Indolylboronic Acids: Preparation and Applications
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
21-SVV/2019
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31569441
PubMed Central
PMC6803883
DOI
10.3390/molecules24193523
PII: molecules24193523
Knihovny.cz E-zdroje
- Klíčová slova
- C−H borylation, Suzuki reaction, boronic acid, cross-coupling, indole, multicomponent reaction,
- MeSH
- chemické modely MeSH
- cyklizace MeSH
- indoly chemie MeSH
- kovy chemie MeSH
- kyseliny boronové chemická syntéza chemie MeSH
- metabolické sítě a dráhy MeSH
- molekulární struktura MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- indoly MeSH
- kovy MeSH
- kyseliny boronové MeSH
Indole derivatives are associated with a variety of both biological activities and applications in the field of material chemistry. A number of different strategies for synthesizing substituted indoles by means of the reactions of indolylboronic acids with electrophilic compounds are considered the methods of choice for modifying indoles because indolylboronic acids are easily available, stable, non-toxic and new reactions using indolylboronic acids have been described in the literature. Thus, the aim of this review is to summarize the methods available for the preparation of indolylboronic acids as well as their chemical transformations. The review covers the period 2010-2019.
Zobrazit více v PubMed
Foley C.A., Al-Issa Y.A., Hiller K.P., Mulcahy S.P. Synthesis and Structure–Activity Relationships of 1-Aryl-β-carbolines as Affinity Probes for the 5-Hydroxytryptamine Receptor. ACS Omega. 2019;4:9807–9812. doi: 10.1021/acsomega.9b01111. DOI
Cornelio B., Laronze-Cochard M., Miambo R., De Grandis M., Riccioni R., Borisova B., Dontchev D., Machado C., Ceruso M., Fontana A., et al. 5-Arylisothiazol-3(2H)-one-1,(1)-(di)oxides: A new class of selective tumor-associated carbonic anhydrases (hCA IX and XII) inhibitors. Eur. J. Med. Chem. 2019;175:40–48. doi: 10.1016/j.ejmech.2019.04.072. PubMed DOI
Ellis J.M., Altman M.D., Cash B., Haidle A.M., Kubiak R.L., Maddess M.L., Yan Y., Northrup A.B. Carboxamide Spleen Tyrosine Kinase (Syk) Inhibitors: Leveraging Ground State Interactions To Accelerate Optimization. ACS Med. Chem. Lett. 2016;7:1151–1155. doi: 10.1021/acsmedchemlett.6b00353. PubMed DOI PMC
Zhang N., Turpoff A., Zhang X., Huang S., Liu Y., Almstead N., Njoroge F.G., Gu Z., Graci J., Jung S.P., et al. Discovery of 2-(4-sulfonamidophenyl)-indole 3-carboxamides as potent and selective inhibitors with broad hepatitis C virus genotype activity targeting HCV NS4B. Bioorg. Med. Chem. Lett. 2016;26:594–601. doi: 10.1016/j.bmcl.2015.11.065. PubMed DOI
Wu Y.-J., Venables B., Guernon J., Chen J., Sit S.-Y., Rajamani R., Knox R.J., Matchett M., Pieschl R.L., Herrington J., et al. Discovery of new indole-based acylsulfonamide Nav1.7 inhibitors. Bioorg. Med. Chem. Lett. 2019;29:659–663. doi: 10.1016/j.bmcl.2018.12.013. PubMed DOI
Kanada R., Tanabe M., Muromoto R., Sato Y., Kuwahara T., Fukuda H., Arisawa M., Matsuda T., Watanabe M., Shuto S. Synthesis of Chiral cis-Cyclopropane Bearing Indole and Chromone as Potential TNFα Inhibitors. J. Org. Chem. 2018;83:7672–7682. doi: 10.1021/acs.joc.8b00466. PubMed DOI
Bartoccini F., Venturi S., Retini M., Mari M., Piersanti G. Total Synthesis of (−)-Clavicipitic Acid via γ,γ-Dimethylallyltryptophan (DMAT) and Chemoselective C–H Hydroxylation. J. Org. Chem. 2019;84:8027–8034. doi: 10.1021/acs.joc.9b00879. PubMed DOI
Nabi A.A., Liyu J., Lindsay A.C., Sperry J. C4−H alkoxylation of 6-bromoindole and its application to the synthesis of breitfussin B. Tetrahedron. 2018;74:1199–1202. doi: 10.1016/j.tet.2017.10.067. DOI
Hu L., Li Q., Yao L., Xu B., Wang X., Liao X. Enantioselective and Divergent Syntheses of Alstoscholarisines A, E and Their Enantiomers. Org. Lett. 2018;20:6202–6205. doi: 10.1021/acs.orglett.8b02679. PubMed DOI
Chen Z., Zhou S., Jia Y. Formal Synthesis of (+)-Kopsihainanine A and Synthetic Study toward (+)-Limaspermidine. J. Org. Chem. 2015;80:12545–12551. doi: 10.1021/acs.joc.5b02402. PubMed DOI
Zhou S., Jia Y. Total Synthesis of (−)-Goniomitine. Org. Lett. 2014;16:3416–3418. doi: 10.1021/ol501341b. PubMed DOI
Baeyer A., Emmerling A. Synthese des Indols. Ber. Dtsch. Chem. Ges. 1869;2:679–682. doi: 10.1002/cber.186900201268. DOI
Bartoli G., Palmieri G., Bosco M., Dalpozzo R. The reaction of vinyl grignard reagents with 2-substituted nitroarenes: A new approach to the synthesis of 7-substituted indoles. Tetrahedron Lett. 1989;30:2129–2132. doi: 10.1016/S0040-4039(01)93730-X. DOI
Fischer E., Hess O. Synthese von Indolderivaten. Ber. Dtsch. Chem. Ges. 1884;17:559–568. doi: 10.1002/cber.188401701155. DOI
Tokuyama H., Yamashita T., Reding M.T., Kaburagi Y., Fukuyama T. Radical Cyclization of 2-Alkenylthioanilides: A Novel Synthesis of 2,3-Disubstituted Indoles. J. Am. Chem. Soc. 1999;121:3791–3792. doi: 10.1021/ja983681v. DOI
Gassman P.G., Van Bergen T.J., Gruetzmacher G. Use of halogen-sulfide complexes in the synthesis of indoles, oxindoles, and alkylated aromatic amines. J. Am. Chem. Soc. 1973;95:6508–6509. doi: 10.1021/ja00800a088. DOI
Larock R.C., Yum E.K. Synthesis of indoles via palladium-catalyzed heteroannulation of internal alkynes. J. Am. Chem. Soc. 1991;113:6689–6690. doi: 10.1021/ja00017a059. DOI
Tanner M.E. Mechanistic studies on the indole prenyltransferases. Nat. Prod. Rep. 2015;32:88–101. doi: 10.1039/C4NP00099D. PubMed DOI
Bandini M., Melloni A., Tommasi S., Umani-Ronchi A. A Journey Across Recent Advances in Catalytic and Stereoselective Alkylation of Indoles. Synlett. 2005:1199–1222. doi: 10.1055/s-2005-865210. DOI
Makosza M. Vicarious Nucleophilic Substitution of Hydrogen in the Chemistry of Heterocyclic Compounds. Synthesis. 1991:103–111. doi: 10.1055/s-1991-35646. DOI
Vorobyeva D.V., Osipov S.N. Selective Synthesis of 2- and 7-Substituted Indole Derivatives via Chelation-Assisted Metallocarbenoid C–H Bond Functionalization. Synthesis. 2018;50:227–240.
