174751914X13922969308054. DOI
Khalil A., Fihri A., Jouiad M., Hashaikeh R. Electrospun Copper Oxide Nanoparticles as an Efficient Heterogeneous Catalyst for N-Arylation of Indole. Tetrahedron Lett. 2014;55:5973–5975. doi: 10.1016/j.tetlet.2014.08.120. DOI
Amadine O., Maati H., Abdelouhadi K., Fihri A., El Kazzouli S., Len C., El Bouari A., Solhy A. Ceria-Supported Copper Nanoparticles: A Highly Efficient and Recyclable Catalyst for N-Arylation of Indole. J. Mol. Cat. A-Chem. 2014;395:409–419. doi: 10.1016/j.molcata.2014.08.009. DOI
Chaudhary K., Subodh, Prakash K., Mogha N.K., Masram D.T. Fruit Waste (Pulp) Decorated CuO NFs as Promising Platform for Enhanced Catalytic Response and Its Peroxidase Mimics Evaluation. Arab. J. Chem. 2020;13:4869–4881. doi: 10.1016/j.arabjc.2019.09.007. DOI
Hemmati S., Mehrazin L., Hekmati M., Izadi M., Veisi H. Biosynthesis of CuO Nanoparticles Using Rosa Canina Fruit Extract as a Recyclable and Heterogeneous Nanocatalyst for C-N Ullmann Coupling Reactions. Mater. Chem. Phys. 2018;214:527–532. doi: 10.1016/j.matchemphys.2018.04.114. DOI
Lim J., Kim J.D., Choi H.C., Lee S. CNT-CuO Catalyzed C–N Bond Formation for N-Arylation of 2-Phenylindoles. J. Organomet. Chem. 2019;902:120970. doi: 10.1016/j.jorganchem.2019.120970. DOI
Pai G., Chattopadhyay A.P. Ligand-Free Copper Nanoparticle Promoted N-Arylation of Azoles with Aryl and Heteroaryl Iodides. Tetrahedron Lett. 2014;55:941–944. doi: 10.1016/j.tetlet.2013.12.065. DOI
Suramwar N.V., Thakare S.R., Karade N.N., Khaty N.T. Green Synthesis of Predominant (111) Facet CuO Nanoparticles: Heterogeneous and Recyclable Catalyst for N-Arylation of Indoles. J. Mol. Catal. A-Chem. 2012;359:28–34. doi: 10.1016/j.molcata.2012.03.017. DOI
Talukdar D., Das G., Thakur S., Karak N., Thakur A.J. Copper Nanoparticle Decorated Organically Modified Montmorillonite (OMMT): An Efficient Catalyst for the N-Arylation of Indoles and Similar Heterocycles. Catal. Commun. 2015;59:238–243. doi: 10.1016/j.catcom.2014.10.030. DOI
Reddy K.H.V., Satish G., Ramesh K., Karnakar K., Nageswar Y.V.D. An Efficient Synthesis of N-Substituted Indoles from Indoline/Indoline Carboxylic Acid via Aromatization Followed by C–N Cross-Coupling Reaction by Using Nano Copper Oxide as a Recyclable Catalyst. Tetrahedron Lett. 2012;53:3061–3065. doi: 10.1016/j.tetlet.2012.04.012. DOI
Patil P.H., Nallasivam J.L., Fernandes R.A. Unimolecular 4-Hydroxypiperidines: New Ligands for Copper-Catalyzed N-Arylation. Asian J. Org. Chem. 2015;4:552–559. doi: 10.1002/ajoc.201500062. DOI
Yang X., Xing H., Zhang Y., Lai Y., Zhang Y., Jiang Y., Ma D. CuI/8-Hydroxyquinalidine Promoted N-Arylation of Indole and Azoles. Chin. J. Chem. 2012;30:875–880. doi: 10.1002/cjoc.201100433. DOI
Elliott E.-C., Maggs J.L., Park B.K., O’Neill P.M., Stachulski A.V. Convenient Syntheses of Halo-dibenz[b,f]azepines and Carbamazepine Analogues via N-Arylindoles. Org. Biomol. Chem. 2013;11:8426–8434. doi: 10.1039/c3ob41252k. PubMed DOI
