Organophosphates as Versatile Substrates in Organic Synthesis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38611872
PubMed Central
PMC11154425
DOI
10.3390/molecules29071593
PII: molecules29071593
Knihovny.cz E-zdroje
- Klíčová slova
- alkene, cross-coupling reactions, organophosphates, synthesis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This review summarizes the applications of organophosphates in organic synthesis. After a brief introduction, it discusses cross-coupling reactions, including both transition-metal-catalyzed and transition-metal-free substitution reactions. Subsequently, oxidation and reduction reactions are described. In addition, this review highlights the applications of organophosphates in the synthesis of natural compounds, demonstrating their versatility and importance in modern synthetic chemistry.
Zobrazit více v PubMed
Lorke D.E., Petroianu G.A. Reversible cholinesterase inhibitors as pretreatment for exposure to organophosphates. A review. J. Appl. Toxicol. 2019;39:101–116. doi: 10.1002/jat.3662. PubMed DOI
Beynon K.I., Hutson D.H., Wright A.N. The Metabolism and Degradation of Vinyl Phosphate Insecticides. Springer; New York, NY, USA: 1973. pp. 55–142. PubMed
Lorke D.E., Petroianu G.A. Minireview: Does in-vitro testing of oximes help predict their in-vivo action after paraoxon exposure? J. Appl. Toxicol. 2009;29:459–469. doi: 10.1002/jat.1457. PubMed DOI
Kaonga C.C., Chidya R.C.G., Kosamu I.B.M., Abdel-dayem S.M., Mapoma H.W.T., Thole B., Mbewe R., Sakugawa H. Trends in usage of selected fungicides in Japan between 1962 and 2014: A review. Int. J. Environ. Sci. Technol. 2018;15:1801–1814. doi: 10.1007/s13762-017-1565-y. DOI
Cui X., Li W., Ryabchuk P., Junge K., Beller M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 2018;1:385–397. doi: 10.1038/s41929-018-0090-9. DOI
Mukherjee A., Milstein D. Homogeneous Catalysis by Cobalt and Manganese Pincer Complexes. ACS Catal. 2018;8:11435–11469. doi: 10.1021/acscatal.8b02869. DOI
Sordakis K., Tang C., Vogt L.K., Junge H., Dyson P.J., Beller M., Laurenczy G. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols. Chem. Rev. 2018;118:372–433. doi: 10.1021/acs.chemrev.7b00182. PubMed DOI
Atobe M. Organic electrosynthesis in flow microreactor. Curr. Opin. Electrochem. 2017;2:1–6. doi: 10.1016/j.coelec.2016.12.002. DOI
Cardoso D.S.P., Šljukić B., Santos D.M.F., Sequeira C.A.C. Organic Electrosynthesis: From Laboratorial Practice to Industrial Applications. Org. Proc. Res. Dev. 2017;21:1213–1226. doi: 10.1021/acs.oprd.7b00004. DOI
Marken F., Cresswell A.J., Bull S.D. Recent Advances in Paired Electrosynthesis. Chem. Rec. 2021;21:2585–2600. doi: 10.1002/tcr.202100047. PubMed DOI
Siu J.C., Fu N., Lin S. Catalyzing Electrosynthesis: A Homogeneous Electrocatalytic Approach to Reaction Discovery. Acc. Chem. Res. 2020;53:547–560. doi: 10.1021/acs.accounts.9b00529. PubMed DOI PMC
Yuan Y., Lei A. Is electrosynthesis always green and advantageous compared to traditional methods? Nat. Commun. 2020;11:802. doi: 10.1038/s41467-020-14322-z. PubMed DOI PMC
Fang Y., Zheng Y., Fang T., Chen Y., Zhu Y., Liang Q., Sheng H., Li Z., Chen C., Wang X. Photocatalysis: An overview of recent developments and technological advancements. Sci. China Chem. 2020;63:149–181. doi: 10.1007/s11426-019-9655-0. DOI
Gisbertz S., Pieber B. Heterogeneous Photocatalysis in Organic Synthesis. ChemPhotoChem. 2020;4:456–475. doi: 10.1002/cptc.202000014. DOI
Melchionna M., Fornasiero P. Updates on the Roadmap for Photocatalysis. ACS Catal. 2020;10:5493–5501. doi: 10.1021/acscatal.0c01204. DOI
Johansson Seechurn C.C.C., Kitching M.O., Colacot T.J., Snieckus V. Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 2012;51:5062–5085. doi: 10.1002/anie.201107017. PubMed DOI