Petrini M. Regioselective Direct C-Alkenylation of Indoles. Chem. Eur. J. 2017;23:16115–16151. doi: 10.1002/chem.201702124. PubMed DOI
Bheeter C.B., Chen L., Soulé J.-F., Doucet H. Regioselectivity in palladium-catalysed direct arylation of 5-membered ring heteroaromatics. Catal. Sci. Technol. 2016;6:2005–2049. doi: 10.1039/C5CY02095F. DOI
Sandtorv A.H. Transition Metal-Catalyzed C−H Activation of Indoles. Adv. Synth. Catal. 2015;357:2403–2435. doi: 10.1002/adsc.201500374. DOI
Rossi R., Bellina F., Lessi M., Manzini C. Cross-Coupling of Heteroarenes by C−H Functionalization: Recent Progress towards Direct Arylation and Heteroarylation Reactions Involving Heteroarenes Containing One Heteroatom. Adv. Synth. Catal. 2014;356:17–117. doi: 10.1002/adsc.201300922. DOI
Miyaura N., Yamada K., Suzuki A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett. 1979;20:3437–3440. doi: 10.1016/S0040-4039(01)95429-2. DOI
Miyaura N., Suzuki A. Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. J. Chem. Soc., Chem. Commun. 1979:866–867. doi: 10.1039/c39790000866. DOI
Amatore C., Le Duc G., Jutand A. Mechanism of Palladium-Catalyzed Suzuki–Miyaura Reactions: Multiple and Antagonistic Roles of Anionic “Bases” and Their Countercations. Chem. Eur. J. 2013;19:10082–10093. doi: 10.1002/chem.201300177. PubMed DOI
Düfert M.A., Billingsley K.L., Buchwald S.L. Suzuki-Miyaura Cross-Coupling of Unprotected, Nitrogen-Rich Heterocycles: Substrate Scope and Mechanistic Investigation. J. Am. Chem. Soc. 2013;135:12877–12885. doi: 10.1021/ja4064469. PubMed DOI PMC
Wilson K.L., Murray J., Sneddon H.F., Jamieson C., Watson A.J.B. Dimethylisosorbide (DMI) as a Bio-Derived Solvent for Pd-Catalyzed Cross-Coupling Reactions. Synlett. 2018;29:2293–2297.
Polák P., Tobrman T. The synthesis of polysubstituted indoles from 3-bromo-2-indolyl phosphates. Org. Biomol. Chem. 2017;15:6233–6241. doi: 10.1039/C7OB01127J. PubMed DOI
Rossi E., Abbiati G., Canevari V., Celentano G., Magri E. 2-Trifluoromethanesulfonyloxyindole-1-carboxylic Acid Ethyl Ester: A Practical Intermediate for the Synthesis of 2-Carbosubstituted Indoles. Synthesis. 2006:299–304. doi: 10.1055/s-2005-918509. DOI
Nazari S.H., Bourdeau J.E., Talley M.R., Valdivia-Berroeta G.A., Smith S.J., Michaelis D.J. Nickel-Catalyzed Suzuki Cross Couplings with Unprotected Allylic Alcohols Enabled by Bidentate N-Heterocyclic Carbene (NHC)/Phosphine Ligands. ACS Catal. 2018;8:86–89. doi: 10.1021/acscatal.7b03079. DOI
Tan J., Chen Y., Li H., Yasuda N. Suzuki-Miyaura Cross-Coupling Reactions of Unprotected Haloimidazoles. J. Org. Chem. 2014;79:8871–8876. doi: 10.1021/jo501326r. PubMed DOI
Kotek V., Polák P., Dvořáková H., Tobrman T. Aluminum Chloride Promoted Cross-Coupling of Trisubstituted Enol Phosphates with Organozinc Reagents En Route to the Stereoselective Synthesis of Tamoxifen and Its Analogues. Eur. J. Org. Chem. 2016:5037–5044. doi: 10.1002/ejoc.201600959. DOI
Nambo M., Keske E.C., Rygus J.P.G., Yim J.C.H., Crudden C.M. Development of Versatile Sulfone Electrophiles for Suzuki–Miyaura Cross-Coupling Reactions. ACS Catal. 2017;7:1108–1112. doi: 10.1021/acscatal.6b03434. DOI
Chang S., Sun Y.B., Zhang X.R., Dong L.L., Zhu H.Y., Lai H.W., Wang D. Pd-catalyzed Desulfitative reaction of Aryltrifluoroborates with sodium Arenesulfinates in water. Appl. Organomet. Chem. 2018;32:e3970. doi: 10.1002/aoc.3970. DOI
Landstrom E.B., Handa S., Aue D.H., Gallou F., Lipshutz B.H. EvanPhos: A ligand for ppm level Pd-catalyzed Suzuki–Miyaura couplings in either organic solvent or water. Green Chem. 2018;20:3436–3443. doi: 10.1039/C8GC01356J. DOI
Zou Y., Yue G., Xu J., Zhou J. General Suzuki Coupling of Heteroaryl Bromides by Using Tri-tert-butylphosphine as a Supporting Ligand. Eur. J. Org. Chem. 2014:5901–5905. doi: 10.1002/ejoc.201402915. DOI
Boit T.B., Weires N.A., Kim J., Garg N.K. Nickel-Catalyzed Suzuki–Miyaura Coupling of Aliphatic Amides. ACS Catal. 2018;8:1003–1008. doi: 10.1021/acscatal.7b03688. PubMed DOI PMC
Schäfer P., Palacin T., Sidera M., Fletcher S.P. Asymmetric Suzuki-Miyaura coupling of heterocycles via Rhodium-catalysed allylic arylation of racemates. Nat. Commun. 2017;8:15762. doi: 10.1038/ncomms15762. PubMed DOI PMC
Iwamoto T., Okuzono C., Adak L., Jin M., Nakamura M. Iron-catalysed enantioselective Suzuki–Miyaura coupling of racemic alkyl bromides. Chem. Commun. 2019;55:1128–1131. doi: 10.1039/C8CC09523J. PubMed DOI
Cobb K.M., Rabb-Lynch J.M., Hoerrner M.E., Manders A., Zhou Q., Watson M.P. Stereospecific, Nickel-Catalyzed Suzuki–Miyaura Cross-Coupling of Allylic Pivalates To Deliver Quaternary Stereocenters. Org. Lett. 2017;19:4355–4358. doi: 10.1021/acs.orglett.7b02063. PubMed DOI PMC
Li G., Wang E., Chen H., Li H., Liu Y., Wang P.G. A general and efficient synthesis of substituted fluorenes and heterocycle-fused indenes containing thiophene or indole rings utilizing a Suzuki–Miyaura coupling and acid-catalyzed Friedel–Crafts reactions as key steps. Tetrahedron. 2008;64:9033–9043. doi: 10.1016/j.tet.2008.07.021. DOI
Vazquez E., Davies I.W., Payack J.F. A Non-cryogenic Method for the Preparation of 2-(Indolyl) Borates, Silanes, and Silanols. J. Org. Chem. 2002;67:7551–7552. doi: 10.1021/jo026087j. PubMed DOI
Schneider C., Broda E., Snieckus V. Directed ortho-Metalation–Cross-Coupling Strategies. One-Pot Suzuki Reaction to Biaryl and Heterobiaryl Sulfonamides. Org. Lett. 2011;13:3588–3591. doi: 10.1021/ol201175g. PubMed DOI
Shen K., Fu Y., Li J.-N., Liu L., Guo Q.-X. What are the pKa values of C–H bonds in aromatic heterocyclic compounds in DMSO? Tetrahedron. 2007;63:1568–1576. doi: 10.1016/j.tet.2006.12.032. DOI
Mesganaw T., Fine Nathel N.F., Garg N.K. Cine Substitution of Arenes Using the Aryl Carbamate as a Removable Directing Group. Org. Lett. 2012;14:2918–2921. doi: 10.1021/ol301275u. PubMed DOI
Al-Saedy M.A.E., Harrity J.P.A. Synthesis and Stabilities of 3-Borylated Indoles. Synlett. 2016;27:1674–1676.
