• This record comes from PubMed

Recent Progress Concerning the N-Arylation of Indoles

. 2021 Aug 22 ; 26 (16) : . [epub] 20210822

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Links

PubMed 34443667
PubMed Central PMC8402097
DOI 10.3390/molecules26165079
PII: molecules26165079
Knihovny.cz E-resources

This review summarizes the current state-of-the-art procedures in terms of the preparation of N-arylindoles. After a short introduction, the transition-metal-free procedures available for the N-arylation of indoles are briefly discussed. Then, the nickel-catalyzed and palladium-catalyzed N-arylation of indoles are both discussed. In the next section, copper-catalyzed procedures for the N-arylation of indoles are described. The final section focuses on recent findings in the field of biologically active N-arylindoles.

See more in PubMed

Lampis G., Deidda D., Maullu C., Madeddu M.A., Pompei R., Delle Monachie F., Satta G. Sattabacins and Sattazolins: New Biologically Active Compounds with Antiviral Properties Extracted from a Bacillus sp. J. Antibiot. 1995;48:967–972. doi: 10.7164/antibiotics.48.967. PubMed DOI

Haviernik J., Stefanik M., Fojtikova M., Kali S., Tordo N., Rudolf I., Hubalek Z., Eyer L., Ruzek D. Arbidol (Umifenovir): A Broad-Spectrum Antiviral Drug That Inhibits Medically Important Arthropod-Borne Flaviviruses. Viruses. 2018;10:184. doi: 10.3390/v10040184. PubMed DOI PMC

Lewis R., Bagnall A.M., Leitner M. Sertindole for schizophrenia. Cochrane Database Syst. Rev. 2005;3 doi: 10.1002/14651858.CD001715.pub2. PubMed DOI PMC

Bhattacharjee P., Bora U. Organocatalytic Dimensions to the C–H Functionalization of the Carbocyclic Core in Indoles: A Review Update. Org. Chem. Front. 2021;8:2343–2365. doi: 10.1039/D0QO01466D. DOI

Čubiňák M., Edlová T., Polák P., Tobrman T. Indolylboronic Acids: Preparation and Applications. Molecules. 2019;24:3523. doi: 10.3390/molecules24193523. PubMed DOI PMC

Trubitsõn D., Kanger T. Enantioselective Catalytic Synthesis of N-Alkylated Indoles. Symmetry. 2020;12:1184. doi: 10.3390/sym12071184. DOI

Urbina K., Tresp D., Sipps K., Szostak M. Recent Advances in Metal-Catalyzed Functionalization of Indoles. Adv. Synth. Catal. 2021;363:2723–2739. doi: 10.1002/adsc.202100116. DOI

Wen J., Shi Z. From C4 to C7: Innovative Strategies for Site-Selective Functionalization of Indole C-H Bonds. Acc. Chem Res. 2021;54:1723–1736. doi: 10.1021/acs.accounts.0c00888. PubMed DOI

Polák P., Čejka J., Tobrman T. Formal Transition-Metal-Catalyzed Phosphole C-H Activation for the Synthesis of Pentasubstituted Phospholes. Org. Lett. 2020;22:2187–2190. doi: 10.1021/acs.orglett.0c00359. PubMed DOI

Keglevich G. 1-(2,4,6-Trialkylphenyl)-1H-Phospholes with a Flattened P-Pyramid: Synthesis and Reactivity. In: Bansal R., editor. Phosphorus Heterocycles II. Volume 21. Springer; Berlin/Heidelberg, Germany: 2010. pp. 149–173. Topics in Heterocyclic Chemistry.

Quin L.D. The Continuing Development of the Chemistry of Phospholes. Curr. Org. Chem. 2006;10:43–78. doi: 10.2174/138527206775192997. DOI

Romero-Nieto C., Baumgartner T. Dithieno[3,2-b:2′,3′-d]phospholes: A Look Back at the First Decade. Synlett. 2013;24:920–937. doi: 10.1055/s-0032-1317804. DOI

Zagidullin A.A., Bezkishko I.A., Miluykov V.A., Sinyashin O.G. Phospholes—Development and Recent Advances. Mendeleev Commun. 2013;23:117–130. doi: 10.1016/j.mencom.2013.05.001. DOI

Ding Z., Nie N., Chen T., Meng L., Wang G., Chen Z., Hu J. L-Proline N-Oxide Dihydrazides as an Efficient Ligand for Cross-Coupling Reactions of Aryl Iodides and Bromides with Amines and Phenols. Tetrahedron. 2021;79:131826. doi: 10.1016/j.tet.2020.131826. DOI

Antilla J.C., Baskin J.M., Barder T.E., Buchwald S.L. Copper-Diamine-Catalyzed N-Arylation of Pyrroles, Pyrazoles, Indazoles, Imidazoles, and Triazoles. J. Org. Chem. 2004;69:5578–5587. doi: 10.1021/jo049658b. PubMed DOI

Chen W., Li H.J., Cheng Y.F., Wu Y.C. Direct C2-Arylation of N-Acyl Pyrroles with Aryl Halides under Palladium Catalysis. Org. Biomol. Chem. 2021;19:1555–1564. doi: 10.1039/D0OB02579H. PubMed DOI

Kaloğlu M., Düşünceli S.D., Özdemir İ. The First Used Butylene Linked bis(N-Heterocyclic Carbene)-Palladium-PEPPSI Complexes in the Direct Arylation of Furan and Pyrrole. J. Organomet. Chem. 2020;915:121236. doi: 10.1016/j.jorganchem.2020.121236. DOI

Chen D., Li J., Shan Y., Cui P., Zhao Y., Tian L., Qiu G. Halogen-Radical-Promoted Dearomative Aza-Spirocyclization of Alkynylimines: An Efficient Approach to 3-Halo-Spirocyclohexadienones. Synthesis. 2020;52:609–618. doi: 10.1055/s-0039-1690746. DOI

Polák P., Tobrman T. Dearomatization Strategy for the Synthesis of Arylated 2H-Pyrroles and 2,3,5-Trisubstituted 1H-Pyrroles. Org. Lett. 2017;19:4608–4611. doi: 10.1021/acs.orglett.7b02219. PubMed DOI

Zhuo C.-X., Cheng Q., Liu W.-B., Zhao Q., You S.-L. Enantioselective Synthesis of Pyrrole-Based Spiro- and Polycyclic Derivatives by Iridium-Catalyzed Asymmetric Allylic Dearomatization and Controllable Migration Reactions. Angew. Chem. Int. Ed. 2015;54:8475–8479. doi: 10.1002/anie.201502259. PubMed DOI

Zhuo C.-X., Liu W.-B., Wu Q.-F., You S.-L. Asymmetric dearomatization of pyrroles via Ir-catalyzed allylic substitution reaction: Enantioselective synthesis of spiro-2H-pyrroles. Chem. Sci. 2012;3:205–208. doi: 10.1039/C1SC00517K. DOI

Zhuo C.-X., Zhou Y., You S.-L. Highly Regio- and Enantioselective Synthesis of Polysubstituted 2H-Pyrroles via Pd-Catalyzed Intermolecular Asymmetric Allylic Dearomatization of Pyrroles. J. Am. Chem. Soc. 2014;136:6590–6593. doi: 10.1021/ja5028138. PubMed DOI

Kunz K., Scholz U., Ganzer D. Renaissance of Ullmann and Goldberg Reactions—Progress in Copper Catalyzed C–N-, C–O- and C–S-Coupling. Synlett. 2003:2428–2439. doi: 10.1055/s-2003-42473. DOI