Vaidya G.N., Khan A., Verma H., Kumar S., Kumar D. Structure Ligation Relationship of Amino Acids for the Amination Cross-Coupling Reactions. J. Org. Chem. 2019;84:3004–3010. doi: 10.1021/acs.joc.8b03214. PubMed DOI
Chen H., Lei M., Hu L. Synthesis of 1-Aryl Indoles via Coupling Reaction of Indoles and Aryl Halides Catalyzed by CuI/metformin. Tetrahedron. 2014;70:5626–5631. doi: 10.1016/j.tet.2014.06.080. DOI
Balalaie S., Bararjanian M., Hosseinzadeh S., Rominger F., Bijanzadeh H.R., Wolf E. Designing a Sequential Ugi/Ullmann Type Reaction for the Synthesis of Indolo[1,2-a]quinoxalinones Catalyzed by CuI/l-Proline. Tetrahedron. 2011;67:7294–7300. doi: 10.1016/j.tet.2011.07.052. DOI
Zhang L., Zhao F., Zheng M., Zhai Y., Liu H. Rapid and Selective Access to Three Distinct Sets of Indole-Based Heterocycles from a Single Set of Ugi-Adducts under Microwave Heating. Chem. Commun. 2013;49:2894–2896. doi: 10.1039/c3cc00111c. PubMed DOI
Zhang L., Zheng M., Zhao F., Zhai Y., Liu H. Rapid Generation of Privileged Substructure-Based Compound Libraries with Structural Diversity and Drug-Likeness. ACS Comb. Sci. 2014;16:184–191. doi: 10.1021/co4001309. PubMed DOI
Lee J., Choi J.H., Shin S., Heo J.-N., Lim H.J. N-Arylation of Sterically Hindered NH-Nucleophiles: Copper-Mediated Syntheses of Diverse N-Arylindole-2-carboxylates. Synthesis. 2015;47:3301–3308. doi: 10.1002/chin.201611137. DOI
Lee J.-H., Kim H., Kim T., Song J.H., Kim W.-S., Ham J. Functionalization of Organotrifluoroborates via Cu-Catalyzed C–N Coupling Reaction. Bull. KoreanChem. Soc. 2013;34:42–48. doi: 10.5012/bkcs.2013.34.1.42. DOI
Liu W., Han L.-Y., Liu R.-L., Xu L.-G., Bi Y.-L. Copper-Catalyzed N-Arylation of 2-Arylindoles with Aryl Halides. Chin. Chem. Lett. 2014;25:1240–1243. doi: 10.1016/j.cclet.2014.04.021. DOI
Rodrigues M.B., Feitosa S.C., Wiethan C.W., Rosa W.C., da Silveira C.H., Pagliari A.B., Martins M.A.P., Zanatta N., Iglesias B.A., Bonacorso H.G. Ullmann-Type Copper-Catalyzed Coupling Amination, Photophysical and DNA/HSA-Binding Properties of New 4-(Trifluoromethyl)quinoline Derivatives. J. Fluor. Chem. 2019;221:84–90. doi: 10.1016/j.jfluchem.2019.04.006. DOI
Ghobrial M., Mihovilovic M.D., Schnurch M. Exploration of C-H and N-H-Bond Functionalization Towards 1-(1,2-Diarylindol-3-yl)tetrahydroisoquinolines. Beilstein J. Org. Chem. 2014;10:2186–2199. doi: 10.3762/bjoc.10.226. PubMed DOI PMC
Yadav D.K.T., Rajak S.S., Bhanage B.M. N-Arylation of Indoles with Aryl Halides Using Copper/Glycerol as a Mild and Highly Efficient Recyclable Catalytic System. Tetrahedron Lett. 2014;55:931–935. doi: 10.1016/j.tetlet.2013.12.053. DOI
Wei J.J., Song W.B., Zhu Y.F., Wei B.L., Xuan L.J. N,N-Dimethyl-d-glucosamine as an Efficient Ligand for Copper-Catalyzed Ullmann-Type Coupling of N-H Heterocycles with Aryl Halides. Tetrahedron. 2018;74:19–27. doi: 10.1016/j.tet.2017.11.027. DOI