Knappke C.E.I., Grupe S., Gärtner D., Corpet M., Gosmini C., von Wangelin A.J. Reductive Cross-Coupling Reactions between Two Electrophiles. Chem. Eur. J. 2014;20:6828–6842. doi: 10.1002/chem.201402302. PubMed DOI
Noël T., Buchwald S.L. Cross-coupling in flow. Chem. Soc. Rev. 2011;40:5010–5029. doi: 10.1039/c1cs15075h. PubMed DOI
So C.M., Kwong F.Y. Palladium-catalyzed cross-coupling reactions of aryl mesylates. Chem. Soc. Rev. 2011;40:4963–4972. doi: 10.1039/c1cs15114b. PubMed DOI
Thapa S., Shrestha B., Gurung S.K., Giri R. Copper-catalysed cross-coupling: An untapped potential. Org. Biomol. Chem. 2015;13:4816–4827. doi: 10.1039/C5OB00200A. PubMed DOI
Tobrman T. Vinyl Esters and Vinyl Sulfonates as Green Alternatives to Vinyl Bromide for the Synthesis of Monosubstituted Alkenes via Transition-Metal-Catalyzed Reactions. Chemistry. 2023;5:2288–2321. doi: 10.3390/chemistry5040153. DOI
Čubiňák M., Edlová T., Polák P., Tobrman T. Indolylboronic Acids: Preparation and Applications. Molecules. 2019;24:3523. doi: 10.3390/molecules24193523. PubMed DOI PMC
Heravi M.M., Ghanbarian M., Ghalavand N., Nazari N. Current Applications of the Sonogashira Reaction in the Synthesis of Heterocyclic Compounds: An Update. Curr. Org. Chem. 2018;22:1420–1457. doi: 10.2174/1385272822666180322122232. DOI
Malapit C.A., Howell A.R. Recent Applications of Oxetanes in the Synthesis of Heterocyclic Compounds. J. Org. Chem. 2015;80:8489–8495. doi: 10.1021/acs.joc.5b01255. PubMed DOI
Oeser P., Koudelka J., Petrenko A., Tobrman T. Recent Progress Concerning the N-Arylation of Indoles. Molecules. 2021;26:5079. doi: 10.3390/molecules26165079. PubMed DOI PMC
Panda S.S., Jain S.C. “In Water” Syntheses of Heterocyclic Compounds. Mini-Rev. Org. Chem. 2011;8:455–464. doi: 10.2174/157019311797440335. DOI
Veisi H., Ghorbani-Vaghei R. Recent progress in the application of N-halo reagents in the synthesis of heterocyclic compounds. Tetrahedron. 2010;66:7445–7463. doi: 10.1016/j.tet.2010.07.015. DOI
Volkova Y., Baranin S., Zavarzin I. A3 Coupling Reaction in the Synthesis of Heterocyclic Compounds. Adv. Synth. Catal. 2021;363:40–61. doi: 10.1002/adsc.202000866. DOI
Buttard F., Sharma J., Champagne P.A. Recent advances in the stereoselective synthesis of acyclic all-carbon tetrasubstituted alkenes. Chem. Commun. 2021;57:4071–4088. doi: 10.1039/D1CC00596K. PubMed DOI
Flynn A.B., Ogilvie W.W. Stereocontrolled Synthesis of Tetrasubstituted Olefins. Chem. Rev. 2007;107:4698–4745. doi: 10.1021/cr050051k. PubMed DOI
Mukherjee N., Planer S., Grela K. Formation of tetrasubstituted C–C double bonds via olefin metathesis: Challenges, catalysts, and applications in natural product synthesis. Org. Chem. Front. 2018;5:494–516. doi: 10.1039/C7QO00800G. DOI
Paek S.M. Synthesis of tetrasubstituted alkenes via metathesis. Molecules. 2012;17:3348–3358. doi: 10.3390/molecules17033348. PubMed DOI PMC
Edlová T., Čubiňák M., Tobrman T. Cross-Coupling Reactions of Double or Triple Electrophilic Templates for Alkene Synthesis. Synthesis. 2021;53:255–266. doi: 10.1055/s-0040-1707270. DOI
Negishi E.-I., Huang Z., Wang G., Mohan S., Wang C., Hattori H. Recent Advances in Efficient and Selective Synthesis of Di-, Tri-, and Tetrasubstituted Alkenes via Pd-Catalyzed Alkenylation−Carbonyl Olefination Synergy. Acc. Chem. Res. 2008;41:1474–1485. doi: 10.1021/ar800038e. PubMed DOI
Polák P., Váňová H., Dvořák D., Tobrman T. Recent progress in transition metal-catalyzed stereoselective synthesis of acyclic all-carbon tetrasubstituted alkenes. Tetrahedron Lett. 2016;57:3684–3693. doi: 10.1016/j.tetlet.2016.07.030. DOI
Reiser O. Palladium-Catalyzed Coupling Reactions for the Stereoselective Synthesis of Tri- and Tetrasubstituted Alkenes. Angew. Chem. Int. Ed. 2006;45:2838–2840. doi: 10.1002/anie.200600025. PubMed DOI