Guerrand H.D.S., Marciasini L.D., Jousseaume M., Vaultier M., Pucheault M. Borylation of Unactivated Aryl Chlorides under Mild Conditions by Using Diisopropylaminoborane as a Borylating Reagent. Chem. Eur. J. 2014;20:5573–5579. doi: 10.1002/chem.201304861. PubMed DOI
Nitelet A., Thevenet D., Schiavi B., Hardouin C., Fournier J., Tamion R., Pannecoucke X., Jubault P., Poisson T. Copper-Photocatalyzed Borylation of Organic Halides under Batch and Continuous-Flow Conditions. Chem. Eur. J. 2019;25:3262–3266. doi: 10.1002/chem.201806345. PubMed DOI
Verma P.K., Mandal S., Geetharani K. Efficient Synthesis of Aryl Boronates via Cobalt-Catalyzed Borylation of Aryl Chlorides and Bromides. ACS Catal. 2018;8:4049–4054. doi: 10.1021/acscatal.8b00536. DOI
Labre F., Gimbert Y., Bannwarth P., Olivero S., Duñach E., Chavant P.Y. Application of Cooperative Iron/Copper Catalysis to a Palladium-Free Borylation of Aryl Bromides with Pinacolborane. Org. Lett. 2014;16:2366–2369. doi: 10.1021/ol500675q. PubMed DOI
Lim S., Song D., Jeon S., Kim Y., Kim H., Lee S., Cho H., Lee B.C., Kim S.E., Kim K., et al. Cobalt-Catalyzed C–F Bond Borylation of Aryl Fluorides. Org. Lett. 2018;20:7249–7252. doi: 10.1021/acs.orglett.8b03167. PubMed DOI
Liu X.-W., Echavarren J., Zarate C., Martin R. Ni-Catalyzed Borylation of Aryl Fluorides via C–F Cleavage. J. Am. Chem. Soc. 2015;137:12470–12473. doi: 10.1021/jacs.5b08103. PubMed DOI
Tobisu M., Kinuta H., Kita Y., Rémond E., Chatani N. Rhodium(I)-Catalyzed Borylation of Nitriles through the Cleavage of Carbon–Cyano Bonds. J. Am. Chem. Soc. 2012;134:115–118. doi: 10.1021/ja2095975. PubMed DOI
Kinuta H., Kita Y., Rémond E., Tobisu M., Chatani N. Novel Synthetic Approach to Arylboronates via Rhodium-Catalyzed Carbon–Cyano Bond Cleavage of Nitriles. Synthesis. 2012;44:2999–3002. doi: 10.1002/chin.201304138. DOI
Chen K., Cheung M.S., Lin Z., Li P. Metal-free borylation of electron-rich aryl (pseudo)halides under continuous-flow photolytic conditions. Org. Chem. Front. 2016;3:875–879. doi: 10.1039/C6QO00109B. DOI
Yamamoto E., Izumi K., Horita Y., Ito H. Anomalous Reactivity of Silylborane: Transition-Metal-Free Boryl Substitution of Aryl, Alkenyl, and Alkyl Halides with Silylborane/Alkoxy Base Systems. J. Am. Chem. Soc. 2012;134:19997–20000. doi: 10.1021/ja309578k. PubMed DOI
Yamamoto E., Izumi K., Horita Y., Ukigai S., Ito H. Formal Nucleophilic Boryl Substitution of Organic Halides with Silylborane/Alkoxy Base System. Top. Catal. 2014;57:940–945. doi: 10.1007/s11244-014-0255-y. DOI
Erb W., Hellal A., Albini M., Rouden J., Blanchet J. An Easy Route to (Hetero)arylboronic Acids. Chem. Eur. J. 2014;20:6608–6612. doi: 10.1002/chem.201402487. PubMed DOI
Liu C., Ji C.-L., Hong X., Szostak M. Palladium-Catalyzed Decarbonylative Borylation of Carboxylic Acids: Tuning Reaction Selectivity by Computation. Angew. Chem. 2018;57:16721–16726. doi: 10.1002/anie.201810145. PubMed DOI
Ochiai H., Uetake Y., Niwa T., Hosoya T. Rhodium-Catalyzed Decarbonylative Borylation of Aromatic Thioesters for Facile Diversification of Aromatic Carboxylic Acids. Angew. Chem. Int. Ed. 2017;56:2482–2486. doi: 10.1002/anie.201611974. PubMed DOI PMC
Cheng W.-M., Shang R., Zhao B., Xing W.-L., Fu Y. Isonicotinate Ester Catalyzed Decarboxylative Borylation of (Hetero)Aryl and Alkenyl Carboxylic Acids through N-Hydroxyphthalimide Esters. Org. Lett. 2017;19:4291–4294. doi: 10.1021/acs.orglett.7b01950. PubMed DOI
Candish L., Teders M., Glorius F. Transition-Metal-Free, Visible-Light-Enabled Decarboxylative Borylation of Aryl N-Hydroxyphthalimide Esters. J. Am. Chem. Soc. 2017;139:7440–7443. doi: 10.1021/jacs.7b03127. PubMed DOI
Iverson C.N., Smith M.R. Stoichiometric and Catalytic B−C Bond Formation from Unactivated Hydrocarbons and Boranes. J. Am. Chem. Soc. 1999;121:7696–7697. doi: 10.1021/ja991258w. DOI
Ishiyama T., Takagi J., Ishida K., Miyaura N., Anastasi N.R., Hartwig J.F. Mild iridium-catalyzed borylation of arenes. High turnover numbers, room temperature reactions, and isolation of a potential intermediate. J. Am. Chem. Soc. 2002;124:390–391. doi: 10.1021/ja0173019. PubMed DOI
Ishiyama T., Nobuta Y., Hartwig J.F., Miyaura N. Room temperature borylation of arenes and heteroarenes using stoichiometric amounts of pinacolborane catalyzed by iridium complexes in an inert solvent. Chem. Commun. 2003:2924–2925. doi: 10.1039/b311103b. PubMed DOI
Liskey C.W., Hartwig J.F. Borylation of Arenes with Bis(hexylene glycolato)diboron. Synthesis. 2013;45:1837–1842.
Tobisu M., Igarashi T., Chatani N. Iridium/N-heterocyclic carbene-catalyzed C–H borylation of arenes by diisopropylaminoborane. Beilstein J. Org. Chem. 2016;12:654–661. doi: 10.3762/bjoc.12.65. PubMed DOI PMC
Hoque M.E., Bisht R., Haldar C., Chattopadhyay B. Noncovalent Interactions in Ir-Catalyzed C–H Activation: L-Shaped Ligand for Para-Selective Borylation of Aromatic Esters. J. Am. Chem. Soc. 2017;139:7745–7748. doi: 10.1021/jacs.7b04490. PubMed DOI
Bisht R., Hoque M.E., Chattopadhyay B. Amide Effects in C−H Activation: Noncovalent Interactions with L-Shaped Ligand for meta Borylation of Aromatic Amides. Angew. Chem. Int. Ed. 2018;57:15762–15766. doi: 10.1002/anie.201809929. PubMed DOI
Sasaki I., Ikeda T., Amou T., Taguchi J., Ito H., Ishiyama T. Regioselective C–H Borylation of Heteroaromatic Aldimines with Iridium Complexes. Synlett. 2016;27:1582–1586.