Chen Y., Du F., Chen F., Zhou Q., Chen G. Methyl-α-d-glucopyranoside as Green Ligand for Selective Copper-Catalyzed N-Arylation. Synthesis. 2019;51:4590–4600. doi: 10.1055/s-0039-1690702. DOI
Ge X., Zhang S., Chen X., Liu X., Qian C. A Designed Bi-Functional Sugar-Based Surfactant: Micellar Catalysis for C–X Coupling Reaction in Water. Green Chem. 2019;21:2771–2776. doi: 10.1039/C9GC00964G. DOI
Yuan C., Zhao Y., Zheng L. α-d-Galacturonic Acid as Natural Ligand for Selective Copper-Catalyzed N-Arylation of N-Containing Heterocycles. Synlett. 2019;30:2173–2180. doi: 10.1055/s-0039-1690226. DOI
Zhou Q., Du F., Chen Y., Fu Y., Sun W., Wu Y., Chen G. l-(−)-Quebrachitol as a Ligand for Selective Copper(0)-Catalyzed N-Arylation of Nitrogen-Containing Heterocycles. J. Org. Chem. 2019;84:8160–8167. doi: 10.1021/acs.joc.9b00997. PubMed DOI
Bollenbach M., Aquino P.G.V., de Araújo-Júnior J.X., Bourguignon J.-J., Bihel F., Salomé C., Wagner P., Schmitt M. Efficient and Mild Ullmann-Type N-Arylation of Amides, Carbamates, and Azoles in Water. Chem. Eur. J. 2017;23:13676–13683. doi: 10.1002/chem.201700832. PubMed DOI
Liu S., Zhou J. Aqueous Copper-Catalyzed N-Arylation of Indoles: The Surfactant Strategy. New J. Chem. 2013;37:2537–2540. doi: 10.1039/c3nj00226h. DOI
Malavade V., Patil M., Patil M. Scope, Kinetics, and Mechanism of “On Water” Cu Catalysis in the C–N Cross-Coupling Reactions of Indole Derivatives. Eur. J. Org. Chem. 2020:561–569. doi: 10.1002/ejoc.201901542. DOI
Molaei H., Ghanbari M.M. Practical Copper-Catalyzed N-Arylation of Amines with 20% Aqueous Solution of n-Bu4NOH. Chin. Chem. Lett. 2012;23:301–304. doi: 10.1016/j.cclet.2011.12.015. DOI
Abele E., Abele R. KOH/Adogen 464/Proline System for Highly Effective Cu-Catalyzed “On-Water” N–H Arylation of Heteroaromatic Compounds. Chem. Heterocycl. Com. 2013;49:1384–1386. doi: 10.1007/s10593-013-1389-8. DOI
Engel-Andreasen J., Shimpukade B., Ulven T. Selective Copper Catalysed Aromatic N-Arylation in Water. Green Chem. 2013;15:336–340. doi: 10.1039/C2GC36589H. DOI
Mukhopadhyay C., Tapaswi P.K. Highly Efficient and Simple Catalytic System for the N-Arylation of Some Hindered Aza-Heterocycles in Water. Synth. Commun. 2012;42:2217–2228. doi: 10.1080/00397911.2011.555219. DOI
Salomé C., Wagner P., Bollenbach M., Bihel F., Bourguignon J.-J., Schmitt M. Buchwald–Hartwig Reactions in Water Using Surfactants. Tetrahedron. 2014;70:3413–3421. doi: 10.1016/j.tet.2014.03.083. DOI
Teo Y.-C., Yong F.-F., Lim G.S. A Manganese/Copper Bimetallic Catalyst for C–N Coupling Reactions under Mild Conditions in Water. Tetrahedron Lett. 2011;52:7171–7174. doi: 10.1016/j.tetlet.2011.10.128. DOI
Zhou G., Chen W., Zhang S., Liu X., Yang Z., Ge X., Fan H.-J. A Newly Designed Carbohydrate-Derived Alkylamine Promotes Ullmann Type C–N Coupling Catalyzed by Copper in Water. Synlett. 2019;30:193–198.