Sambiagio C., Marsden S.P., Blacker A.J., McGowan P.C. Copper Catalysed Ullmann Type Chemistry: From Mechanistic Aspects to Modern Development. Chem. Soc. Rev. 2014;43:3525–3550. doi: 10.1039/C3CS60289C. PubMed DOI

Sperotto E., van Klink G.P.M., van Koten G., de Vries J.G. The Mechanism of the Modified Ullmann Reaction. Dalton Trans. 2010;39:10338–10351. doi: 10.1039/c0dt00674b. PubMed DOI

Dorel R., Grugel C.P., Haydl A.M. The Buchwald–Hartwig Amination after 25 Years. Angew. Chem. Int. Ed. 2019;58:17118–17129. doi: 10.1002/anie.201904795. PubMed DOI

Forero-Cortés P.A., Haydl A.M. The 25th Anniversary of the Buchwald–Hartwig Amination: Development, Applications, and Outlook. Org. Proc. Res. Develop. 2019;23:1478–1483. doi: 10.1021/acs.oprd.9b00161. DOI

Heravi M.M., Kheilkordi Z., Zadsirjan V., Heydari M., Malmir M. Buchwald-Hartwig reaction: An overview. J. Organomet. Chem. 2018;861:17–104. doi: 10.1016/j.jorganchem.2018.02.023. DOI

Chen J.-Q., Li J.-H., Dong Z.-B. A Review on the Latest Progress of Chan-Lam Coupling Reaction. Adv. Synth. Catal. 2020;362:3311–3331. doi: 10.1002/adsc.202000495. DOI

Munir I., Zahoor A.F., Rasool N., Naqvi S.A.R., Zia K.M., Ahmad R. Synthetic Applications and Methodology Development of Chan–Lam Coupling: A Review. Mol. Divers. 2019;23:215–259. doi: 10.1007/s11030-018-9870-z. PubMed DOI

West M.J., Fyfe J.W.B., Vantourout J.C., Watson A.J.B. Mechanistic Development and Recent Applications of the Chan–Lam Amination. Chem. Rev. 2019;119:12491–12523. doi: 10.1021/acs.chemrev.9b00491. PubMed DOI

Joucla L., Djakovitch L. Transition Metal-Catalysed Direct and Site-Selective N1-, C2- or C3-Arylation of the Indole Nucleus: 20 Years of Improvements. Adv. Synth. Catal. 2009;351:673–714. doi: 10.1002/adsc.200900059. DOI

Xu H. Advances on N-Arylation of Indoles by Cross-Coupling Reactions. Mini-Rev. Org. Chem. 2009;6:367–377. doi: 10.2174/157019309789371613. DOI

Halder P., Roy T., Das P. Recent developments in selective N-arylation of azoles. Chem. Commun. 2021;57:5235–5249. doi: 10.1039/D1CC01265G. PubMed DOI

Chang D., Gao F., Shi L. Potassium tert-butoxide-mediated generation of arynes from o-bromoacetophenone derivatives. Tetrahedron. 2018;74:2428–2434. doi: 10.1016/j.tet.2018.03.058. DOI

Chen J., Wu J. Transition-Metal-Free C3 Arylation of Indoles with Aryl Halides. Angew. Chem. Int. Ed. 2017;56:3951–3955. doi: 10.1002/anie.201612311. PubMed DOI PMC

Hu F., Liu H., Jia J., Ma C. Transition-metal-free synthesis of indole-fused dibenzo[b,f][1,4]oxazepines via Smiles rearrangement. Org. Biomol. Chem. 2016;14:11076–11079. doi: 10.1039/C6OB02098D. PubMed DOI

Annareddygari S., Kasireddy V.R., Reddy J. Transition-Metal-Free N-Arylation: A General Approach to Aza-Fused Poly-heteroaromatics. J. Heterocycl. Chem. 2019;56:3267–3276. doi: 10.1002/jhet.3722. DOI

Huang A., Liu F., Zhan C., Liu Y., Ma C. One-Pot Synthesis of Pyrrolo[1,2-a]quinoxalines. Org. Biomol. Chem. 2011;9:7351–7357. doi: 10.1039/c1ob05936j. PubMed DOI

Thanetchaiyakup A., Rattanarat H., Chuanopparat N., Ngernmeesri P. One-Pot Synthesis of Substituted Indolo[1,2-a]quinolines under Transition-Metal-Free Conditions. Tetrahedron Lett. 2018;59:1014–1018. doi: 10.1016/j.tetlet.2018.01.085. DOI

Xu H., Sun L., Song C. Base-Mediated N-Arylation for the Synthesis of 9H-Pyrrolo[1,2-a]indol-9-ones and 10H-Indolo[1,2-a]indol-10-ones. Helv. Chim. Acta. 2019;102:e1800195. doi: 10.1002/hlca.201800195. DOI

Diness F., Begtrup M. Sequential Direct SNAr Reactions of Pentafluorobenzenes with Azole or Indole Derivatives. Org. Lett. 2014;16:3130–3133. doi: 10.1021/ol5012554. PubMed DOI

Diness F., Fairlie D.P. Catalyst-Free N-Arylation Using Unactivated Fluorobenzenes. Angew. Chem. Int. Ed. 2012;51:8012–8016. doi: 10.1002/anie.201202149. PubMed DOI

Chang G., Yang L., Liu S., Luo X., Lin R., Zhang L. Synthesis of indole-based functional polymers with well-defined structures via a catalyst-free C–N coupling reaction. RSC Adv. 2014;4:30630–30637. doi: 10.1039/C4RA03602F. DOI

Liu C., Wang H., Xing X., Xu Y., Ma J.-A., Zhang B. Selective C4–F bond cleavage of pentafluorobenzene: Synthesis of N-tetrafluoroarylated heterocyclic compounds. Tetrahedron Lett. 2013;54:4649–4652. doi: 10.1016/j.tetlet.2013.06.055. DOI

Iqbal M.A., Mehmood H., Lv J., Hua R. Base-Promoted SNAr Reactions of Fluoro- and Chloroarenes as a Route to N-Aryl Indoles and Carbazoles. Molecules. 2019;24:1145. doi: 10.3390/molecules24061145. PubMed DOI PMC

Maiti B., Sun C.-M. Novel Approach Towards the Synthesis of Skeletally Diverse Benzimidazole-pyrrolo[1,2-a]quinoxaline by SNAr/Pictet–Spengler Reaction under Focused Microwave Irradiation. New J. Chem. 2011;35:1385–1396. doi: 10.1039/c1nj20153k. DOI

Ricci P., Krämer K., Cambeiro X.C., Larrosa I. Arene–Metal π-Complexation as a Traceless Reactivity Enhancer for C–H Arylation. J. Am. Chem. Soc. 2013;135:13258–13261. doi: 10.1021/ja405936s. PubMed DOI

Su J., Chen Q., Lu L., Ma Y., Auyoung G.H.L., Hua R. Base-Promoted Nucleophilic Fluoroarenes Substitution of CF Bonds. Tetrahedron. 2018;74:303–307. doi: 10.1016/j.tet.2017.11.067. DOI

Tian Z.-Y., Ming X.-X., Teng H.-B., Hu Y.-T., Zhang C.-P. Transition-Metal-Free N-Arylation of Amines by Triarylsulfonium Triflates. Chem. Eur. J. 2018;24:13744–13748. doi: 10.1002/chem.201802269. PubMed DOI

Xia W., An Q.-J., Xiang S.-H., Li S., Wang Y.-B., Tan B. Chiral Phosphoric Acid Catalyzed Atroposelective C−H Amination of Arenes. Angew. Chem. Int. Ed. 2020;59:6775–6779. doi: 10.1002/anie.202000585. PubMed DOI