Krishnakumar V.K., Sharma M.M. Synthesis of Triaryl Phosphates via Phase-Transfer Catalysis. Synthesis. 1983;1983:558–559. doi: 10.1055/s-1983-30424. DOI
Zhong C., Huang Y., Zhang H., Zhou Q., Liu Y., Lu P. Enantioselective Synthesis of 3-Substituted Cyclobutenes by Catalytic Conjugate Addition/Trapping Strategies. Angew. Chem. Int. Ed. 2020;59:2750–2754. doi: 10.1002/anie.201913825. PubMed DOI
Kotek V., Polák P., Tobrman T. Efficient and simple preparation of functionalized 1,1-dibromoenol phosphates. Monat. Chem. 2016;147:405–412. doi: 10.1007/s00706-015-1613-6. DOI
Kawada H., Ikoma A., Ogawa N., Kobayashi Y. Activation of Marginally Reactive Boron Enolates by MeLi for the Formation of Enol Phosphates and Synthesis of the Δ9-THC Intermediate. J. Org. Chem. 2015;80:9192–9199. doi: 10.1021/acs.joc.5b01630. PubMed DOI
Perkow W. Umsetzungen mit Alkylphosphiten. I. Mitteil.: Umlagerungen bei der Reaktion mit Chloral und Bromal. Chem. Ber. 1954;87:755–758. doi: 10.1002/cber.19540870521. DOI
Adamek J. Special Issue “Organophosphorus Chemistry: A New Perspective”. Molecules. 2023;28:4752. doi: 10.3390/molecules28124752. PubMed DOI PMC
Keglevich G. Organophosphorus Chemistry 2021. Molecules. 2023;28:394. doi: 10.3390/molecules28010394. PubMed DOI PMC
Hanson P.R. Organophosphorus chemistry. Beilstein J. Org. Chem. 2014;10:2087–2088. doi: 10.3762/bjoc.10.217. PubMed DOI PMC
Han L.-B., Yang S.-D., Waterman R., Weigand J.J. Love in the Time of COVID. J. Org. Chem. 2020;85:14273–14275. doi: 10.1021/acs.joc.0c02568. PubMed DOI
Fiorito D., Folliet S., Liu Y., Mazet C. A General Nickel-Catalyzed Kumada Vinylation for the Preparation of 2-Substituted 1,3-Dienes. ACS Catal. 2018;8:1392–1398. doi: 10.1021/acscatal.7b04030. DOI
Braconi E., Cramer N. Crossed Regio- and Enantioselective Iron-Catalyzed [4+2]-Cycloadditions of Unactivated Dienes. Angew. Chem. Int. Ed. 2022;61:e202112148. doi: 10.1002/anie.202112148. PubMed DOI PMC
Braconi E., Götzinger A.C., Cramer N. Enantioselective Iron-Catalyzed Cross-[4+4]-Cycloaddition of 1,3-Dienes Provides Chiral Cyclooctadienes. J. Am. Chem. Soc. 2020;142:19819–19824. doi: 10.1021/jacs.0c09486. PubMed DOI
Kennedy C.R., Zhong H., Macaulay R.L., Chirik P.J. Regio- and Diastereoselective Iron-Catalyzed [4+4]-Cycloaddition of 1,3-Dienes. J. Am. Chem. Soc. 2019;141:8557–8573. doi: 10.1021/jacs.9b02443. PubMed DOI PMC
Li Y., Chen J., Ng J.J.W., Chiba S. Generation of Allylmagnesium Reagents by Hydromagnesiation of 2-Aryl-1,3-dienes. Angew. Chem. Int. Ed. 2023;62:e202217735. doi: 10.1002/anie.202217735. PubMed DOI
Ohta R., Shio Y., Akiyama T., Yamada M., Harada K., Arisawa M. Ligand-free reductive coupling of aldehydes with 1,3-dienes using a sulfur-modified Au-supported nickel nanoparticle catalyst. New J. Chem. 2023;47:7694–7700. doi: 10.1039/D3NJ00354J. DOI
Zhao H., Caldora H.P., Turner O., Douglas J.J., Leonori D. A Desaturative Approach for Aromatic Aldehyde Synthesis via Synergistic Enamine, Photoredox and Cobalt Triple Catalysis. Angew. Chem. Int. Ed. 2022;61:e202201870. doi: 10.1002/anie.202201870. PubMed DOI PMC
Li C., Shin K., Liu R.Y., Buchwald S.L. Engaging Aldehydes in CuH-Catalyzed Reductive Coupling Reactions: Stereoselective Allylation with Unactivated 1,3-Diene Pronucleophiles. Angew. Chem. Int. Ed. 2019;58:17074–17080. doi: 10.1002/anie.201911008. PubMed DOI PMC
Poisson P.-A., Tran G., Besnard C., Mazet C. Nickel-Catalyzed Kumada Vinylation of Enol Phosphates: A Comparative Mechanistic Study. ACS Catal. 2021;11:15041–15050. doi: 10.1021/acscatal.1c04800. DOI
Fiorito D., Simon M., Thomas C.M., Mazet C. Access to Highly Stereodefined 1,4-cis-Polydienes by a [Ni/Mg] Orthogonal Tandem Catalytic Polymerization. J. Am. Chem. Soc. 2021;143:13401–13407. doi: 10.1021/jacs.1c06553. PubMed DOI