Zhou Q., Du F., Chen Y., Fu Y., Chen G. “On Water” Promoted N-Arylation Reactions Using Cu (0)/Myo-inositol Catalytic System. Tetrahedron Lett. 2019;60:1938–1941. doi: 10.1016/j.tetlet.2019.06.033. DOI
Damkaci F., Alawaed A., Vik E. N-Picolinamides as Ligands for Ullmann-type CN Coupling Reactions. Tetrahedron Lett. 2016;57:2197–2200. doi: 10.1016/j.tetlet.2016.04.017. DOI
Su J., Qiu Y., Jiang S., Zhang D. New Ligands for Copper-Catalyzed C–N Coupling Reactions at Gentle Temperature. Chin. J. Chem. 2014;32:685–688. doi: 10.1002/cjoc.201400147. DOI
Yang K., Qiu Y., Li Z., Wang Z., Jiang S. Ligands for Copper-Catalyzed C−N Bond Forming Reactions with 1 Mol% CuBr as Catalyst. J. Org. Chem. 2011;76:3151–3159. doi: 10.1021/jo1026035. PubMed DOI
Wang Y., Zhang Y., Yang B., Zhang A., Yao Q. N-(1-Oxy-2-picolyl)oxalamic Acids as a New Type of O,O-Ligands for the Cu-Catalyzed N-Arylation of Azoles with Aryl Halides in Water or Organic solvent. Org. Biomol. Chem. 2015;13:4101–4114. doi: 10.1039/C5OB00045A. PubMed DOI
Taywade A., Chavan S., Ulhe A., Berad B. Unique CuI-Pyridine Based Ligands Catalytic Systems for N-Arylation of Indoles and Other Heterocycles. Synth. Commun. 2018;48:1443–1453. doi: 10.1080/00397911.2018.1454474. DOI
Echeverry-Gonzalez C.A., Ortiz Villamizar M.C., Kouznetsov V.V. The Remarkable Selectivity of the 2-Arylquinoline-Based Acyl Hydrazones Toward Copper Salts: Exploration of Their Catalytic Applications in the Copper Catalysed N-Arylation of Indole Derivatives and C1-Alkynylation of Tetrahydroisoquinolines via the A3 Reaction. New J. Chem. 2021;45:243–250.
Abe T., Takahashi Y., Matsubara Y., Yamada K. An Ullmann N-Arylation/2-Amidation Cascade by Self-Relay Copper Catalysis: One-Pot Synthesis of Indolo[1,2-a]quinazolinones. Org. Chem. Front. 2017;4:2124–2127. doi: 10.1039/C7QO00549K. DOI
Ghosh T., Maity P., Ranu B.C. Cobalt-Copper Catalyzed C(sp2)—N Cross Coupling of Amides or Nitrogenated Heterocycles with Styrenyl or Aryl Halides. ChemistrySelect. 2018;3:4406–4412. doi: 10.1002/slct.201800575. DOI
Mostafa M.A.B., Calder E.D.D., Racys D.T., Sutherland A. Intermolecular Aryl C−H Amination through Sequential Iron and Copper Catalysis. Chem. Eur. J. 2017;23:1044–1047. doi: 10.1002/chem.201605671. PubMed DOI PMC
Sadhu P., Punniyamurthy T. Copper(ii)-Mediated Regioselective N-Arylation of Pyrroles, Indoles, Pyrazoles and Carbazole via Dehydrogenative Coupling. Chem. Commun. 2016;52:2803–2806. doi: 10.1039/C5CC08206D. PubMed DOI
Pradhan S., De P.B., Punniyamurthy T. Copper(II)-Mediated Chelation-Assisted Regioselective N-Naphthylation of Indoles, Pyrazoles and Pyrrole through Dehydrogenative Cross-Coupling. J. Org. Chem. 2017;82:4883–4890. doi: 10.1021/acs.joc.7b00615. PubMed DOI