Wu F., Feng Y., Jones C.W. Recyclable Silica-Supported Iridium Bipyridine Catalyst for Aromatic C–H Borylation. ACS Catal. 2014;4:1365–1375. doi: 10.1021/cs4009539. DOI
Maegawa Y., Inagaki S. Iridium–bipyridine periodic mesoporous organosilica catalyzed direct C–H borylation using a pinacolborane. Dalton Trans. 2015;44:13007–13016. doi: 10.1039/C5DT00239G. PubMed DOI
Tahir N., Muniz-Miranda F., Everaert J., Tack P., Heugebaert T., Leus K., Vincze L., Stevens C.V., Van Speybroeck V., Van Der Voort P. Immobilization of Ir(I) complex on covalent triazine frameworks for CH borylation reactions: A combined experimental and computational study. J. Catal. 2019;371:135–143. doi: 10.1016/j.jcat.2019.01.030. DOI
Manna K., Zhang T., Greene F.X., Lin W. Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C–H activation. J. Am. Chem. Soc. 2015;137:2665–2673. doi: 10.1021/ja512478y. PubMed DOI
Pang Y., Ishiyama T., Kubota K., Ito H. Iridium(I)-Catalyzed C−H Borylation in Air by Using Mechanochemistry. Chem. Eur. J. 2019;25:4654–4659. doi: 10.1002/chem.201900685. PubMed DOI
Obligacion J.V., Semproni S.P., Chirik P.J. Cobalt-catalyzed C-H borylation. J. Am. Chem. Soc. 2014;136:4133–4136. doi: 10.1021/ja500712z. PubMed DOI
Léonard N.G., Bezdek M.J., Chirik P.J. Cobalt-Catalyzed C(sp2)–H Borylation with an Air-Stable, Readily Prepared Terpyridine Cobalt(II) Bis(acetate) Precatalyst. Organometallics. 2017;36:142–150. doi: 10.1021/acs.organomet.6b00630. DOI
Jayasundara C.R.K., Sabasovs D., Staples R.J., Oppenheimer J., Smith M.R., Maleczka R.E. Cobalt-Catalyzed C–H Borylation of Alkyl Arenes and Heteroarenes Including the First Selective Borylations of Secondary Benzylic C–H Bonds. Organometallics. 2018;37:1567–1574. doi: 10.1021/acs.organomet.8b00144. DOI
Furukawa T., Tobisu M., Chatani N. Nickel-catalyzed borylation of arenes and indoles via C–H bond cleavage. Chem. Commun. 2015;51:6508–6511. doi: 10.1039/C5CC01378J. PubMed DOI
Furukawa T., Tobisu M., Chatani N. C–H Functionalization at Sterically Congested Positions by the Platinum-Catalyzed Borylation of Arenes. J. Am. Chem. Soc. 2015;137:12211–12214. doi: 10.1021/jacs.5b07677. PubMed DOI
Takaya J., Ito S., Nomoto H., Saito N., Kirai N., Iwasawa N. Fluorine-controlled C–H borylation of arenes catalyzed by a PSiN-pincer platinum complex. Chem. Commun. 2015;51:17662–17665. doi: 10.1039/C5CC07263H. PubMed DOI
Stahl T., Müther K., Ohki Y., Tatsumi K., Oestreich M. Catalytic Generation of Borenium Ions by Cooperative B–H Bond Activation: The Elusive Direct Electrophilic Borylation of Nitrogen Heterocycles with Pinacolborane. J. Am. Chem. Soc. 2013;135:10978–10981. doi: 10.1021/ja405925w. PubMed DOI
Kallepalli V.A., Shi F., Paul S., Onyeozili E.N., Maleczka R.E., Jr., Smith M.R., III Boc groups as protectors and directors for Ir-catalyzed C-H borylation of heterocycles. J. Org. Chem. 2009;74:9199–9201. doi: 10.1021/jo901822b. PubMed DOI PMC
Preshlock S.M., Plattner D.L., Maligres P.E., Krska S.W., Maleczka R.E., Jr., Smith M.R., III A Traceless Directing Group for C−H Borylation. Angew. Chem. Int. Ed. 2013;52:12915–12919. doi: 10.1002/anie.201306511. PubMed DOI PMC
Seechurn C.C.C.J., Sivakumar V., Satoskar D., Colacot T.J. Iridium-Catalyzed C–H Borylation of Heterocycles Using an Overlooked 1,10-Phenanthroline Ligand: Reinventing the Catalytic Activity by Understanding the Solvent-Assisted Neutral to Cationic Switch. Organometallics. 2014;33:3514–3522. doi: 10.1021/om500420d. DOI
Feng Y., Holte D., Zoller J., Umemiya S., Simke L.R., Baran P.S. Total Synthesis of Verruculogen and Fumitremorgin A Enabled by Ligand-Controlled C–H Borylation. J. Am. Chem. Soc. 2015;137:10160–10163. doi: 10.1021/jacs.5b07154. PubMed DOI PMC
Meyer F.-M., Liras S., Guzman-Perez A., Perreault C., Bian J., James K. Functionalization of Aromatic Amino Acids via Direct C−H Activation: Generation of Versatile Building Blocks for Accessing Novel Peptide Space. Org. Lett. 2010;12:3870–3873. doi: 10.1021/ol1015674. PubMed DOI
Eastabrook A.S., Wang C., Davison E.K., Sperry J. A Procedure for Transforming Indoles into Indolequinones. J. Org. Chem. 2015;80:1006–1017. doi: 10.1021/jo502509s. PubMed DOI
Batool F., Parveen S., Emwas A.-H., Sioud S., Gao X., Munawar M.A., Chotana G.A. Synthesis of Fluoroalkoxy Substituted Arylboronic Esters by Iridium-Catalyzed Aromatic C–H Borylation. Org. Lett. 2015;17:4256–4259. doi: 10.1021/acs.orglett.5b02050. PubMed DOI
Robbins D.W., Boebel T.A., Hartwig J.F. Iridium-Catalyzed, Silyl-Directed Borylation of Nitrogen-Containing Heterocycles. J. Am. Chem. Soc. 2010;132:4068–4069. doi: 10.1021/ja1006405. PubMed DOI
Wang C., Sperry J. Iridium-Catalyzed C–H Borylation-Based Synthesis of Natural Indolequinones. J. Org. Chem. 2012;77:2584–2587. doi: 10.1021/jo300330u. PubMed DOI
Loach R.P., Fenton O.S., Amaike K., Siegel D.S., Ozkal E., Movassaghi M. C7-Derivatization of C3-Alkylindoles Including Tryptophans and Tryptamines. J. Org. Chem. 2014;79:11254–11263. doi: 10.1021/jo502062z. PubMed DOI PMC
Kallepalli V.A., Gore K.A., Shi F., Sanchez L., Chotana G.A., Miller S.L., Maleczka R.E., Smith M.R. Harnessing C–H Borylation/Deborylation for Selective Deuteration, Synthesis of Boronate Esters, and Late Stage Functionalization. J. Org. Chem. 2015;80:8341–8353. doi: 10.1021/acs.joc.5b01588. PubMed DOI PMC
Shen F., Tyagarajan S., Perera D., Krska S.W., Maligres P.E., Smith M.R., Maleczka R.E. Bismuth Acetate as a Catalyst for the Sequential Protodeboronation of di-and Triborylated Indoles. Org. Lett. 2016;18:1554–1557. doi: 10.1021/acs.orglett.6b00356. PubMed DOI PMC
Smith M.W., Falk I.D., Ikemoto H., Burns N.Z. A convenient C–H functionalization platform for pyrroloiminoquinone alkaloid synthesis. Tetrahedron. 2019;75:3366–3370. doi: 10.1016/j.tet.2019.05.009. PubMed DOI PMC
Wang G., Xu L., Li P. Double N,B-Type Bidentate Boryl Ligands Enabling a Highly Active Iridium Catalyst for C–H Borylation. J. Am. Chem. Soc. 2015;137:8058–8061. doi: 10.1021/jacs.5b05252. PubMed DOI
Kawamorita S., Ohmiya H., Sawamura M. Ester-Directed Regioselective Borylation of Heteroarenes Catalyzed by a Silica-Supported Iridium Complex. J. Org. Chem. 2010;75:3855–3858. doi: 10.1021/jo100352b. PubMed DOI
Demory E., Devaraj K., Orthaber A., Gates P.J., Pilarski L.T. Boryl (Hetero)aryne Precursors as Versatile Arylation Reagents: Synthesis through C−H Activation and Orthogonal Reactivity. Angew. Chem. Int. Ed. 2015;54:11765–11769. doi: 10.1002/anie.201503152. PubMed DOI PMC
Homer J.A., Sperry J. A short synthesis of the endogenous plant metabolite 7-hydroxyoxindole-3-acetic acid (7-OH-OxIAA) using simultaneous C–H borylations. Tetrahedron Lett. 2014;55:5798–5800. doi: 10.1016/j.tetlet.2014.08.104. DOI
Eastabrook A.S., Sperry J. Iridium-Catalyzed Triborylation of 3-Substituted Indoles. Australian J. Chem. 2015;68:1810–1814. doi: 10.1071/CH15393. DOI
Eastabrook A.S., Sperry J. Synthetic Access to 3,5,7-Trisubstituted Indoles Enabled by Iridium-Catalyzed C–H Borylation. Synthesis. 2017;49:4731–4737.