Chittimalla S.K., Nakka S., Koodalingam M., Bandi C. N-Arylation of Heterocycles by a Tandem Aza-Michael Addition Reaction and Aromatization Sequence. Synlett. 2018;29:57–64. doi: 10.1055/s-0036-1588538. DOI

Li S., Wu X.-X., Chen S. Base-Promoted Direct Synthesis of Functionalized N-Arylindoles via the Cascade Reactions of Allenic Ketones with Indoles. Org. Biomol. Chem. 2019;17:789–793. doi: 10.1039/C8OB02921K. PubMed DOI

Rull S.G., Blandez J.F., Fructos M.R., Belderrain T.R., Nicasio M.C. C–N Coupling of Indoles and Carbazoles with Aromatic Chlorides Catalyzed by a Single-Component NHC-Nickel(0) Precursor. Adv. Synth. Catal. 2015;357:907–911. doi: 10.1002/adsc.201500030. DOI

Clark J.S.K., Voth C.N., Ferguson M.J., Stradiotto M. Evaluating 1,1′-Bis(phosphino)ferrocene Ancillary Ligand Variants in the Nickel-Catalyzed C–N Cross-Coupling of (Hetero)aryl Chlorides. Organometallics. 2017;36:679–686. doi: 10.1021/acs.organomet.6b00885. DOI

Iranpoor N., Panahi F. Direct Nickel-Catalyzed Amination of Phenols via C–O Bond Activation using 2,4,6-Trichloro-1,3,5-triazine (TCT) as Reagent. Adv. Synth. Catal. 2014;356:3067–3073. doi: 10.1002/adsc.201400460. DOI

Morioka T., Nakatani S., Sakamoto Y., Kodama T., Ogoshi S., Chatani N., Tobisu M. Nickel-Catalyzed Decarbonylation of N-Acylated N-Heteroarenes. Chem. Sci. 2019;10:6666–6671. doi: 10.1039/C9SC02035G. PubMed DOI PMC

Krishnaveni T., Lakshmi K., Kadirvelu K., Kaveri M.V. Exploration of Catalytic Activity of Quercetin Mediated Hydrothermally Synthesized NiO Nanoparticles Towards C–N Coupling of Nitrogen Heterocycles. Catal. Lett. 2020;150:1628–1640. doi: 10.1007/s10562-019-03037-6. DOI

Gatien A.V., Lavoie C.M., Bennett R.N., Ferguson M.J., McDonald R., Johnson E.R., Speed A.W.H., Stradiotto M. Application of Diazaphospholidine/Diazaphospholene-Based Bisphosphines in Room-Temperature Nickel-Catalyzed C(sp2)–N Cross-Couplings of Primary Alkylamines with (Hetero)aryl Chlorides and Bromides. ACS Catal. 2018;8:5328–5339. doi: 10.1021/acscatal.8b01005. DOI

Park N.H., Teverovskiy G., Buchwald S.L. Development of an Air-Stable Nickel Precatalyst for the Amination of Aryl Chlorides, Sulfamates, Mesylates, and Triflates. Org. Lett. 2014;16:220–223. doi: 10.1021/ol403209k. PubMed DOI PMC

Liu R.Y., Dennis J.M., Buchwald S.L. The Quest for the Ideal Base: Rational Design of a Nickel Precatalyst Enables Mild, Homogeneous C–N Cross-Coupling. J. Am. Chem. Soc. 2020;142:4500–4507. doi: 10.1021/jacs.0c00286. PubMed DOI PMC

Sawatzky R.S., Ferguson M.J., Stradiotto M. Thieme Chemistry Journals Awardees—Where Are They Now? Efficient Cross-Coupling of Secondary Amines/Azoles and Activated (Hetero)Aryl Chlorides Using an Air-Stable DPEPhos/Nickel Pre-Catalyst. Synlett. 2017;28:1586–1591.

Panahi F., Roozbin F., Rahimi S., Moayyed M., Valaei A., Iranpoor N. A Triazine-Phosphite Polymeric Ligand Bearing Cage-Like P,N-Ligation Sites: An Efficient Ligand in the Nickel-Catalyzed Amination of Aryl Chlorides and Phenols. RSC Adv. 2016;6:80670–80678. doi: 10.1039/C6RA14367A. DOI

Malapit C.A., Borrell M., Milbauer M.W., Brigham C.E., Sanford M.S. Nickel-Catalyzed Decarbonylative Amination of Carboxylic Acid Esters. J. Am. Chem. Soc. 2020;142:5918–5923. doi: 10.1021/jacs.9b13531. PubMed DOI PMC

Lokhande† S.K., Vaidya† G.N., Satpute D.P., Venkatesh A., Kumar S., Kumar D. Structure Ligation Relationship of Amino Acids for the Selective Indole C−H Arylation Reaction: L-Aspartic acid as Sustainable Alternative of Phosphine Ligands. Adv. Synth. Catal. 2020;362:2857–2863. doi: 10.1002/adsc.202000426. DOI

Mohr Y., Renom-Carrasco M., Demarcy C., Quadrelli E.A., Camp C., Wisser F.M., Clot E., Thieuleux C., Canivet J. Regiospecificity in Ligand-Free Pd-Catalyzed C–H Arylation of Indoles: LiHMDS as Base and Transient Directing Group. ACS Catal. 2020;10:2713–2719. doi: 10.1021/acscatal.9b04864. DOI

Yamaguchi M., Suzuki K., Sato Y., Manabe K. Palladium-Catalyzed Direct C3-Selective Arylation of N-Unsubstituted Indoles with Aryl Chlorides and Triflates. Org. Lett. 2017;19:5388–5391. doi: 10.1021/acs.orglett.7b02669. PubMed DOI

Ye Z., Li Y., Xu K., Chen N., Zhang F. Cascade π-Extended Decarboxylative Annulation Involving Cyclic Diaryliodonium Salts: Site-Selective Synthesis of Phenanthridines and Benzocarbazoles via a Traceless Directing Group Strategy. Org. Lett. 2019;21:9869–9873. doi: 10.1021/acs.orglett.9b03775. PubMed DOI

Mayer L., Kohlbecher R., Müller T.J.J. Concatenating Suzuki Arylation and Buchwald–Hartwig Amination by a Sequentially Pd-Catalyzed One-Pot Process—Consecutive Three-Component Synthesis of C,N-Diarylated Heterocycles. Chem. Eur. J. 2020;26:15130–15134. doi: 10.1002/chem.202003837. PubMed DOI PMC

Chen H., Yang H., Li N., Xue X., He Z., Zeng Q. Palladium-Catalyzed C–N Cross-Coupling of NH-Heteroarenes and Quaternary Ammonium Salts via C–N Bond Cleavage. Org.Process Res. Develop. 2019;23:1679–1685. doi: 10.1021/acs.oprd.9b00194. DOI

Ye X., Huang J., Deng Z., Yuan J., Peng Y. Palladium-Catalyzed Cross-Coupling Reactions of 4-Tosyl-oxyquinazolines with Indoles: An Efficient Approach to 4-(1H-Indol-1-yl)quinazolines. Synthesis. 2021;53:383–390.