Zhang Y., Hu Z.-Y., Li X.-C., Guo X.-X. Copper-Catalyzed Decarboxylative N-Arylation of Indole-2-carboxylic Acids. Synthesis. 2019;51:1803–1808. doi: 10.1055/s-0037-1611946. DOI
Petiot P., Dansereau J., Gagnon A. Copper-Catalyzed N-Arylation of Azoles and Diazoles Using Highly Functionalized Trivalent Organobismuth Reagents. RSC Adv. 2014;4:22255–22259. doi: 10.1039/C4RA02467B. DOI
Hébert M., Petiot P., Benoit E., Dansereau J., Ahmad T., Le Roch A., Ottenwaelder X., Gagnon A. Synthesis of Highly Functionalized Triarylbismuthines by Functional Group Manipulation and Use in Palladium- and Copper-Catalyzed Arylation Reactions. J. Org. Chem. 2016;81:5401–5416. doi: 10.1021/acs.joc.6b00767. PubMed DOI
Jadhav B.D., Pardeshi S.K. A Facile and Practical Copper Diacetate Mediated, Ligand Free C–N Cross Coupling of Trivalent Organobismuth Compounds with Amines and N-heteroarenes. RSC Adv. 2016;6:14531–14537. doi: 10.1039/C6RA00395H. DOI
Le Roch A., Hébert M., Gagnon A. Copper-Promoted O-Arylation of the Phenol Side Chain of Tyrosine Using Triarylbismuthines. Eur. J. Org. Chem. 2020:5363–5367. doi: 10.1002/ejoc.202000790. DOI
Le Roch A., Chan H.-C., Gagnon A. Copper-Promoted N-Arylation of the Indole Side Chain of Tryptophan Using Triarylbismuthines. Eur. J. Org. Chem. 2020:5815–5819. doi: 10.1002/ejoc.202000667. DOI
Alonso I., Alvarez R., de Lera Á.R. Indole–Indole Ullmann Cross-Coupling for CAr–N Bond Formation: Total Synthesis of (–)-Aspergilazine A. Eur. J. Org. Chem. 2017:4948–4954. doi: 10.1002/ejoc.201700842. DOI
Modha S.G., Greaney M.F. Atom-Economical Transformation of Diaryliodonium Salts: Tandem C−H and N−H Arylation of Indoles. J. Am. Chem. Soc. 2015;137:1416–1419. doi: 10.1021/ja5124754. PubMed DOI
Ziegler D.T., Choi J., Muñoz-Molina J.M., Bissember A.C., Peters J.C., Fu G.C. A Versatile Approach to Ullmann C−N Couplings at Room Temperature: New Families of Nucleophiles and Electrophiles for Photoinduced, Copper-Catalyzed Processes. J. Am. Chem. Soc. 2013;135:13107–13112. doi: 10.1021/ja4060806. PubMed DOI
Guo S., Liu Y., Zhang X., Fan X. Iridium-Catalyzed Oxidative Annulation of 2-Arylindoles with Benzoquinone Leading to Indolo[1,2-f]phenanthridin-6-ols. Adv. Synth. Catal. 2020;362:3011–3020. doi: 10.1002/adsc.202000449. DOI
Kong L., Sun Y., Zheng Z., Tang R., Wang M., Li Y. Chemoselective N–H or C-2 Arylation of Indole-2-carboxamides: Controllable Synthesis of Indolo[1,2-a]quinoxalin-6-ones and 2,3′-Spirobi[indolin]-2′-ones. Org. Lett. 2018;20:5251–5255. doi: 10.1021/acs.orglett.8b02197. PubMed DOI
Liu X., Cao Z., Huang H., Liu X., Tan Y., Chen H., Pei Y., Tan S. Novel D–D–π-A Organic Dyes Based on Triphenylamine and Indole-Derivatives for High Performance Dye-Sensitized Solar Cells. J. Power Sources. 2014;248:400–406. doi: 10.1016/j.jpowsour.2013.09.106. DOI