Lv J., Zhao B., Liu L., Han Y., Yuan Y., Shi Z. Boron Trichloride-Mediated Synthesis of Indoles via the Aminoboration of Alkynes. Adv. Synth. Catal. 2018;360:4054–4059. doi: 10.1002/adsc.201800509. DOI
Yuan K., Wang S. trans-Aminoboration across Internal Alkynes Catalyzed by B (C6F5)3 for the Synthesis of Borylated Indoles. Org. Lett. 2017;19:1462–1465. doi: 10.1021/acs.orglett.7b00437. PubMed DOI
Huang J., Macdonald S.J.F., Harrity J.P.A. A borylative cyclisation towards indole boronic esters. Chem. Commun. 2010;46:8770–8772. doi: 10.1039/c0cc03577g. PubMed DOI
Chong E., Blum S.A. Aminoboration: Addition of B–N σ Bonds across C–C π Bonds. J. Am. Chem. Soc. 2015;137:10144–10147. doi: 10.1021/jacs.5b06678. PubMed DOI PMC
Jiang J., Zhang Z., Fu Y. Theoretical Investigation on the ClBcat-Promoted Synthesis of Heterocyclic Boronic Esters. Asian, J. Org. Chem. 2017;6:282–289. doi: 10.1002/ajoc.201600602. DOI
Seath C.P., Wilson K.L., Campbell A., Mowat J.M., Watson A.J.B. Synthesis of 2-BMIDA 6,5-bicyclic heterocycles by Cu(i)/Pd(0)/Cu(ii) cascade catalysis of 2-iodoaniline/phenols. Chem. Commun. 2016;52:8703–8706. doi: 10.1039/C6CC04554E. PubMed DOI
Tobisu M., Fujihara H., Koh K., Chatani N. Synthesis of 2-Boryl- and Silylindoles by Copper-Catalyzed Borylative and Silylative Cyclization of 2-Alkenylaryl Isocyanides. J. Org. Chem. 2010;75:4841–4847. doi: 10.1021/jo101024f. PubMed DOI
Qiu D., Jin L., Zheng Z., Meng H., Mo F., Wang X., Zhang Y., Wang J. Synthesis of Pinacol Arylboronates from Aromatic Amines: A Metal-Free Transformation. J. Org. Chem. 2013;78:1923–1933. doi: 10.1021/jo3018878. PubMed DOI
Qiu D., Zhang Y., Wang J. Direct synthesis of arylboronic pinacol esters from arylamines. Org. Chem. Front. 2014;1:422–425. doi: 10.1039/C4QO00009A. DOI
Zhong Q., Qin S., Yin Y., Hu J., Zhang H. Boron(III)-Catalyzed C2-Selective C−H Borylation of Heteroarenes. Angew. Chem. Int. Ed. 2018;57:14891–14895. doi: 10.1002/anie.201808590. PubMed DOI
Zhang S., Han Y., He J., Zhang Y. B (C6F5)3-Catalyzed C3-Selective C–H Borylation of Indoles: Synthesis, Intermediates, and Reaction Mechanism. J. Org. Chem. 2018;83:1377–1386. doi: 10.1021/acs.joc.7b02886. PubMed DOI
Yin Q., Klare H.F.T., Oestreich M. Catalytic Friedel–Crafts C−H Borylation of Electron-Rich Arenes: Dramatic Rate Acceleration by Added Alkenes. Angew. Chem. Int. Ed. 2017;56:3712–3717. doi: 10.1002/anie.201611536. PubMed DOI
Liu Y.-L., Kehr G., Daniliuc C.G., Erker G. Metal-Free Arene and Heteroarene Borylation Catalyzed by Strongly Electrophilic Bis-boranes. Chem. Eur. J. 2017;23:12141–12144. doi: 10.1002/chem.201701771. PubMed DOI
Légaré Lavergne J., Jayaraman A., Misal Castro L.C., Rochette É., Fontaine F.-G. Metal-Free Borylation of Heteroarenes Using Ambiphilic Aminoboranes: On the Importance of Sterics in Frustrated Lewis Pair C–H Bond Activation. J. Am. Chem. Soc. 2017;139:14714–14723. doi: 10.1021/jacs.7b08143. PubMed DOI
Légaré M.-A., Courtemanche M.-A., Rochette É., Fontaine F.-G. Metal-free catalytic C-H bond activation and borylation of heteroarenes. Science. 2015;349:513–516. doi: 10.1126/science.aab3591. PubMed DOI
Légaré M.-A., Rochette É., Lavergne J.L., Bouchard N., Fontaine F.-G. Bench-stable frustrated Lewis pair chemistry: Fluoroborate salts as precatalysts for the C–H borylation of heteroarenes. Chem. Commun. 2016;52:5387–5390. doi: 10.1039/C6CC01267A. PubMed DOI
Jayaraman A., Misal Castro L.C., Fontaine F.-G. Practical and Scalable Synthesis of Borylated Heterocycles Using Bench-Stable Precursors of Metal-Free Lewis Pair Catalysts. Org. Process. Res. Dev. 2018;22:1489–1499. doi: 10.1021/acs.oprd.8b00248. DOI
Bagutski V., Del Grosso A., Carrillo J.A., Cade I.A., Helm M.D., Lawson J.R., Singleton P.J., Solomon S.A., Marcelli T., Ingleson M.J. Mechanistic Studies into Amine-Mediated Electrophilic Arene Borylation and Its Application in MIDA Boronate Synthesis. J. Am. Chem. Soc. 2013;135:474–487. doi: 10.1021/ja3100963. PubMed DOI
Del Grosso A., Singleton P.J., Muryn C.A., Ingleson M.J. Pinacol Boronates by Direct Arene Borylation with Borenium Cations. Angew. Chem. Int. Ed. 2011;50:2102–2106. doi: 10.1002/anie.201006196. PubMed DOI
Grosso A.D., Helm M.D., Solomon S.A., Caras-Quintero D., Ingleson M.J. Simple inexpensive boron electrophiles for direct arene borylation. Chem. Commun. 2011;47:12459–12461. doi: 10.1039/c1cc14226g. PubMed DOI
Solomon S.A., Del Grosso A., Clark E.R., Bagutski V., McDouall J.J.W., Ingleson M.J. Reactivity of Lewis Acid Activated Diaza- and Dithiaboroles in Electrophilic Arene Borylation. Organometallics. 2012;31:1908–1916. doi: 10.1021/om201228e. DOI
Tanaka S., Saito Y., Yamamoto T., Hattori T. Electrophilic Borylation of Terminal Alkenes with BBr3/2,6-Disubstituted Pyridines. Org. Lett. 2018;20:1828–1831. doi: 10.1021/acs.orglett.8b00335. PubMed DOI
Bartolucci S., Bartoccini F., Righi M., Piersanti G. Direct, Regioselective, and Chemoselective Preparation of Novel Boronated Tryptophans by Friedel–Crafts Alkylation. Org. Lett. 2012;14:600–603. doi: 10.1021/ol203216h. PubMed DOI
Churches Q.I., Hooper J.F., Hutton C.A. A General Method for Interconversion of Boronic Acid Protecting Groups: Trifluoroborates as Common Intermediates. J. Org. Chem. 2015;80:5428–5435. doi: 10.1021/acs.joc.5b00182. PubMed DOI
Borah A.J., Shi Z. Palladium-catalyzed regioselective C–H fluoroalkylation of indoles at the C4-position. Chem. Commun. 2017;53:3945–3948. doi: 10.1039/C7CC01274H. PubMed DOI