Desfeux C., Besnard C., Mazet C. [n]Dendralenes as a Platform for Selective Catalysis: Ligand-Controlled Cu-Catalyzed Chemo-, Regio-, and Enantioselective Borylations. Org. Lett. 2020;22:8181–8187. doi: 10.1021/acs.orglett.0c01892. PubMed DOI
Saglam M.F., Fallon T., Paddon-Row M.N., Sherburn M.S. Discovery and Computational Rationalization of Diminishing Alternation in [n]Dendralenes. J. Am. Chem. Soc. 2016;138:1022–1032. doi: 10.1021/jacs.5b11889. PubMed DOI
Xing T., Zhang Z., Da Y.-X., Quan Z.-J., Wang X.-C. Iron-Catalyzed Kumada Cross-Coupling Reactions of Pyrimidin-2-yl Phosphates: An Efficient Approach to C2-Functionalized Pyrimidines. Asian J. Org. Chem. 2015;4:538–544. doi: 10.1002/ajoc.201500044. DOI
Li Z., Liu L., Sun H.-m., Shen Q., Zhang Y. Alkyl Grignard cross-coupling of aryl phosphates catalyzed by new, highly active ionic iron(ii) complexes containing a phosphine ligand and an imidazolium cation. Dalton Trans. 2016;45:17739–17747. doi: 10.1039/C6DT02995G. PubMed DOI
Li Z., Lu B., Sun H., Shen Q., Zhang Y. Ionic iron(III) complexes bearing a dialkylbenzimidazolium cation: Efficient catalysts for magnesium-mediated cross-couplings of aryl phosphates with alkyl bromides. Appl. Organometal. Chem. 2017;31:e3671. doi: 10.1002/aoc.3671. DOI
Ren J.-A., Chen X., Gui C., Miao C., Chu X.-Q., Xu H., Zhou X., Ma M., Shen Z.-L. Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Phosphates with Aryl Bromides. Adv. Synth. Catal. 2023;365:2511–2515. doi: 10.1002/adsc.202300663. DOI
Cui M., Oestreich M. Synthesis of Silylated Cyclobutanone and Cyclobutene Derivatives Involving 1,4-Addition of Zinc-Based Silicon Nucleophiles. Chem. Eur. J. 2021;27:16103–16106. doi: 10.1002/chem.202102993. PubMed DOI PMC
Moinizadeh N., Klemme R., Kansy M., Zimmer R., Reissig H.-U. Convenient Syntheses of Enantiopure 1,2-Oxazin-4-yl Nonaflates and Phosphates and Their Palladium-Catalyzed Cross-Couplings. Synthesis. 2013;45:2752–2762. doi: 10.1002/chin.201408197. DOI
Huang Y., Chen J., Liu Y., Lu P. Synthesis of Dibenzo[a,e]cyclooctene-5,11(6H,12H)-diones via the Elusive Benzocyclobutenone Anion. Synthesis. 2021;53:4477–4483. doi: 10.1055/a-1545-7706. DOI
Kotek V., Dvořáková H., Tobrman T. Modular and Highly Stereoselective Approach to All-Carbon Tetrasubstituted Alkenes. Org. Lett. 2015;17:608–611. doi: 10.1021/ol503624v. PubMed DOI
You W., Li Y., Brown M.K. Stereoselective Synthesis of All-Carbon Tetrasubstituted Alkenes from In Situ Generated Ketenes and Organometallic Reagents. Org. Lett. 2013;15:1610–1613. doi: 10.1021/ol400392r. PubMed DOI
Wang C.-S., Tan P.S.L., Ding W., Ito S., Yoshikai N. Regio- and Stereoselective Synthesis of Enol Carboxylate, Phosphate, and Sulfonate Esters via Iodo(III)functionalization of Alkynes. Org. Lett. 2022;24:430–434. doi: 10.1021/acs.orglett.1c04123. PubMed DOI
Bauer A., Maulide N. A Stereoselective Reductive Hosomi–Sakurai Reaction. Org. Lett. 2018;20:1461–1464. doi: 10.1021/acs.orglett.8b00276. PubMed DOI
Meyer D., Renaud P. Enantioselective Hydroazidation of Trisubstituted Non-Activated Alkenes. Angew. Chem. Int. Ed. 2017;56:10858–10861. doi: 10.1002/anie.201703340. PubMed DOI
Simlandy A.K., Lyu M.-Y., Brown M.K. Catalytic Arylboration of Spirocyclic Cyclobutenes: Rapid Access to Highly Substituted Spiro[3.n]alkanes. ACS Catal. 2021;11:12815–12820. doi: 10.1021/acscatal.1c03491. PubMed DOI PMC
Mizuta S., Galicia-López O., Engle K.M., Verhoog S., Wheelhouse K., Rassias G., Gouverneur V. Trifluoromethylation of Allylsilanes under Copper Catalysis. Chem. Eur. J. 2012;18:8583–8587. doi: 10.1002/chem.201201707. PubMed DOI