Choy P.Y., Chung K.H., Yang Q., So C.M., Sun R.W.-Y., Kwong F.Y. A General Palladium–Phosphine Complex to Explore Aryl Tosylates in the N-Arylation of Amines: Scope and Limitations. Chem. Asian J. 2018;13:2465–2474. doi: 10.1002/asia.201800575. PubMed DOI

Chen X., Yang Z., Chen X., Liang W., Zhu Z., Xie F., Li Y. Hydrogen-Transfer-Mediated N-Arylation of Naphthols Using Indolines as Hydrogen Donors. J. Org. Chem. 2020;85:508–514. doi: 10.1021/acs.joc.9b02558. PubMed DOI

Monguchi Y., Marumoto T., Takamatsu H., Sawama Y., Sajiki H. Palladium on Carbon-Catalyzed One-Pot N-Arylindole Synthesis: Intramolecular Aromatic Amination, Aromatization, and Intermolecular Aromatic Amination. Adv. Synth. Catal. 2014;356:1866–1872. doi: 10.1002/adsc.201301168. DOI

Crawford S.M., Lavery C.B., Stradiotto M. BippyPhos: A Single Ligand With Unprecedented Scope in the Buchwald–Hartwig Amination of (Hetero)aryl Chlorides. Chem. Eur. J. 2013;19:16760–16771. doi: 10.1002/chem.201302453. PubMed DOI

Ghorbani-Vaghei R., Hemmati S., Hamelian M., Veisi H. An Efficient, Mild and Selective Ullmann-Type N-Arylation of Indoles Catalysed by Pd Immobilized on Amidoxime-Functionalized Mesoporous SBA-15 as Heterogeneous and Recyclable Nanocatalyst. Appl. Organomet. Chem. 2015;29:195–199. doi: 10.1002/aoc.3264. DOI

Veisi H., Poor Heravi M.R., Hamelian M. SBA-15-Functionalized Melamine–Pyridine Group-Supported Palladium(0) as an Efficient Heterogeneous and Recyclable Nanocatalyst for N-Arylation of Indoles through Ullmann-Type Coupling Reactions. Appl. Organomet. Chem. 2015;29:334–337. doi: 10.1002/aoc.3296. DOI

Veisi H., Morakabati N. Palladium Nanoparticles Supported on Modified Single-Walled Carbon Nanotubes: A Heterogeneous and Reusable Catalyst in the Ullmann-Type N-Arylation of Imidazoles and Indoles. New J. Chem. 2015;39:2901–2907. doi: 10.1039/C4NJ02108H. DOI

Ghorbani-Vaghei R., Hemmati S., Hekmati M. Pd Immobilized on Modified Magnetic Fe3O4 Nanoparticles: Magnetically Recoverable and Reusable Pd Nanocatalyst for Suzuki-Miyaura Coupling Reactions and Ullmann-Type N-Arylation of Indoles. J. Chem. Sci. 2016;128:1157–1162. doi: 10.1007/s12039-016-1098-9. DOI

Boyd E.M., Sperry J. Total Synthesis of (−)-Aspergilazine A. Org. Lett. 2014;16:5056–5059. doi: 10.1021/ol5024097. PubMed DOI

Hajipour A.R., Dordahan F., Rafiee F. Synthesis of Tertiary Aryl Amines of Various Aryl Halides and Secondary Amines using Ortho-Palladated Complex of Tribenzylamine. Appl. Organomet. Chem. 2013;27:704–706. doi: 10.1002/aoc.3044. DOI

Monti A., Rama R.J., Gómez B., Maya C., Álvarez E., Carmona E., Nicasio M.C. N-Substituted Aminobiphenyl Palladacycles Stabilized by Dialkylterphenyl Phosphanes: Preparation and Applications in CN Cross-Coupling Reactions. Inorg. Chim. Acta. 2021;518:120214. doi: 10.1016/j.ica.2020.120214. DOI

Wagner P., Bollenbach M., Doebelin C., Bihel F., Bourguignon J.-J., Salomé C., Schmitt M. t-BuXPhos: A Highly Efficient Ligand for Buchwald–Hartwig Coupling in Water. Green Chem. 2014;16:4170–4178. doi: 10.1039/C4GC00853G. DOI

Izquierdo J., Jain A.D., Abdulkadir S.A., Schiltz G.E. Palladium-Catalyzed Coupling Reactions on Functionalized 2-Trifluoromethyl-4-chromenone Scaffolds: Synthesis of Highly Functionalized Trifluoromethyl Heterocycles. Synthesis. 2019;51:1342–1352. doi: 10.1055/s-0037-1610669. PubMed DOI PMC

Grimm J.B., Lavis L.D. Synthesis of Rhodamines from Fluoresceins Using Pd-Catalyzed C–N Cross-Coupling. Org. Lett. 2011;13:6354–6357. doi: 10.1021/ol202618t. PubMed DOI PMC

Shimizu K., Minami Y., Goto O., Ikehira H., Hiyama T. Silicon-based C–N Cross-coupling Reaction. Chem. Lett. 2014;43:438–440. doi: 10.1246/cl.131075. DOI

Minami Y., Komiyama T., Shimizu K., Hiyama T., Goto O., Ikehira H. Catalytic Carbon–Nitrogen Bond-Forming Cross-Coupling Using N-Trimethylsilylamines. Bull. Chem. Soc. Japan. 2015;88:1437–1446. doi: 10.1246/bcsj.20150179. DOI

Hosseini-Sarvari M., Razmi Z. Highly Active Recyclable Heterogeneous Pd/ZnO Nanoparticle Catalyst: Sustainable Developments for the C–O and C–N Bond Cross-Coupling Reactions of Aryl Halides under Ligand-Free Conditions. RSC Adv. 2014;4:44105–44116. doi: 10.1039/C4RA06486K. DOI

Fareghi-Alamdari R., Haqiqi M.G., Zekri N. Immobilized Pd(0) Nanoparticles on Phosphine-Functionalized Graphene as a Highly Active Catalyst for Heck, Suzuki and N-Arylation Reactions. New J. Chem. 2016;40:1287–1296. doi: 10.1039/C5NJ02227D. DOI

Panahi F., Daneshgar F., Haghighi F., Khalafi-Nezhad A. Immobilized Pd Nanoparticles on Silica-Starch Substrate (PNP-SSS): Efficient Heterogeneous Catalyst in Buchwald–Hartwig C–N Cross-Coupling Reaction. J. Organomet. Chem. 2017;851:210–217. doi: 10.1016/j.jorganchem.2017.09.037. DOI

Yong F.-F., Teo Y.-C., Tay S.-H., Tan B.Y.-H., Lim K.-H. A Ligand-Free Copper(I) Oxide Catalyzed Strategy for the N-Arylation of Azoles in Water. Tetrahedron Lett. 2011;52:1161–1164. doi: 10.1016/j.tetlet.2011.01.005. DOI

Liu L., Wu F., Liu Y., Xie J., Dai B., Zhou Z. Copper-Catalysed N-Arylation of Pyrrole with Aryl Iodides Under Ligand-Free Conditions. J. Chem. Res. 2019;38:180–182. doi: 10.3184/174751914X13922969308054. DOI

Khalil A., Fihri A., Jouiad M., Hashaikeh R. Electrospun Copper Oxide Nanoparticles as an Efficient Heterogeneous Catalyst for N-Arylation of Indole. Tetrahedron Lett. 2014;55:5973–5975. doi: 10.1016/j.tetlet.2014.08.120. DOI

Amadine O., Maati H., Abdelouhadi K., Fihri A., El Kazzouli S., Len C., El Bouari A., Solhy A. Ceria-Supported Copper Nanoparticles: A Highly Efficient and Recyclable Catalyst for N-Arylation of Indole. J. Mol. Cat. A-Chem. 2014;395:409–419. doi: 10.1016/j.molcata.2014.08.009. DOI

Chaudhary K., Subodh, Prakash K., Mogha N.K., Masram D.T. Fruit Waste (Pulp) Decorated CuO NFs as Promising Platform for Enhanced Catalytic Response and Its Peroxidase Mimics Evaluation. Arab. J. Chem. 2020;13:4869–4881. doi: 10.1016/j.arabjc.2019.09.007. DOI