Fei X., Li C., Yu X., Liu H. Rh(III)-Catalyzed Hydroarylation of Alkyne MIDA Boronates via C–H Activation of Indole Derivatives. J. Org. Chem. 2019;84:6840–6850. doi: 10.1021/acs.joc.9b00638. PubMed DOI
Caramenti P., Nandi R.K., Waser J. Metal-Free Oxidative Cross Coupling of Indoles with Electron-Rich (Hetero) arenes. Chem. Eur. J. 2018;24:10049–10053. doi: 10.1002/chem.201802142. PubMed DOI
Caramenti P., Nicolai S., Waser J. Indole- and Pyrrole-BX: Bench-Stable Hypervalent Iodine Reagents for Heterocycle Umpolung. Chem. Eur. J. 2017;23:14702–14706. doi: 10.1002/chem.201703723. PubMed DOI
Chen J., Wu J. Catalytic vinylogous cross-coupling reactions of rhenium vinylcarbenoids. Chem. Sci. 2018;9:2489–2492. doi: 10.1039/C7SC05477G. PubMed DOI PMC
Barker G., Webster S., Johnson D.G., Curley R., Andrews M., Young P.C., Macgregor S.A., Lee A.-L. Gold-Catalyzed Proto- and Deuterodeboronation. J. Org. Chem. 2015;80:9807–9816. doi: 10.1021/acs.joc.5b01041. PubMed DOI
Grimes K.D., Gupte A., Aldrich C.C. Copper(II)-Catalyzed Conversion of Aryl/Heteroaryl Boronic Acids, Boronates, and Trifluoroborates into the Corresponding Azides: Substrate Scope and Limitations. Synthesis. 2010:1441–1448. doi: 10.1002/chin.201034069. PubMed DOI PMC
Zhang Z., Niwa T., Watanabe Y., Hosoya T. Palladium(ii)-mediated rapid 11C-cyanation of (hetero)arylborons. Org. Biomol. Chem. 2018;16:7711–7716. doi: 10.1039/C8OB02049C. PubMed DOI
Tramutola F., Chiummiento L., Funicello M., Lupattelli P. Practical and efficient ipso-iodination of arylboronic acids via KF/I2 system. Tetrahedron Lett. 2015;56:1122–1123. doi: 10.1016/j.tetlet.2015.01.040. DOI
Matsuzono M., Fukuda T., Iwao M. Direct C-3 lithiation of 1-(triisopropylsilyl) indole. Tetrahedron Lett. 2001;42:7621–7623. doi: 10.1016/S0040-4039(01)01656-2. DOI
Fier P.S., Luo J., Hartwig J.F. Copper-Mediated Fluorination of Arylboronate Esters. Identification of a Copper(III) Fluoride Complex. J. Am. Chem. Soc. 2013;135:2552–2559. doi: 10.1021/ja310909q. PubMed DOI PMC
Antuganov D., Zykov M., Timofeev V., Timofeeva K., Antuganova Y., Orlovskaya V., Fedorova O., Krasikova R. Copper-Mediated Radiofluorination of Aryl Pinacolboronate Esters: A Straightforward Protocol by Using Pyridinium Sulfonates. Eur. J. Org. Chem. 2019:918–922. doi: 10.1002/ejoc.201801514. DOI
Zischler J., Kolks N., Modemann D., Neumaier B., Zlatopolskiy B.D. Alcohol-Enhanced Cu-Mediated Radiofluorination. Chem. Eur. J. 2017;23:3251–3256. doi: 10.1002/chem.201604633. PubMed DOI
Schäfer D., Weiß P., Ermert J., Castillo Meleán J., Zarrad F., Neumaier B. Preparation of No-Carrier-Added 6-[18F]Fluoro-l-tryptophan via Cu-Mediated Radiofluorination. Eur. J. Org. Chem. 2016:4621–4628.
Konas D.W., Seci D., Tamimi S. Synthesis of (l)-4-Fluorotryptophan. Synthetic Commun. 2012;42:144–152. doi: 10.1080/00397911.2010.523154. DOI
Senecal T.D., Parsons A.T., Buchwald S.L. Room temperature aryl trifluoromethylation via copper-mediated oxidative cross-coupling. J. Org. Chem. 2011;76:1174–1176. doi: 10.1021/jo1023377. PubMed DOI PMC
Khan B.A., Buba A.E., Gooßen L.J. Oxidative trifluoromethylation of arylboronates with shelf-stable potassium (trifluoromethyl) trimethoxyborate. Chem. Eur. J. 2012;18:1577–1581. doi: 10.1002/chem.201102652. PubMed DOI
Xu J., Luo D.F., Xiao B., Liu Z.J., Gong T.J., Fu Y., Liu L. Copper-catalyzed trifluoromethylation of aryl boronic acids using a CF3+ reagent. Chem. Commun. 2011;47:4300–4302. doi: 10.1039/c1cc10359h. PubMed DOI
Liu T., Shen Q. Copper-catalyzed trifluoromethylation of aryl and vinyl boronic acids with an electrophilic trifluoromethylating reagent. Org. Lett. 2011;13:2342–2345. doi: 10.1021/ol2005903. PubMed DOI
Eisenberger P., Gischig S., Togni A. Novel 10-I-3 Hypervalent Iodine-Based Compounds for Electrophilic Trifluoromethylation. Chem. Eur. J. 2006;12:2579–2586. doi: 10.1002/chem.200501052. PubMed DOI
Presset M., Oehlrich D., Rombouts F., Molander G.A. Copper-mediated radical trifluoromethylation of unsaturated potassium organotrifluoroborates. J. Org. Chem. 2013;78:12837–12843. doi: 10.1021/jo4023233. PubMed DOI PMC
Huang C., Liang T., Harada S., Lee E., Ritter T. Silver-mediated trifluoromethoxylation of aryl stannanes and arylboronic acids. J. Am. Chem. Soc. 2011;133:13308–13310. doi: 10.1021/ja204861a. PubMed DOI PMC
Nakajima S., Takaya H., Nakamura M. Iron-catalyzed methylation of arylboron compounds with iodomethane. Chem. Lett. 2017;46:711–714. doi: 10.1246/cl.170079. DOI
Haydl A.M., Hartwig J.F. Palladium-Catalyzed Methylation of Aryl, Heteroaryl, and Vinyl Boronate Esters. Org. Lett. 2019;21:1337–1341. doi: 10.1021/acs.orglett.9b00025. PubMed DOI PMC
He Z.T., Li H., Haydl A.M., Whiteker G.T., Hartwig J.F. Trimethylphosphate as a Methylating Agent for Cross Coupling: A Slow-Release Mechanism for the Methylation of Arylboronic Esters. J. Am. Chem. Soc. 2018;140:17197–17202. doi: 10.1021/jacs.8b10076. PubMed DOI PMC
Kearney A.M., Landry-Bayle A., Gomez L. Palladium-catalyzed benzylation of N-Boc indole boronic acids. Tetrahedron Lett. 2010;51:2281–2283. doi: 10.1016/j.tetlet.2010.02.124. DOI
Liao J., Guan W., Boscoe B.P., Tucker J.W., Tomlin J.W., Garnsey M.R., Watson M.P. Transforming Benzylic Amines into Diarylmethanes: Cross-Couplings of Benzylic Pyridinium Salts via C–N Bond Activation. Org. Lett. 2018;20:3030–3033. doi: 10.1021/acs.orglett.8b01062. PubMed DOI PMC