Narita K., Fujisaki N., Sakuma Y., Katoh T. A novel approach to oxazole-containing diterpenoid synthesis from plant roots: Salviamines E and F. Org. Biomol. Chem. 2019;17:655–663. doi: 10.1039/C8OB03030H. PubMed DOI
Cahiez G., Guerret O., Moyeux A., Dufour S., Lefevre N. Eco-Friendly and Industrially Scalable Synthesis of the Sex Pheromone of Lobesia botrana. Important Progress for the Eco-Protection of Vineyard. Org. Process Res. Dev. 2017;21:1542–1546. doi: 10.1021/acs.oprd.7b00206. DOI
Ikoma A., Ogawa N., Kondo D., Kawada H., Kobayashi Y. Synthesis of (−)-Piperitylmagnolol Featuring ortho-Selective Deiodination and Pd-Catalyzed Allylation. Org. Lett. 2016;18:2074–2077. doi: 10.1021/acs.orglett.6b00706. PubMed DOI
Mizoguchi H., Oikawa H., Oguri H. Biogenetically inspired synthesis and skeletal diversification of indole alkaloids. Nat. Chem. 2014;6:57–64. doi: 10.1038/nchem.1798. PubMed DOI
Ogawa H., Yang Z.-K., Minami H., Kojima K., Saito T., Wang C., Uchiyama M. Revisitation of Organoaluminum Reagents Affords a Versatile Protocol for C–X (X = N, O, F) Bond-Cleavage Cross-Coupling: A Systematic Study. ACS Catal. 2017;7:3988–3994. doi: 10.1021/acscatal.7b01058. DOI
Nakatsuji H., Ashida Y., Hori H., Sato Y., Honda A., Taira M., Tanabe Y. (E)- and (Z)-stereodefined enol phosphonates derived from β-ketoesters: Stereocomplementary synthesis of fully-substituted α,β-unsaturated esters. Org. Biomol. Chem. 2015;13:8205–8210. doi: 10.1039/C5OB01097G. PubMed DOI
Zhang Y., Guo H., Wu Q., Bi X., Shi E., Xiao J. Stereoselective synthesis of (E)-α,β-unsaturated esters: Triethylamine-catalyzed allylic rearrangement of enol phosphates. RSC Adv. 2023;13:13511–13515. doi: 10.1039/D3RA02430J. PubMed DOI PMC
Kotek V., Polák P., Dvořáková H., Tobrman T. Aluminum Chloride Promoted Cross-Coupling of Trisubstituted Enol Phosphates with Organozinc Reagents En Route to the Stereoselective Synthesis of Tamoxifen and Its Analogues. Eur. J. Org. Chem. 2016;2016:5037–5044. doi: 10.1002/ejoc.201600959. DOI
Polák P., Tobrman T. The synthesis of polysubstituted indoles from 3-bromo-2-indolyl phosphates. Org. Biomol. Chem. 2017;15:6233–6241. doi: 10.1039/C7OB01127J. PubMed DOI
Polák P., Tobrman T. Novel Selective Approach to Terminally Substituted [n]Dendralenes. Eur. J. Org. Chem. 2019;2019:957–968. doi: 10.1002/ejoc.201801522. DOI
Koudelka J., Tobrman T. Synthesis of 2-Substituted Cyclobutanones by a Suzuki Reaction and Dephosphorylation Sequence. Eur. J. Org. Chem. 2021;2021:3260–3269. doi: 10.1002/ejoc.202100464. DOI
Edlová T., Dvořáková H., Eigner V., Tobrman T. Substrate-Controlled Regioselective Bromination of 1,2-Disubstituted Cyclobutenes: An Application in the Synthesis of 2,3-Disubstituted Cyclobutenones. J. Org. Chem. 2021;86:5820–5831. doi: 10.1021/acs.joc.1c00261. PubMed DOI
Čubiňák M., Bigeon J., Galář P., Ondič L., Tobrman T. The Synthesis of Tetrasubstituted Cycloalkenes Bearing π-Conjugated Substituents and Their Optical Properties. ChemistrySelect. 2021;6:9904–9910. doi: 10.1002/slct.202103122. DOI
Čubiňák M., Tobrman T. Room-Temperature Negishi Reaction of Trisubstituted Vinyl Phosphates for the Synthesis of Tetrasubstituted Alkenes. J. Org. Chem. 2020;85:10728–10739. doi: 10.1021/acs.joc.0c01254. PubMed DOI
Fihri A., Bouhrara M., Nekoueishahraki B., Basset J.-M., Polshettiwar V. Nanocatalysts for Suzuki cross-coupling reactions. Chem. Soc. Rev. 2011;40:5181–5203. doi: 10.1039/c1cs15079k. PubMed DOI
Heravi M.M., Hashemi E. Recent applications of the Suzuki reaction in total synthesis. Tetrahedron. 2012;68:9145–9178. doi: 10.1016/j.tet.2012.08.058. DOI
Maluenda I., Navarro O. Recent Developments in the Suzuki-Miyaura Reaction: 2010–2014. Molecules. 2015;20:7528–7557. doi: 10.3390/molecules20057528. PubMed DOI PMC