Hemmati S., Mehrazin L., Hekmati M., Izadi M., Veisi H. Biosynthesis of CuO Nanoparticles Using Rosa Canina Fruit Extract as a Recyclable and Heterogeneous Nanocatalyst for C-N Ullmann Coupling Reactions. Mater. Chem. Phys. 2018;214:527–532. doi: 10.1016/j.matchemphys.2018.04.114. DOI

Lim J., Kim J.D., Choi H.C., Lee S. CNT-CuO Catalyzed C–N Bond Formation for N-Arylation of 2-Phenylindoles. J. Organomet. Chem. 2019;902:120970. doi: 10.1016/j.jorganchem.2019.120970. DOI

Pai G., Chattopadhyay A.P. Ligand-Free Copper Nanoparticle Promoted N-Arylation of Azoles with Aryl and Heteroaryl Iodides. Tetrahedron Lett. 2014;55:941–944. doi: 10.1016/j.tetlet.2013.12.065. DOI

Suramwar N.V., Thakare S.R., Karade N.N., Khaty N.T. Green Synthesis of Predominant (111) Facet CuO Nanoparticles: Heterogeneous and Recyclable Catalyst for N-Arylation of Indoles. J. Mol. Catal. A-Chem. 2012;359:28–34. doi: 10.1016/j.molcata.2012.03.017. DOI

Talukdar D., Das G., Thakur S., Karak N., Thakur A.J. Copper Nanoparticle Decorated Organically Modified Montmorillonite (OMMT): An Efficient Catalyst for the N-Arylation of Indoles and Similar Heterocycles. Catal. Commun. 2015;59:238–243. doi: 10.1016/j.catcom.2014.10.030. DOI

Reddy K.H.V., Satish G., Ramesh K., Karnakar K., Nageswar Y.V.D. An Efficient Synthesis of N-Substituted Indoles from Indoline/Indoline Carboxylic Acid via Aromatization Followed by C–N Cross-Coupling Reaction by Using Nano Copper Oxide as a Recyclable Catalyst. Tetrahedron Lett. 2012;53:3061–3065. doi: 10.1016/j.tetlet.2012.04.012. DOI

Patil P.H., Nallasivam J.L., Fernandes R.A. Unimolecular 4-Hydroxypiperidines: New Ligands for Copper-Catalyzed N-Arylation. Asian J. Org. Chem. 2015;4:552–559. doi: 10.1002/ajoc.201500062. DOI

Yang X., Xing H., Zhang Y., Lai Y., Zhang Y., Jiang Y., Ma D. CuI/8-Hydroxyquinalidine Promoted N-Arylation of Indole and Azoles. Chin. J. Chem. 2012;30:875–880. doi: 10.1002/cjoc.201100433. DOI

Elliott E.-C., Maggs J.L., Park B.K., O’Neill P.M., Stachulski A.V. Convenient Syntheses of Halo-dibenz[b,f]azepines and Carbamazepine Analogues via N-Arylindoles. Org. Biomol. Chem. 2013;11:8426–8434. doi: 10.1039/c3ob41252k. PubMed DOI

Vaidya G.N., Khan A., Verma H., Kumar S., Kumar D. Structure Ligation Relationship of Amino Acids for the Amination Cross-Coupling Reactions. J. Org. Chem. 2019;84:3004–3010. doi: 10.1021/acs.joc.8b03214. PubMed DOI

Chen H., Lei M., Hu L. Synthesis of 1-Aryl Indoles via Coupling Reaction of Indoles and Aryl Halides Catalyzed by CuI/metformin. Tetrahedron. 2014;70:5626–5631. doi: 10.1016/j.tet.2014.06.080. DOI

Balalaie S., Bararjanian M., Hosseinzadeh S., Rominger F., Bijanzadeh H.R., Wolf E. Designing a Sequential Ugi/Ullmann Type Reaction for the Synthesis of Indolo[1,2-a]quinoxalinones Catalyzed by CuI/l-Proline. Tetrahedron. 2011;67:7294–7300. doi: 10.1016/j.tet.2011.07.052. DOI

Zhang L., Zhao F., Zheng M., Zhai Y., Liu H. Rapid and Selective Access to Three Distinct Sets of Indole-Based Heterocycles from a Single Set of Ugi-Adducts under Microwave Heating. Chem. Commun. 2013;49:2894–2896. doi: 10.1039/c3cc00111c. PubMed DOI

Zhang L., Zheng M., Zhao F., Zhai Y., Liu H. Rapid Generation of Privileged Substructure-Based Compound Libraries with Structural Diversity and Drug-Likeness. ACS Comb. Sci. 2014;16:184–191. doi: 10.1021/co4001309. PubMed DOI

Lee J., Choi J.H., Shin S., Heo J.-N., Lim H.J. N-Arylation of Sterically Hindered NH-Nucleophiles: Copper-Mediated Syntheses of Diverse N-Arylindole-2-carboxylates. Synthesis. 2015;47:3301–3308. doi: 10.1002/chin.201611137. DOI

Lee J.-H., Kim H., Kim T., Song J.H., Kim W.-S., Ham J. Functionalization of Organotrifluoroborates via Cu-Catalyzed C–N Coupling Reaction. Bull. KoreanChem. Soc. 2013;34:42–48. doi: 10.5012/bkcs.2013.34.1.42. DOI

Liu W., Han L.-Y., Liu R.-L., Xu L.-G., Bi Y.-L. Copper-Catalyzed N-Arylation of 2-Arylindoles with Aryl Halides. Chin. Chem. Lett. 2014;25:1240–1243. doi: 10.1016/j.cclet.2014.04.021. DOI

Rodrigues M.B., Feitosa S.C., Wiethan C.W., Rosa W.C., da Silveira C.H., Pagliari A.B., Martins M.A.P., Zanatta N., Iglesias B.A., Bonacorso H.G. Ullmann-Type Copper-Catalyzed Coupling Amination, Photophysical and DNA/HSA-Binding Properties of New 4-(Trifluoromethyl)quinoline Derivatives. J. Fluor. Chem. 2019;221:84–90. doi: 10.1016/j.jfluchem.2019.04.006. DOI

Ghobrial M., Mihovilovic M.D., Schnurch M. Exploration of C-H and N-H-Bond Functionalization Towards 1-(1,2-Diarylindol-3-yl)tetrahydroisoquinolines. Beilstein J. Org. Chem. 2014;10:2186–2199. doi: 10.3762/bjoc.10.226. PubMed DOI PMC

Yadav D.K.T., Rajak S.S., Bhanage B.M. N-Arylation of Indoles with Aryl Halides Using Copper/Glycerol as a Mild and Highly Efficient Recyclable Catalytic System. Tetrahedron Lett. 2014;55:931–935. doi: 10.1016/j.tetlet.2013.12.053. DOI

Wei J.J., Song W.B., Zhu Y.F., Wei B.L., Xuan L.J. N,N-Dimethyl-d-glucosamine as an Efficient Ligand for Copper-Catalyzed Ullmann-Type Coupling of N-H Heterocycles with Aryl Halides. Tetrahedron. 2018;74:19–27. doi: 10.1016/j.tet.2017.11.027. DOI

Chen Y., Du F., Chen F., Zhou Q., Chen G. Methyl-α-d-glucopyranoside as Green Ligand for Selective Copper-Catalyzed N-Arylation. Synthesis. 2019;51:4590–4600. doi: 10.1055/s-0039-1690702. DOI

Ge X., Zhang S., Chen X., Liu X., Qian C. A Designed Bi-Functional Sugar-Based Surfactant: Micellar Catalysis for C–X Coupling Reaction in Water. Green Chem. 2019;21:2771–2776. doi: 10.1039/C9GC00964G. DOI