Tobisu M., Yasutome A., Kinuta H., Nakamura K., Chatani N. 1,3-Dicyclohexylimidazol-2-ylidene as a Superior Ligand for the Nickel-Catalyzed Cross-Couplings of Aryl and Benzyl Methyl Ethers with Organoboron Reagents. Org. Lett. 2014;16:5572–5575. doi: 10.1021/ol502583h. PubMed DOI
Takeda M., Takatsu K., Shintani R., Hayashi T. Synthesis of quaternary carbon stereocenters by copper-catalyzed asymmetric allylic substitution of allyl phosphates with arylboronates. J. Org. Chem. 2014;79:2354–2367. doi: 10.1021/jo500068p. PubMed DOI
Kumar I., Sharma R., Kumar R., Kumar R., Sharma U. C70 Fullerene-Catalyzed Metal-Free Photocatalytic ipso-Hydroxylation of Aryl Boronic Acids: Synthesis of Phenols. Adv. Synth. Catal. 2018;360:2013–2019. doi: 10.1002/adsc.201701573. DOI
Molloy J.J., Clohessy T.A., Irving C., Anderson N.A., Lloyd-Jones G.C., Watson A.J.B. Chemoselective oxidation of aryl organoboron systems enabled by boronic acid-selective phase transfer. Chem. Sci. 2017;8:1551–1559. doi: 10.1039/C6SC04014D. PubMed DOI PMC
Andersen T.L., Frederiksen M.W., Domino K., Skrydstrup T. Direct Access to α,α-Difluoroacylated Arenes by Palladium-Catalyzed Carbonylation of (Hetero) Aryl Boronic Acid Derivatives. Angew. Chem. Int. Ed. 2016;55:10396–10400. doi: 10.1002/anie.201604152. PubMed DOI
Meng G., Szostak M. Palladium-catalyzed Suzuki–Miyaura coupling of amides by carbon–nitrogen cleavage: General strategy for amide N–C bond activation. Org. Biomol. Chem. 2016;14:5690–5707. doi: 10.1039/C6OB00084C. PubMed DOI
Yamamoto Y. The First General and Selective Palladium(II)-Catalyzed Alkoxycarbonylation of Arylboronates: Interplay among Benzoquinone-Ligated Palladium(0) Complex, Organoboron, and Alcohol Solvent. Adv. Synth. Catal. 2010;352:478–492. doi: 10.1002/adsc.200900836. DOI
Nahm S., Weinreb S.M. N-methoxy-N-methylamides as effective acylating agents. Tetrahedron Lett. 1981;22:3815–3818. doi: 10.1016/S0040-4039(01)91316-4. DOI
Krishnamoorthy R., Lam S.Q., Manley C.M., Herr R.J. Palladium-Catalyzed Preparation of Weinreb Amides from Boronic Acids and N-Methyl-N-methoxycarbamoyl Chloride. J. Org. Chem. 2010;75:1251–1258. doi: 10.1021/jo902647h. PubMed DOI
Nakamura K., Yasui K., Tobisu M., Chatani N. Rhodium-catalyzed cross-coupling of aryl carbamates with arylboron reagents. Tetrahedron. 2015;71:4484–4489. doi: 10.1016/j.tet.2015.02.088. DOI
Betancourt-Mendiola L., Valois-Escamilla I., Arbeloa T., Bañuelos J., López Arbeloa I., Flores-Rizo J.O., Hu R., Lager E., Gómez-Durán C.F.A., Belmonte-Vázquez J.L., et al. Scope and Limitations of the Liebeskind–Srogl Cross-Coupling Reactions Involving the Biellmann BODIPY. J. Org. Chem. 2015;80:5771–5782. doi: 10.1021/acs.joc.5b00731. PubMed DOI
Cohen D.T., Zhang C., Pentelute B.L., Buchwald S.L. An Umpolung Approach for the Chemoselective Arylation of Selenocysteine in Unprotected Peptides. J. Am. Chem. Soc. 2015;137:9784–9787. doi: 10.1021/jacs.5b05447. PubMed DOI PMC
Chinthakindi P.K., Govender K.B., Kumar A.S., Kruger H.G., Govender T., Naicker T., Arvidsson P.I. A Synthesis of “Dual Warhead” β-Aryl Ethenesulfonyl Fluorides and One-Pot Reaction to β-Sultams. Org. Lett. 2017;19:480–483. doi: 10.1021/acs.orglett.6b03634. PubMed DOI
Ortega V., del Castillo E., Csákÿ A.G. Transition-Metal-Free Stereocomplementary Cross-Coupling of Diols with Boronic Acids as Nucleophiles. Org. Lett. 2017;19:6236–6239. doi: 10.1021/acs.orglett.7b03192. PubMed DOI
Armstrong R.J., Niwetmarin W., Aggarwal V.K. Synthesis of Functionalized Alkenes by a Transition-Metal-Free Zweifel Coupling. Org. Lett. 2017;19:2762–2765. doi: 10.1021/acs.orglett.7b01124. PubMed DOI
Sun H.-B., Gong L., Tian Y.-B., Wu J.-G., Zhang X., Liu J., Fu Z., Niu D. Metal- and Base-Free Room-Temperature Amination of Organoboronic Acids with N-Alkyl Hydroxylamines. Angew. Chem. Int. Ed. 2018;57:9456–9460. doi: 10.1002/anie.201802782. PubMed DOI
Nageswar Rao D., Rasheed S., Vishwakarma R.A., Das P. Copper-catalyzed sequential N-arylation of C-amino-NH-azoles. Chem. Commun. 2014;50:12911–12914. doi: 10.1039/C4CC05628K. PubMed DOI
Selmani A., Serpier F., Darses S. From Tetrahydrofurans to Tetrahydrobenzo[d]oxepines via a Regioselective Control of Alkyne Insertion in Rhodium-Catalyzed Arylative Cyclization. J. Org. Chem. 2019;84:4566–4574. doi: 10.1021/acs.joc.9b00442. PubMed DOI
Faulkner A., Scott J.S., Bower J.F. An Umpolung Approach to Alkene Carboamination: Palladium Catalyzed 1,2-Amino-Acylation, -Carboxylation, -Arylation, -Vinylation, and -Alkynylation. J. Am. Chem. Soc. 2015;137:7224–7230. doi: 10.1021/jacs.5b03732. PubMed DOI
Hazelden I.R., Carmona R.C., Langer T., Pringle P.G., Bower J.F. Pyrrolidines and Piperidines by Ligand-Enabled Aza-Heck Cyclizations and Cascades of N-(Pentafluorobenzoyloxy) carbamates. Angew. Chem. Int. Ed. 2018;57:5124–5128. doi: 10.1002/anie.201801109. PubMed DOI PMC
Yang H.-B., Pathipati S.R., Selander N. Nickel-Catalyzed 1,2-Aminoarylation of Oxime Ester-Tethered Alkenes with Boronic Acids. ACS Catal. 2017;7:8441–8445. doi: 10.1021/acscatal.7b03432. DOI
Zhou Y., Rao C., Song Q. Z-Selective Synthesis of γ,δ-Unsaturated Ketones via Pd-Catalyzed Ring Opening of 2-Alkylenecyclobutanones with Arylboronic Acids. Org. Lett. 2016;18:4000–4003. doi: 10.1021/acs.orglett.6b01816. PubMed DOI
Diehl A.M., Ouadoudi O., Andreadou E., Manolikakes G. Sulfonamides as Amine Component in the Petasis-Borono Mannich Reaction: A Concise Synthesis of α-Aryl-and α-Alkenylglycine Derivatives. Synthesis. 2018;50:3936–3946.