Paul S., Islam M.M., Islam S.M. Suzuki–Miyaura reaction by heterogeneously supported Pd in water: Recent studies. RSC Adv. 2015;5:42193–42221. doi: 10.1039/C4RA17308B. DOI
Rossi R., Bellina F., Lessi M. Selective Palladium-Catalyzed Suzuki–Miyaura Reactions of Polyhalogenated Heteroarenes. Adv. Synth. Catal. 2012;354:1181–1255. doi: 10.1002/adsc.201100942. DOI
Chen H., Huang Z., Hu X., Tang G., Xu P., Zhao Y., Cheng C.-H. Nickel-Catalyzed Cross-Coupling of Aryl Phosphates with Arylboronic Acids. J. Org. Chem. 2011;76:2338–2344. doi: 10.1021/jo2000034. PubMed DOI
Gigant N., Honraedt A., Gras E., Gillaizeau I. Efficient Cross-Coupling of Dioxazaborocanes with α-Phosphate Enamides. Eur. J. Org. Chem. 2014;2014:7889–7894. doi: 10.1002/ejoc.201402927. DOI
Senra J.D., Silva A.C., Santos R.V., Malta L.F.B., Simas A.B.C. Palladium on Layered Double Hydroxide: A Heterogeneous System for the Enol Phosphate Carbon-Oxygen Bond Activation in Aqueous Media. J. Chem. 2017;2017:8418939. doi: 10.1155/2017/8418939. DOI
Leidy M.R., Mason Hoffman J., Pongdee R. Preparation of C-arylglycals via Suzuki–Miyaura cross-coupling of dihydropyranylphosphates. Tetrahedron Lett. 2013;54:6889–6891. doi: 10.1016/j.tetlet.2013.10.031. PubMed DOI PMC
Mole J., Philip R.M., Anilkumar G. Nickel-catalyzed (hetero)aryl borylations: An update. ARKIVOC. 2022;2022:165–199. doi: 10.24820/ark.5550190.p011.707. DOI
Steven A. Micelle-Mediated Chemistry in Water for the Synthesis of Drug Candidates. Synthesis. 2019;51:2632–2647. doi: 10.1055/s-0037-1610714. DOI
Jin S., Dang H.T., Haug G.C., He R., Nguyen V.D., Nguyen V.T., Arman H.D., Schanze K.S., Larionov O.V. Visible Light-Induced Borylation of C–O, C–N, and C–X Bonds. J. Am. Chem. Soc. 2020;142:1603–1613. doi: 10.1021/jacs.9b12519. PubMed DOI PMC
Chen K., Cheung M.S., Lin Z., Li P. Metal-free borylation of electron-rich aryl (pseudo)halides under continuous-flow photolytic conditions. Org. Chem. Front. 2016;3:875–879. doi: 10.1039/C6QO00109B. DOI
Begliomini S., Sernissi L., Scarpi D., Occhiato E.G. A Short, Chemo-Enzymatic Synthesis of Both Enantiomers of trans-3-Hydroxy pipecolic Acid. Eur. J. Org. Chem. 2014;2014:5448–5455. doi: 10.1002/ejoc.201402258. DOI
Rey-Rodriguez R., Jestin G., Gandon V., Grelier G., Retailleau P., Darses B., Dauban P., Gillaizeau I. Intermolecular Rhodium(II)-Catalyzed Allylic C(sp3)–H Amination of Cyclic Enamides. Adv. Synth. Catal. 2018;360:513–518. doi: 10.1002/adsc.201701188. DOI
Adamson N.J., Park S., Zhou P., Nguyen A.L., Malcolmson S.J. Enantioselective Construction of Quaternary Stereogenic Centers by the Addition of an Acyl Anion Equivalent to 1,3-Dienes. Org. Lett. 2020;22:2032–2037. doi: 10.1021/acs.orglett.0c00412. PubMed DOI
Liu Z., Yu P., Dong L., Wang W., Duan S., Wang B., Gong X., Ye L., Wang H., Tian J. Discovery of the Next-Generation Pan-TRK Kinase Inhibitors for the Treatment of Cancer. J. Med. Chem. 2021;64:10286–10296. doi: 10.1021/acs.jmedchem.1c00712. PubMed DOI
Kurimoto Y., Nasu T., Fujii Y., Asano K., Matsubara S. Asymmetric Cycloetherification of in Situ Generated Cyanohydrins through the Concomitant Construction of Three Chiral Carbon Centers. Org. Lett. 2019;21:2156–2160. doi: 10.1021/acs.orglett.9b00462. PubMed DOI
Fuwa H., Muto T., Sekine K., Sasaki M. Total Synthesis and Structure Revision of Didemnaketal B. Chem. Eur. J. 2014;20:1848–1860. doi: 10.1002/chem.201303713. PubMed DOI
Fuwa H., Sakamoto K., Muto T., Sasaki M. Concise synthesis of the C15–C38 fragment of okadaic acid, a specific inhibitor of protein phosphatases 1 and 2A. Tetrahedron. 2015;71:6369–6383. doi: 10.1016/j.tet.2015.04.001. DOI
Sallio R., Lebrun S., Gigant N., Gillaizeau I., Deniau E. Asymmetric Synthesis of 2-Heteroaryl Cyclic Amines: Total Synthesis of (–)-Anabasine. Eur. J. Org. Chem. 2014;2014:4381–4388. doi: 10.1002/ejoc.201402202. DOI