Keruckas J., Grazulevicius J.V., Volyniuk D., Cherpak V., Stakhira P. 3,6-Bis(indol-1-yl)-9-phenylcarbazoles as Electroactive Materials for Electrophosphorescent Diodes. Dye. Pigment. 2014;100:66–72. doi: 10.1016/j.dyepig.2013.07.020. DOI
Hussain F., Wang X., Wang S. Impact of Bidentate N,C-Chelate Ligands on the Performance of Phosphorescent Pt(II) Complexes as Oxygen Sensors. J. Organomet. Chem. 2019;880:300–311. doi: 10.1016/j.jorganchem.2018.11.017. DOI
Xiang N., Gao Z., Tian G., Chen Y., Liang W., Huang J., Dong Q., Wong W.-Y., Su J. Novel Fluorene/Indole-Based Hole Transport Materials with High Thermal Stability for Efficient OLEDs. Dye. Pigment. 2017;137:36–42. doi: 10.1016/j.dyepig.2016.09.051. DOI
Jia B., Lian H., Chen Z., Chen Y., Huang J., Dong Q. Novel Carbazole/Indole/Thiazole-Based Host Materials with High Thermal Stability for Efficient Phosphorescent Organic Light-Emitting Diodes. Dye. Pigment. 2017;147:552–559. doi: 10.1016/j.dyepig.2017.08.051. DOI
Selvam R., Subramanian K. Benzimidazole-Indole-Chalcone Connected Methacrylate-Based Side Chain D-π-A Polymer and Its Application in Organic Photovoltaics. J. Polym. Sci. A Polym. Chem. 2017;55:997–1007. doi: 10.1002/pola.28460. DOI
Chen Y., Xie J., Wang Z., Cao J., Chen H., Huang J., Zhang J., Su J. Highly Efficient Bipolar Host Material Based-on Indole and Triazine Moiety for Red Phosphorescent Light-Emitting Diodes. Dye. Pigment. 2016;124:188–195. doi: 10.1016/j.dyepig.2015.09.011. DOI
Crocetti L., Schepetkin I.A., Ciciani G., Giovannoni M.P., Guerrini G., Iacovone A., Khlebnikov A.I., Kirpotina L.N., Quinn M.T., Vergelli C. Synthesis and Pharmacological Evaluation of Indole Derivatives as Deaza Analogues of Potent Human Neutrophil Elastase Inhibitors. Drug Develop. Res. 2016;77:285–299. doi: 10.1002/ddr.21323. PubMed DOI PMC
Hirayama T., Okaniwa M., Imada T., Ohashi A., Ohori M., Iwai K., Mori K., Kawamoto T., Yokota A., Tanaka T., et al. Synthetic Studies of Centromere-Associated Protein-E (CENP-E) Inhibitors: 1. Exploration of Fused Bicyclic Core Scaffolds Using Electrostatic Potential Map. Bioorg. Med. Chem. 2013;21:5488–5502. doi: 10.1016/j.bmc.2013.05.067. PubMed DOI
Alonso J.A., Andrés M., Bravo M., Buil M.A., Calbet M., Castro J., Eastwood P.R., Eichhorn P., Esteve C., Gómez E., et al. Structure–Activity Relationships (SAR) and Structure–Kinetic Relationships (SKR) of Bicyclic Heteroaromatic Acetic Acids as Potent CRTh2 Antagonists I. Bioorg. Med. Chem. Lett. 2014;24:5118–5122. doi: 10.1016/j.bmcl.2014.09.005. PubMed DOI
Bzeih T., Lamaa D., Frison G., Hachem A., Jaber N., Bignon J., Retailleau P., Alami M., Hamze A. Csp2–Csp2 and Csp2–N Bond Formation in a One-Pot Reaction between N-Tosylhydrazones and Bromonitrobenzenes: An Unexpected Cyclization to Substituted Indole Derivatives. Org. Lett. 2017;19:6700–6703. doi: 10.1021/acs.orglett.7b03422. PubMed DOI