Deeming A.S., Russell C.J., Willis M.C. Palladium (II)-Catalyzed Synthesis of Sulfinates from Boronic Acids and DABSO: A Redox-Neutral, Phosphine-Free Transformation. Angew. Chem. Int. Ed. 2016;55:747–750. doi: 10.1002/anie.201508370. PubMed DOI PMC
Vedovato V., Talbot E.P.A., Willis M.C. Copper-Catalyzed Synthesis of Activated Sulfonate Esters from Boronic Acids, DABSO, and Pentafluorophenol. Org. Lett. 2018;20:5493–5496. doi: 10.1021/acs.orglett.8b02445. PubMed DOI
Chen Y., Murray P.R.D., Davies A.T., Willis M.C. Direct Copper-Catalyzed Three-Component Synthesis of Sulfonamides. J. Am. Chem. Soc. 2018;140:8781–8787. doi: 10.1021/jacs.8b04532. PubMed DOI
Le Quement S.T., Flagstad T., Mikkelsen R.J.T., Hansen M.R., Givskov M.C., Nielsen T.E. Petasis three-component coupling reactions of hydrazides for the synthesis of oxadiazolones and oxazolidinones. Org. Lett. 2012;14:640–643. doi: 10.1021/ol203280b. PubMed DOI
Flagstad T., Petersen M.T., Nielsen T.E. A Four-Component Reaction for the Synthesis of Dioxadiazaborocines. Angew. Chem. Int. Ed. 2015;54:8395–8397. doi: 10.1002/anie.201502989. PubMed DOI
Mizuta S., Onomura O. Diastereoselective addition to N-acyliminium ions with aryl-and alkenyl boronic acids via a Petasis-type reaction. RSC Adv. 2012;2:2266–2269. doi: 10.1039/c2ra01254e. DOI
Panda S., Ready J.M. Palladium Catalyzed Asymmetric Three-Component Coupling of Boronic Esters, Indoles, and Allylic Acetates. J. Am. Chem. Soc. 2017;139:6038–6041. doi: 10.1021/jacs.7b01410. PubMed DOI PMC
Yamamoto E., Hilton M.J., Orlandi M., Saini V., Toste F.D., Sigman M.S. Development and Analysis of a Pd (0)-Catalyzed Enantioselective 1,1-Diarylation of Acrylates Enabled by Chiral Anion Phase Transfer. J. Am. Chem. Soc. 2016;138:15877–15880. doi: 10.1021/jacs.6b11367. PubMed DOI PMC
Yu X.Y., Zhao Q.Q., Chen J., Chen J.R., Xiao W.J. Copper-Catalyzed Radical Cross-Coupling of Redox-Active Oxime Esters, Styrenes, and Boronic Acids. Angew. Chem. Int. Ed. 2018;57:15505–15509. doi: 10.1002/anie.201809820. PubMed DOI
Lovinger G.J., Aparece M.D., Morken J.P. Pd-Catalyzed Conjunctive Cross-Coupling between Grignard-Derived Boron “Ate” Complexes and C(sp2) Halides or Triflates: NaOTf as a Grignard Activator and Halide Scavenger. J. Am. Chem. Soc. 2017;139:3153–3160. doi: 10.1021/jacs.6b12663. PubMed DOI PMC
Domański S., Staszewska-Krajewska O., Chaładaj W. Pd-Catalyzed Carbonylative Carboperfluoroalkylation of Alkynes. Through-Space 13C–19F Coupling as a Probe for Configuration Assignment of Fluoroalkyl-Substituted Olefins. J. Org. Chem. 2017;82:7998–8007. doi: 10.1021/acs.joc.7b01236. PubMed DOI
Croix C., Prié G., Chaulet C., Viaud-Massuard M.-C. Rhodium-Catalyzed 1,4-Addition of Arylboronic Acids to 3-Benzylidene-1H-pyrrolo[2,3-b]pyridin-2(3H)-one Derivatives. J. Org. Chem. 2015;80:3264–3269. doi: 10.1021/jo502784h. PubMed DOI
Malapit C.A., Luvaga I.K., Caldwell D.R., Schipper N.K., Howell A.R. Rh-Catalyzed Conjugate Addition of Aryl and Alkenyl Boronic Acids to α-Methylene-β-lactones: Stereoselective Synthesis of trans-3,4-Disubstituted β-Lactones. Org. Lett. 2017;19:4460–4463. doi: 10.1021/acs.orglett.7b01994. PubMed DOI PMC
Matsuura R., Jankins T.C., Hill D.E., Yang K.S., Gallego G.M., Yang S., He M., Wang F., Marsters R.P., McAlpine I., et al. Palladium (ii)-catalyzed γ-selective hydroarylation of alkenyl carbonyl compounds with arylboronic acids. Chem. Sci. 2018;9:8363–8368. doi: 10.1039/C8SC03081B. PubMed DOI PMC
Chiminazzo A., Sperni L., Damuzzo M., Strukul G., Scarso A. Copper-mediated 1,4-Conjugate Addition of Boronic Acids and Indoles to Vinylidenebisphosphonate leading to gem-Bisphosphonates as Potential Antiresorption Bone Drugs. ChemCatChem. 2014;6:2712–2718. doi: 10.1002/cctc.201402346. DOI
Hanna L.E., Konev M.O., Jarvo E.R. Nickel-Catalyzed Directed Hydroarylation of Alkynes with Boronic Acids. Eur. J. Org. Chem. 2019:184–187. doi: 10.1002/ejoc.201801494. DOI
Yin J., Mekelburg T., Hyland C. Unusual (Z)-selective palladium (ii)-catalysed addition of aryl boronic acids to vinylaziridines. Org. Biom. Chem. 2014;12:9113–9115. doi: 10.1039/C4OB01786B. PubMed DOI
Luan Y., Schaus S.E. Enantioselective Addition of Boronates to o-Quinone Methides Catalyzed by Chiral Biphenols. J. Am. Chem. Soc. 2012;134:19965–19968. doi: 10.1021/ja309076g. PubMed DOI PMC
Bos M., Buttard F., Vallée A., Riguet E. Organocatalytic Gram-Scale Synthesis and Alkylation of Heteroaryl and Electron-Rich Aryl α-Substituted γ-Lactones. Synthesis. 2019;51:3151–3159. doi: 10.1055/s-0037-1611820. DOI
Bos M., Riguet E. Synthesis of Chiral γ-Lactones by One-Pot Sequential Enantioselective Organocatalytic Michael Addition of Boronic Acids and Diastereoselective Intramolecular Passerini Reaction. J. Org. Chem. 2014;79:10881–10889. doi: 10.1021/jo501908z. PubMed DOI
Huang H., Yu C., Li X., Zhang Y., Zhang Y., Chen X., Mariano P.S., Xie H., Wang W. Synthesis of Aldehydes by Organocatalytic Formylation Reactions of Boronic Acids with Glyoxylic Acid. Angew. Chem. Int. Ed. 2017;56:8201–8205. doi: 10.1002/anie.201703127. PubMed DOI
Kuriyama M., Ishiyama N., Shimazawa R., Onomura O. Palladium-imidazolinium carbene-catalyzed arylation of aldehydes with arylboronic acids in water. Tetrahedron. 2010;66:6814–6819. doi: 10.1016/j.tet.2010.06.049. DOI
Malapit C.A., Caldwell D.R., Luvaga I.K., Reeves J.T., Volchkov I., Gonnella N.C., Han Z.S., Busacca C.A., Howell A.R., Senanayake C.H. Rhodium-Catalyzed Addition of Aryl Boronic Acids to 2,2-Disubstituted Malononitriles. Angew. Chem. Int. Ed. 2017;56:6999–7002. doi: 10.1002/anie.201703471. PubMed DOI
Malapit C.A., Reeves J.T., Busacca C.A., Howell A.R., Senanayake C.H. Rhodium-Catalyzed Transnitrilation of Aryl Boronic Acids with Dimethylmalononitrile. Angew. Chem. Int. Ed. 2016;55:326–330. doi: 10.1002/anie.201508122. PubMed DOI
Wang H., Zhu T.-S., Xu M.-H. Rhodium-catalyzed enantioselective 1,2-addition of arylboronic acids to heteroaryl α-ketoesters for synthesis of heteroaromatic α-hydroxy esters. Org. Biomol. Chem. 2012;10:9158–9164. doi: 10.1039/c2ob26316e. PubMed DOI
Roscales S., Csákÿ A.G. Synthesis of Di (hetero)arylamines from Nitrosoarenes and Boronic Acids: A General, Mild, and Transition-Metal-Free Coupling. Org. Lett. 2018;20:1667–1671. doi: 10.1021/acs.orglett.8b00473. PubMed DOI
Organophosphates as Versatile Substrates in Organic Synthesis
Recent Progress Concerning the N-Arylation of Indoles