Yuan C., Zhao Y., Zheng L. α-d-Galacturonic Acid as Natural Ligand for Selective Copper-Catalyzed N-Arylation of N-Containing Heterocycles. Synlett. 2019;30:2173–2180. doi: 10.1055/s-0039-1690226. DOI

Zhou Q., Du F., Chen Y., Fu Y., Sun W., Wu Y., Chen G. l-(−)-Quebrachitol as a Ligand for Selective Copper(0)-Catalyzed N-Arylation of Nitrogen-Containing Heterocycles. J. Org. Chem. 2019;84:8160–8167. doi: 10.1021/acs.joc.9b00997. PubMed DOI

Bollenbach M., Aquino P.G.V., de Araújo-Júnior J.X., Bourguignon J.-J., Bihel F., Salomé C., Wagner P., Schmitt M. Efficient and Mild Ullmann-Type N-Arylation of Amides, Carbamates, and Azoles in Water. Chem. Eur. J. 2017;23:13676–13683. doi: 10.1002/chem.201700832. PubMed DOI

Liu S., Zhou J. Aqueous Copper-Catalyzed N-Arylation of Indoles: The Surfactant Strategy. New J. Chem. 2013;37:2537–2540. doi: 10.1039/c3nj00226h. DOI

Malavade V., Patil M., Patil M. Scope, Kinetics, and Mechanism of “On Water” Cu Catalysis in the C–N Cross-Coupling Reactions of Indole Derivatives. Eur. J. Org. Chem. 2020:561–569. doi: 10.1002/ejoc.201901542. DOI

Molaei H., Ghanbari M.M. Practical Copper-Catalyzed N-Arylation of Amines with 20% Aqueous Solution of n-Bu4NOH. Chin. Chem. Lett. 2012;23:301–304. doi: 10.1016/j.cclet.2011.12.015. DOI

Abele E., Abele R. KOH/Adogen 464/Proline System for Highly Effective Cu-Catalyzed “On-Water” N–H Arylation of Heteroaromatic Compounds. Chem. Heterocycl. Com. 2013;49:1384–1386. doi: 10.1007/s10593-013-1389-8. DOI

Engel-Andreasen J., Shimpukade B., Ulven T. Selective Copper Catalysed Aromatic N-Arylation in Water. Green Chem. 2013;15:336–340. doi: 10.1039/C2GC36589H. DOI

Mukhopadhyay C., Tapaswi P.K. Highly Efficient and Simple Catalytic System for the N-Arylation of Some Hindered Aza-Heterocycles in Water. Synth. Commun. 2012;42:2217–2228. doi: 10.1080/00397911.2011.555219. DOI

Salomé C., Wagner P., Bollenbach M., Bihel F., Bourguignon J.-J., Schmitt M. Buchwald–Hartwig Reactions in Water Using Surfactants. Tetrahedron. 2014;70:3413–3421. doi: 10.1016/j.tet.2014.03.083. DOI

Teo Y.-C., Yong F.-F., Lim G.S. A Manganese/Copper Bimetallic Catalyst for C–N Coupling Reactions under Mild Conditions in Water. Tetrahedron Lett. 2011;52:7171–7174. doi: 10.1016/j.tetlet.2011.10.128. DOI

Zhou G., Chen W., Zhang S., Liu X., Yang Z., Ge X., Fan H.-J. A Newly Designed Carbohydrate-Derived Alkylamine Promotes Ullmann Type C–N Coupling Catalyzed by Copper in Water. Synlett. 2019;30:193–198.

Zhou Q., Du F., Chen Y., Fu Y., Chen G. “On Water” Promoted N-Arylation Reactions Using Cu (0)/Myo-inositol Catalytic System. Tetrahedron Lett. 2019;60:1938–1941. doi: 10.1016/j.tetlet.2019.06.033. DOI

Damkaci F., Alawaed A., Vik E. N-Picolinamides as Ligands for Ullmann-type CN Coupling Reactions. Tetrahedron Lett. 2016;57:2197–2200. doi: 10.1016/j.tetlet.2016.04.017. DOI

Su J., Qiu Y., Jiang S., Zhang D. New Ligands for Copper-Catalyzed C–N Coupling Reactions at Gentle Temperature. Chin. J. Chem. 2014;32:685–688. doi: 10.1002/cjoc.201400147. DOI

Yang K., Qiu Y., Li Z., Wang Z., Jiang S. Ligands for Copper-Catalyzed C−N Bond Forming Reactions with 1 Mol% CuBr as Catalyst. J. Org. Chem. 2011;76:3151–3159. doi: 10.1021/jo1026035. PubMed DOI

Wang Y., Zhang Y., Yang B., Zhang A., Yao Q. N-(1-Oxy-2-picolyl)oxalamic Acids as a New Type of O,O-Ligands for the Cu-Catalyzed N-Arylation of Azoles with Aryl Halides in Water or Organic solvent. Org. Biomol. Chem. 2015;13:4101–4114. doi: 10.1039/C5OB00045A. PubMed DOI

Taywade A., Chavan S., Ulhe A., Berad B. Unique CuI-Pyridine Based Ligands Catalytic Systems for N-Arylation of Indoles and Other Heterocycles. Synth. Commun. 2018;48:1443–1453. doi: 10.1080/00397911.2018.1454474. DOI

Echeverry-Gonzalez C.A., Ortiz Villamizar M.C., Kouznetsov V.V. The Remarkable Selectivity of the 2-Arylquinoline-Based Acyl Hydrazones Toward Copper Salts: Exploration of Their Catalytic Applications in the Copper Catalysed N-Arylation of Indole Derivatives and C1-Alkynylation of Tetrahydroisoquinolines via the A3 Reaction. New J. Chem. 2021;45:243–250.

Abe T., Takahashi Y., Matsubara Y., Yamada K. An Ullmann N-Arylation/2-Amidation Cascade by Self-Relay Copper Catalysis: One-Pot Synthesis of Indolo[1,2-a]quinazolinones. Org. Chem. Front. 2017;4:2124–2127. doi: 10.1039/C7QO00549K. DOI

Ghosh T., Maity P., Ranu B.C. Cobalt-Copper Catalyzed C(sp2)—N Cross Coupling of Amides or Nitrogenated Heterocycles with Styrenyl or Aryl Halides. ChemistrySelect. 2018;3:4406–4412. doi: 10.1002/slct.201800575. DOI

Mostafa M.A.B., Calder E.D.D., Racys D.T., Sutherland A. Intermolecular Aryl C−H Amination through Sequential Iron and Copper Catalysis. Chem. Eur. J. 2017;23:1044–1047. doi: 10.1002/chem.201605671. PubMed DOI PMC

Sadhu P., Punniyamurthy T. Copper(ii)-Mediated Regioselective N-Arylation of Pyrroles, Indoles, Pyrazoles and Carbazole via Dehydrogenative Coupling. Chem. Commun. 2016;52:2803–2806. doi: 10.1039/C5CC08206D. PubMed DOI

Pradhan S., De P.B., Punniyamurthy T. Copper(II)-Mediated Chelation-Assisted Regioselective N-Naphthylation of Indoles, Pyrazoles and Pyrrole through Dehydrogenative Cross-Coupling. J. Org. Chem. 2017;82:4883–4890. doi: 10.1021/acs.joc.7b00615. PubMed DOI

Zhang Y., Hu Z.-Y., Li X.-C., Guo X.-X. Copper-Catalyzed Decarboxylative N-Arylation of Indole-2-carboxylic Acids. Synthesis. 2019;51:1803–1808. doi: 10.1055/s-0037-1611946. DOI

Petiot P., Dansereau J., Gagnon A. Copper-Catalyzed N-Arylation of Azoles and Diazoles Using Highly Functionalized Trivalent Organobismuth Reagents. RSC Adv. 2014;4:22255–22259. doi: 10.1039/C4RA02467B. DOI