Zhang Q., Zhong Y., Yan L.-N., Sun X., Gong T., Zhang Z.-R. Synthesis and Preliminary Evaluation of Curcumin Analogues as Cytotoxic Agents. Bioorg. Med. Chem. Lett. 2011;21:1010–1014. doi: 10.1016/j.bmcl.2010.12.020. PubMed DOI
Bao X., Zhu W., Yuan W., Zhu X., Yan Y., Tang H., Chen Z. Design, Synthesis and Evaluation of Novel Potent Angiotensin II Receptor 1 Antagonists. Eur. J. Med. Chem. 2016;123:115–127. doi: 10.1016/j.ejmech.2016.07.023. PubMed DOI
Wu Z., Anh N.T.P., Yan Y.-J., Xia M.-B., Wang Y.-H., Qiu Y., Chen Z.-L. Design, Synthesis and Biological Evaluation of AT1 Receptor Blockers Derived from 6-Substituted Aminocarbonyl Benzimidazoles. Eur. J. Med. Chem. 2019;181:111553. doi: 10.1016/j.ejmech.2019.07.056. PubMed DOI
Zhu W., Bao X., Ren H., Da Y., Wu D., Li F., Yan Y., Wang L., Chen Z. N-Phenyl Indole Derivatives as AT1 Antagonists with Anti-Hypertension Activities: Design, Synthesis and Biological Evaluation. Eur. J. Med. Chem. 2016;115:161–178. doi: 10.1016/j.ejmech.2016.03.021. PubMed DOI
Zhu W., Bao X., Ren H., Liao P., Zhu W., Yan Y., Wang L., Chen Z. Design, Synthesis, and Pharmacological Evaluation of 5-oxo-1,2,4-oxadiazole Derivatives as AT1 Antagonists with Antihypertension Activities. Clin. Exp. Hypertens. 2016;38:435–442. doi: 10.3109/10641963.2016.1151527. PubMed DOI
Zhu W., Da Y., Wu D., Zheng H., Zhu L., Wang L., Yan Y., Chen Z. Design, Synthesis and Biological Evaluation of New 5-Nitro Benzimidazole Derivatives as AT1 Antagonists with Anti-Hypertension Activities. Bioorg. Med. Chem. 2014;22:2294–2302. doi: 10.1016/j.bmc.2014.02.008. PubMed DOI
Thiyagamurthy P., Teja C., Naresh K., Gomathi K., Nawaz Khan F.-R. Design, Synthesis and in Silico Evaluation of Benzoxazepino(7,6-b)quinolines as Potential Antidiabetic Agents. Med. Chem. Res. 2020;29:1882–1901. doi: 10.1007/s00044-020-02606-4. DOI
Nandwana N.K., Singh R.P., Patel O.P.S., Dhiman S., Saini H.K., Jha P.N., Kumar A. Design and Synthesis of Imidazo/Benzimidazo[1,2-c]quinazoline Derivatives and Evaluation of Their Antimicrobial Activity. ACS Omega. 2018;3:16338–16346. doi: 10.1021/acsomega.8b01592. PubMed DOI PMC
Miller L.M., Keune W.-J., Castagna D., Young L.C., Duffy E.L., Potjewyd F., Salgado-Polo F., Engel García P., Semaan D., Pritchard J.M., et al. Structure–Activity Relationships of Small Molecule Autotaxin Inhibitors with a Discrete Binding Mode. J. Med. Chem. 2017;60:722–748. doi: 10.1021/acs.jmedchem.6b01597. PubMed DOI
Xu G., Liu T., Zhou Y., Yang X., Fang H. 1-Phenyl-1H-indole Derivatives as a New Class of Bcl-2/Mcl-1 Dual Inhibitors: Design, Synthesis, and Preliminary Biological Evaluation. Bioorg. Med. Chem. 2017;25:5548–5556. doi: 10.1016/j.bmc.2017.08.024. PubMed DOI