Hu X.-H., Yang X.-F., Loh T.-P. Selective Alkenylation and Hydroalkenylation of Enol Phosphates through Direct C–H Functionalization. Angew. Chem. Int. Ed. 2015;54:15535–15539. doi: 10.1002/anie.201506437. PubMed DOI
Jeon W.H., Lee T.S., Kim E.J., Moon B., Kang J. Palladium(II)-catalyzed ortho-arylation via phosphate-group-directed C–H activation. Tetrahedron. 2013;69:5152–5159. doi: 10.1016/j.tet.2013.04.067. DOI
Chan L.Y., Cheong L., Kim S. Pd(II)-Catalyzed ortho-Arylation of Aryl Phosphates and Aryl Hydrogen Phosphates with Diaryliodonium Triflates. Org. Lett. 2013;15:2186–2189. doi: 10.1021/ol400732q. PubMed DOI
Moselage M., Sauermann N., Richter S.C., Ackermann L. C–H Alkenylations with Alkenyl Acetates, Phosphates, Carbonates, and Carbamates by Cobalt Catalysis at 23 °C. Angew. Chem. Int. Ed. 2015;54:6352–6355. doi: 10.1002/anie.201412319. PubMed DOI
Sauermann N., Loup J., Kootz D., Yatham V.R., Berkessel A., Ackermann L. Triazolylidene Ligands Allow Cobalt-Catalyzed C–H/C–O Alkenyl ations at Ambient Temperature. Synthesis. 2017;49:3476–3484. doi: 10.1055/s-0036-1590471. DOI
Grosheva D., Cramer N. Ketene Aminal Phosphates: Competent Substrates for Enantioselective Pd(0)-Catalyzed C–H Functionalizations. ACS Catal. 2017;7:7417–7420. doi: 10.1021/acscatal.7b02783. DOI
Lee P.-S., Xu W., Yoshikai N. Directed C–H Alkenylation of Aryl Imines with Alkenyl Phosphates Promoted by a Cobalt–N-Heterocyclic Carbene Catalyst. Adv. Synth. Catal. 2017;359:4340–4347. doi: 10.1002/adsc.201701105. DOI
Xu W., Yoshikai N. Cobalt-catalyzed directed C–H alkenylation of pivalophenone N–H imine with alkenyl phosphates. Beilstein J. Org. Chem. 2018;14:709–715. doi: 10.3762/bjoc.14.60. PubMed DOI PMC
Huang J.-H., Yang L.-M. Nickel-Catalyzed Amination of Aryl Phosphates through Cleaving Aryl C–O Bonds. Org. Lett. 2011;13:3750–3753. doi: 10.1021/ol201437g. PubMed DOI
Chen Z., Chen X., So C.M. Palladium-Catalyzed C(sp2)–N Bond Cross-Coupling with Triaryl Phosphates. J. Org. Chem. 2019;84:6366–6376. doi: 10.1021/acs.joc.9b00703. PubMed DOI
Chen X., Chen Z., So C.M. Exploration of Aryl Phosphates in Palladium-Catalyzed Mono-α-arylation of Aryl and Heteroaryl Ketones. J. Org. Chem. 2019;84:6337–6346. doi: 10.1021/acs.joc.9b00669. PubMed DOI
Wang Z.-C., Li Y.-Y., Zhang S.-Q., Hong X., Shi S.-L. Unsymmetric N-heterocyclic carbene ligand enabled nickel-catalysed arylation of bulky primary and secondary amines. Chem. Sci. 2023;14:4390–4396. doi: 10.1039/D3SC00492A. PubMed DOI PMC
Valiullina Z.R., Galeeva A.M., Gimalova F.A., Selezneva N.K., Khasanova L.S., Mavzyutov A.R., Miftakhov M.S. Synthesis and In Vitro Antibacterial Activity of New C-3-Modified Carbapenems. Russ. J. Bioorg. Chem. 2019;45:398–404. doi: 10.1134/S1068162019040125. DOI
Lee N., Tan C.-H., Leow D. Asymmetric Brook Rearrangement. Asian J. Org. Chem. 2019;8:25–31. doi: 10.1002/ajoc.201800585. DOI
Wang Z., Zhu C. Radical-mediated 1,2-Brook rearrangements. Chem Catal. 2021;1:250–252. doi: 10.1016/j.checat.2021.04.006. DOI
Zhang Y., Chen J.-J., Huang H.-M. Radical Brook Rearrangements: Concept and Recent Developments. Angew. Chem. Int. Ed. 2022;61:e202205671. doi: 10.1002/anie.202205671. PubMed DOI
Kondoh A., Aita K., Ishikawa S., Terada M. Synthesis of Tetrasubstituted Furans through One-Pot Formal [3 + 2] Cycloaddition Utilizing [1,2]-Phospha-Brook Rearrangement. Org. Lett. 2020;22:2105–2110. doi: 10.1021/acs.orglett.0c00619. PubMed DOI
Kondoh A., Ishikawa S., Aoki T., Terada M. Synthesis of 2,3-allenylamides utilizing [1,2]-phospha-Brook rearrangement and their application to gold-catalyzed cycloisomerization providing 2-aminofuran derivatives. Chem. Commun. 2016;52:12513–12516. doi: 10.1039/C6CC06591K. PubMed DOI