Hébert M., Petiot P., Benoit E., Dansereau J., Ahmad T., Le Roch A., Ottenwaelder X., Gagnon A. Synthesis of Highly Functionalized Triarylbismuthines by Functional Group Manipulation and Use in Palladium- and Copper-Catalyzed Arylation Reactions. J. Org. Chem. 2016;81:5401–5416. doi: 10.1021/acs.joc.6b00767. PubMed DOI

Jadhav B.D., Pardeshi S.K. A Facile and Practical Copper Diacetate Mediated, Ligand Free C–N Cross Coupling of Trivalent Organobismuth Compounds with Amines and N-heteroarenes. RSC Adv. 2016;6:14531–14537. doi: 10.1039/C6RA00395H. DOI

Le Roch A., Hébert M., Gagnon A. Copper-Promoted O-Arylation of the Phenol Side Chain of Tyrosine Using Triarylbismuthines. Eur. J. Org. Chem. 2020:5363–5367. doi: 10.1002/ejoc.202000790. DOI

Le Roch A., Chan H.-C., Gagnon A. Copper-Promoted N-Arylation of the Indole Side Chain of Tryptophan Using Triarylbismuthines. Eur. J. Org. Chem. 2020:5815–5819. doi: 10.1002/ejoc.202000667. DOI

Alonso I., Alvarez R., de Lera Á.R. Indole–Indole Ullmann Cross-Coupling for CAr–N Bond Formation: Total Synthesis of (–)-Aspergilazine A. Eur. J. Org. Chem. 2017:4948–4954. doi: 10.1002/ejoc.201700842. DOI

Modha S.G., Greaney M.F. Atom-Economical Transformation of Diaryliodonium Salts: Tandem C−H and N−H Arylation of Indoles. J. Am. Chem. Soc. 2015;137:1416–1419. doi: 10.1021/ja5124754. PubMed DOI

Ziegler D.T., Choi J., Muñoz-Molina J.M., Bissember A.C., Peters J.C., Fu G.C. A Versatile Approach to Ullmann C−N Couplings at Room Temperature: New Families of Nucleophiles and Electrophiles for Photoinduced, Copper-Catalyzed Processes. J. Am. Chem. Soc. 2013;135:13107–13112. doi: 10.1021/ja4060806. PubMed DOI

Guo S., Liu Y., Zhang X., Fan X. Iridium-Catalyzed Oxidative Annulation of 2-Arylindoles with Benzoquinone Leading to Indolo[1,2-f]phenanthridin-6-ols. Adv. Synth. Catal. 2020;362:3011–3020. doi: 10.1002/adsc.202000449. DOI

Kong L., Sun Y., Zheng Z., Tang R., Wang M., Li Y. Chemoselective N–H or C-2 Arylation of Indole-2-carboxamides: Controllable Synthesis of Indolo[1,2-a]quinoxalin-6-ones and 2,3′-Spirobi[indolin]-2′-ones. Org. Lett. 2018;20:5251–5255. doi: 10.1021/acs.orglett.8b02197. PubMed DOI

Liu X., Cao Z., Huang H., Liu X., Tan Y., Chen H., Pei Y., Tan S. Novel D–D–π-A Organic Dyes Based on Triphenylamine and Indole-Derivatives for High Performance Dye-Sensitized Solar Cells. J. Power Sources. 2014;248:400–406. doi: 10.1016/j.jpowsour.2013.09.106. DOI

Keruckas J., Grazulevicius J.V., Volyniuk D., Cherpak V., Stakhira P. 3,6-Bis(indol-1-yl)-9-phenylcarbazoles as Electroactive Materials for Electrophosphorescent Diodes. Dye. Pigment. 2014;100:66–72. doi: 10.1016/j.dyepig.2013.07.020. DOI

Hussain F., Wang X., Wang S. Impact of Bidentate N,C-Chelate Ligands on the Performance of Phosphorescent Pt(II) Complexes as Oxygen Sensors. J. Organomet. Chem. 2019;880:300–311. doi: 10.1016/j.jorganchem.2018.11.017. DOI

Xiang N., Gao Z., Tian G., Chen Y., Liang W., Huang J., Dong Q., Wong W.-Y., Su J. Novel Fluorene/Indole-Based Hole Transport Materials with High Thermal Stability for Efficient OLEDs. Dye. Pigment. 2017;137:36–42. doi: 10.1016/j.dyepig.2016.09.051. DOI

Jia B., Lian H., Chen Z., Chen Y., Huang J., Dong Q. Novel Carbazole/Indole/Thiazole-Based Host Materials with High Thermal Stability for Efficient Phosphorescent Organic Light-Emitting Diodes. Dye. Pigment. 2017;147:552–559. doi: 10.1016/j.dyepig.2017.08.051. DOI

Selvam R., Subramanian K. Benzimidazole-Indole-Chalcone Connected Methacrylate-Based Side Chain D-π-A Polymer and Its Application in Organic Photovoltaics. J. Polym. Sci. A Polym. Chem. 2017;55:997–1007. doi: 10.1002/pola.28460. DOI

Chen Y., Xie J., Wang Z., Cao J., Chen H., Huang J., Zhang J., Su J. Highly Efficient Bipolar Host Material Based-on Indole and Triazine Moiety for Red Phosphorescent Light-Emitting Diodes. Dye. Pigment. 2016;124:188–195. doi: 10.1016/j.dyepig.2015.09.011. DOI

Crocetti L., Schepetkin I.A., Ciciani G., Giovannoni M.P., Guerrini G., Iacovone A., Khlebnikov A.I., Kirpotina L.N., Quinn M.T., Vergelli C. Synthesis and Pharmacological Evaluation of Indole Derivatives as Deaza Analogues of Potent Human Neutrophil Elastase Inhibitors. Drug Develop. Res. 2016;77:285–299. doi: 10.1002/ddr.21323. PubMed DOI PMC

Hirayama T., Okaniwa M., Imada T., Ohashi A., Ohori M., Iwai K., Mori K., Kawamoto T., Yokota A., Tanaka T., et al. Synthetic Studies of Centromere-Associated Protein-E (CENP-E) Inhibitors: 1. Exploration of Fused Bicyclic Core Scaffolds Using Electrostatic Potential Map. Bioorg. Med. Chem. 2013;21:5488–5502. doi: 10.1016/j.bmc.2013.05.067. PubMed DOI

Alonso J.A., Andrés M., Bravo M., Buil M.A., Calbet M., Castro J., Eastwood P.R., Eichhorn P., Esteve C., Gómez E., et al. Structure–Activity Relationships (SAR) and Structure–Kinetic Relationships (SKR) of Bicyclic Heteroaromatic Acetic Acids as Potent CRTh2 Antagonists I. Bioorg. Med. Chem. Lett. 2014;24:5118–5122. doi: 10.1016/j.bmcl.2014.09.005. PubMed DOI

Bzeih T., Lamaa D., Frison G., Hachem A., Jaber N., Bignon J., Retailleau P., Alami M., Hamze A. Csp2–Csp2 and Csp2–N Bond Formation in a One-Pot Reaction between N-Tosylhydrazones and Bromonitrobenzenes: An Unexpected Cyclization to Substituted Indole Derivatives. Org. Lett. 2017;19:6700–6703. doi: 10.1021/acs.orglett.7b03422. PubMed DOI

Zhang Q., Zhong Y., Yan L.-N., Sun X., Gong T., Zhang Z.-R. Synthesis and Preliminary Evaluation of Curcumin Analogues as Cytotoxic Agents. Bioorg. Med. Chem. Lett. 2011;21:1010–1014. doi: 10.1016/j.bmcl.2010.12.020. PubMed DOI