Fox B.M., Beck H.P., Roveto P.M., Kayser F., Cheng Q., Dou H., Williamson T., Treanor J., Liu H., Jin L., et al. A Selective Prostaglandin E2 Receptor Subtype 2 (EP2) Antagonist Increases the Macrophage-Mediated Clearance of Amyloid-Beta Plaques. J. Med. Chem. 2015;58:5256–5273. doi: 10.1021/acs.jmedchem.5b00567. PubMed DOI
Quirit J.G., Lavrenov S.N., Poindexter K., Xu J., Kyauk C., Durkin K.A., Aronchik I., Tomasiak T., Solomatin Y.A., Preobrazhenskaya M.N., et al. Indole-3-carbinol (I3C) Analogues are Potent Small Molecule Inhibitors of NEDD4-1 Ubiquitin Ligase Activity that Disrupt Proliferation of Human Melanoma Cells. Biochem. Pharmacol. 2017;127:13–27. doi: 10.1016/j.bcp.2016.12.007. PubMed DOI
Giordanetto F., Knerr L., Nordberg P., Pettersen D., Selmi N., Beisel H.-G., de la Motte H., Månsson Å., Dahlström M., Broddefalk J., et al. Design of Selective sPLA2-X Inhibitor (−)-2-{2-[Carbamoyl-6-(trifluoromethoxy)-1H-indol-1-yl]pyridine-2-yl}propanoic Acid. ACS Med. Chem. Lett. 2018;9:600–605. doi: 10.1021/acsmedchemlett.7b00507. PubMed DOI PMC
Knerr L., Giordanetto F., Nordberg P., Pettersen D., Selmi N., Beisel H.-G., de la Motte H., Olsson T., Perkins T.D.J., Herslöf M., et al. Discovery of a Series of Indole-2-Carboxamides as Selective Secreted Phospholipase A2 Type X (sPLA2-X) Inhibitors. ACS Med. Chem. Lett. 2018;9:594–599. doi: 10.1021/acsmedchemlett.7b00505. PubMed DOI PMC
Abate C., Pati M.L., Contino M., Colabufo N.A., Perrone R., Niso M., Berardi F. From Mixed Sigma-2 Receptor/P-Glycoprotein Targeting Agents to Selective P-Glycoprotein Modulators: Small Structural Changes Address the Mechanism of Interaction at the Efflux Pump. Eur. J. Med. Chem. 2015;89:606–615. doi: 10.1016/j.ejmech.2014.10.082. PubMed DOI
Pati M.L., Abate C., Contino M., Ferorelli S., Luisi R., Carroccia L., Niso M., Berardi F. Deconstruction of 6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline Moiety to Separate P-Glycoprotein (P-gp) Activity from σ2 Receptor Affinity in Mixed P-gp/σ2 Receptor Agents. Eur. J. Med. Chem. 2015;89:691–700. doi: 10.1016/j.ejmech.2014.11.001. PubMed DOI
Tomoo T., Nakatsuka T., Katayama T., Hayashi Y., Fujieda Y., Terakawa M., Nagahira K. Design, Synthesis, and Biological Evaluation of 3-(1-Aryl-1H-indol-5-yl)propanoic Acids as New Indole-Based Cytosolic Phospholipase A2α Inhibitors. J. Med. Chem. 2014;57:7244–7262. doi: 10.1021/jm500494y. PubMed DOI
Uno T., Kawai Y., Yamashita S., Oshiumi H., Yoshimura C., Mizutani T., Suzuki T., Chong K.T., Shigeno K., Ohkubo M., et al. Discovery of 3-Ethyl-4-(3-isopropyl-4-(4-(1-methyl-1H-pyrazol-4-yl)-1H-imidazol-1-yl)-1H-pyrazolo[3,4-b]pyridin-1-yl)benzamide (TAS-116) as a Potent, Selective, and Orally Available HSP90 Inhibitor. J. Med. Chem. 2019;62:531–551. doi: 10.1021/acs.jmedchem.8b01085. PubMed DOI
Organophosphates as Versatile Substrates in Organic Synthesis