Bao X., Zhu W., Yuan W., Zhu X., Yan Y., Tang H., Chen Z. Design, Synthesis and Evaluation of Novel Potent Angiotensin II Receptor 1 Antagonists. Eur. J. Med. Chem. 2016;123:115–127. doi: 10.1016/j.ejmech.2016.07.023. PubMed DOI

Wu Z., Anh N.T.P., Yan Y.-J., Xia M.-B., Wang Y.-H., Qiu Y., Chen Z.-L. Design, Synthesis and Biological Evaluation of AT1 Receptor Blockers Derived from 6-Substituted Aminocarbonyl Benzimidazoles. Eur. J. Med. Chem. 2019;181:111553. doi: 10.1016/j.ejmech.2019.07.056. PubMed DOI

Zhu W., Bao X., Ren H., Da Y., Wu D., Li F., Yan Y., Wang L., Chen Z. N-Phenyl Indole Derivatives as AT1 Antagonists with Anti-Hypertension Activities: Design, Synthesis and Biological Evaluation. Eur. J. Med. Chem. 2016;115:161–178. doi: 10.1016/j.ejmech.2016.03.021. PubMed DOI

Zhu W., Bao X., Ren H., Liao P., Zhu W., Yan Y., Wang L., Chen Z. Design, Synthesis, and Pharmacological Evaluation of 5-oxo-1,2,4-oxadiazole Derivatives as AT1 Antagonists with Antihypertension Activities. Clin. Exp. Hypertens. 2016;38:435–442. doi: 10.3109/10641963.2016.1151527. PubMed DOI

Zhu W., Da Y., Wu D., Zheng H., Zhu L., Wang L., Yan Y., Chen Z. Design, Synthesis and Biological Evaluation of New 5-Nitro Benzimidazole Derivatives as AT1 Antagonists with Anti-Hypertension Activities. Bioorg. Med. Chem. 2014;22:2294–2302. doi: 10.1016/j.bmc.2014.02.008. PubMed DOI

Thiyagamurthy P., Teja C., Naresh K., Gomathi K., Nawaz Khan F.-R. Design, Synthesis and in Silico Evaluation of Benzoxazepino(7,6-b)quinolines as Potential Antidiabetic Agents. Med. Chem. Res. 2020;29:1882–1901. doi: 10.1007/s00044-020-02606-4. DOI

Nandwana N.K., Singh R.P., Patel O.P.S., Dhiman S., Saini H.K., Jha P.N., Kumar A. Design and Synthesis of Imidazo/Benzimidazo[1,2-c]quinazoline Derivatives and Evaluation of Their Antimicrobial Activity. ACS Omega. 2018;3:16338–16346. doi: 10.1021/acsomega.8b01592. PubMed DOI PMC

Miller L.M., Keune W.-J., Castagna D., Young L.C., Duffy E.L., Potjewyd F., Salgado-Polo F., Engel García P., Semaan D., Pritchard J.M., et al. Structure–Activity Relationships of Small Molecule Autotaxin Inhibitors with a Discrete Binding Mode. J. Med. Chem. 2017;60:722–748. doi: 10.1021/acs.jmedchem.6b01597. PubMed DOI

Xu G., Liu T., Zhou Y., Yang X., Fang H. 1-Phenyl-1H-indole Derivatives as a New Class of Bcl-2/Mcl-1 Dual Inhibitors: Design, Synthesis, and Preliminary Biological Evaluation. Bioorg. Med. Chem. 2017;25:5548–5556. doi: 10.1016/j.bmc.2017.08.024. PubMed DOI

Fox B.M., Beck H.P., Roveto P.M., Kayser F., Cheng Q., Dou H., Williamson T., Treanor J., Liu H., Jin L., et al. A Selective Prostaglandin E2 Receptor Subtype 2 (EP2) Antagonist Increases the Macrophage-Mediated Clearance of Amyloid-Beta Plaques. J. Med. Chem. 2015;58:5256–5273. doi: 10.1021/acs.jmedchem.5b00567. PubMed DOI

Quirit J.G., Lavrenov S.N., Poindexter K., Xu J., Kyauk C., Durkin K.A., Aronchik I., Tomasiak T., Solomatin Y.A., Preobrazhenskaya M.N., et al. Indole-3-carbinol (I3C) Analogues are Potent Small Molecule Inhibitors of NEDD4-1 Ubiquitin Ligase Activity that Disrupt Proliferation of Human Melanoma Cells. Biochem. Pharmacol. 2017;127:13–27. doi: 10.1016/j.bcp.2016.12.007. PubMed DOI

Giordanetto F., Knerr L., Nordberg P., Pettersen D., Selmi N., Beisel H.-G., de la Motte H., Månsson Å., Dahlström M., Broddefalk J., et al. Design of Selective sPLA2-X Inhibitor (−)-2-{2-[Carbamoyl-6-(trifluoromethoxy)-1H-indol-1-yl]pyridine-2-yl}propanoic Acid. ACS Med. Chem. Lett. 2018;9:600–605. doi: 10.1021/acsmedchemlett.7b00507. PubMed DOI PMC

Knerr L., Giordanetto F., Nordberg P., Pettersen D., Selmi N., Beisel H.-G., de la Motte H., Olsson T., Perkins T.D.J., Herslöf M., et al. Discovery of a Series of Indole-2-Carboxamides as Selective Secreted Phospholipase A2 Type X (sPLA2-X) Inhibitors. ACS Med. Chem. Lett. 2018;9:594–599. doi: 10.1021/acsmedchemlett.7b00505. PubMed DOI PMC

Abate C., Pati M.L., Contino M., Colabufo N.A., Perrone R., Niso M., Berardi F. From Mixed Sigma-2 Receptor/P-Glycoprotein Targeting Agents to Selective P-Glycoprotein Modulators: Small Structural Changes Address the Mechanism of Interaction at the Efflux Pump. Eur. J. Med. Chem. 2015;89:606–615. doi: 10.1016/j.ejmech.2014.10.082. PubMed DOI

Pati M.L., Abate C., Contino M., Ferorelli S., Luisi R., Carroccia L., Niso M., Berardi F. Deconstruction of 6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline Moiety to Separate P-Glycoprotein (P-gp) Activity from σ2 Receptor Affinity in Mixed P-gp/σ2 Receptor Agents. Eur. J. Med. Chem. 2015;89:691–700. doi: 10.1016/j.ejmech.2014.11.001. PubMed DOI

Tomoo T., Nakatsuka T., Katayama T., Hayashi Y., Fujieda Y., Terakawa M., Nagahira K. Design, Synthesis, and Biological Evaluation of 3-(1-Aryl-1H-indol-5-yl)propanoic Acids as New Indole-Based Cytosolic Phospholipase A2α Inhibitors. J. Med. Chem. 2014;57:7244–7262. doi: 10.1021/jm500494y. PubMed DOI

Uno T., Kawai Y., Yamashita S., Oshiumi H., Yoshimura C., Mizutani T., Suzuki T., Chong K.T., Shigeno K., Ohkubo M., et al. Discovery of 3-Ethyl-4-(3-isopropyl-4-(4-(1-methyl-1H-pyrazol-4-yl)-1H-imidazol-1-yl)-1H-pyrazolo[3,4-b]pyridin-1-yl)benzamide (TAS-116) as a Potent, Selective, and Orally Available HSP90 Inhibitor. J. Med. Chem. 2019;62:531–551. doi: 10.1021/acs.jmedchem.8b01085. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Organophosphates as Versatile Substrates in Organic Synthesis

. 2024 Apr 02 ; 29 (7) : . [epub] 20240402

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...