Kondoh A., Iino A., Ishikawa S., Aoki T., Terada M. Efficient Synthesis of Polysubstituted Pyrroles Based on [3+2] Cycloaddition Strategy Utilizing [1,2]-Phospha-Brook Rearrangement under Brønsted Base Catalysis. Chem. Eur. J. 2018;24:15246–15253. doi: 10.1002/chem.201803809. PubMed DOI
Kondoh A., Aoki T., Terada M. Synthesis of Phenanthrene Derivatives by Intramolecular Cyclization Utilizing the [1,2]-Phospha-Brook Rearrangement Catalyzed by a Brønsted Base. Chem. Eur. J. 2015;21:12577–12580. doi: 10.1002/chem.201501377. PubMed DOI
Kondoh A., Koda K., Kamata Y., Terada M. Synthesis of Indolizine Derivatives Utilizing [1,2]-Phospha-Brook Rearrangement/Cycloisomerization Sequence. Chem. Lett. 2017;46:1020–1023. doi: 10.1246/cl.170377. DOI
Kondoh A., Ojima R., Terada M. Formal Fluorinative Ring Opening of 2-Benzoylpyrrolidines Utilizing [1,2]-Phospha-Brook Rearrangement for Synthesis of 2-Aryl-3-fluoropiperidines. Org. Lett. 2021;23:7894–7899. doi: 10.1021/acs.orglett.1c02907. PubMed DOI
Kondoh A., Takei A., Terada M. Novel Methodology for the Efficient Synthesis of 3-Aryloxindoles: [1,2]-Phospha-Brook Rearrangement–Palladium-Catalyzed Cross-Coupling Sequence. Synlett. 2016;27:1848–1853. doi: 10.1002/chin.201649124. DOI
Kondoh A., Terada M. Synthesis of 2,2-Disubstituted 2H-Chromenes through Carbon-Carbon Bond Formation Utilizing a [1,2]-Phospha-Brook Rearrangement under Brønsted Base Catalysis. Chem. Eur. J. 2022;28:e202201198. doi: 10.1002/chem.202201198. PubMed DOI
Kondoh A., Aoki T., Terada M. Intramolecular Cyclization of Alkynyl α-Ketoanilide Utilizing [1,2]-Phospha-Brook Rearrangement Catalyzed by Phosphazene Base. Org. Lett. 2014;16:3528–3531. doi: 10.1021/ol501479t. PubMed DOI
Kondoh A., Aoki T., Terada M. Generation and Application of Homoenolate Equivalents Utilizing [1,2]-Phospha-Brook Rearrangement under Brønsted Base Catalysis. Chem. Eur. J. 2017;23:2769–2773. doi: 10.1002/chem.201605673. PubMed DOI
Kondoh A., Aoki T., Terada M. Organocatalytic Arylation of α-Ketoesters Based on Umpolung Strategy: Phosphazene-Catalyzed SNAr Reaction Utilizing [1,2]-Phospha-Brook Rearrangement. Chem. Eur. J. 2018;24:13110–13113. doi: 10.1002/chem.201803218. PubMed DOI
Kondoh A., Hirozane T., Terada M. Formal Umpolung Addition of Phosphites to 2-Azaaryl Ketones under Chiral Brønsted Base Catalysis: Enantioselective Protonation Utilizing [1,2]-Phospha-Brook Rearrangement. Chem. Eur. J. 2022;28:e202201240. doi: 10.1002/chem.202201240. PubMed DOI
Kondoh A., Ozawa R., Aoki T., Terada M. Intramolecular addition of benzyl anion to alkyne utilizing [1,2]-phospha-Brook rearrangement under Brønsted base catalysis. Org. Biomol. Chem. 2017;15:7277–7281. doi: 10.1039/C7OB02059G. PubMed DOI
Kondoh A., Tasato N., Aoki T., Terada M. Brønsted Base-Catalyzed Transformation of α,β-Epoxyketones Utilizing [1,2]-Phospha-Brook Rearrangement for the Synthesis of Allylic Alcohols Having a Tetrasubstituted Alkene Moiety. Org. Lett. 2020;22:5170–5175. doi: 10.1021/acs.orglett.0c01765. PubMed DOI
Kondoh A., Terada M. Brønsted base-catalyzed α-oxygenation of carbonyl compounds utilizing the [1,2]-phospha-Brook rearrangement. Org. Chem. Front. 2015;2:801–805. doi: 10.1039/C5QO00108K. DOI
Ranga S., Chakravarty M., Chatterjee T., Ghosal S. Mechanistic insights into n-BuLi mediated phospha-Brook rearrangement. New J. Chem. 2019;43:9886–9890. doi: 10.1039/C9NJ01867K. DOI
Tan Q., Guo N., Yang L., Wang F., Feng X., Liu X. Asymmetric Organocatalytic 1,6-Conjugate Addition of para-Quinone Methides Using [1,2]-Phospha-Brook Rearrangement. J. Org. Chem. 2023;88:9332–9342. doi: 10.1021/acs.joc.3c00910. PubMed DOI
Verma R.S., Pandey C.B., Kumar S., Tiwari B. Carbene-Catalyzed Tandem [1,2]-Phospha-Brook/[1,4]-Phosphate Rearrangement: Access to α-Ketophosphates via Controlled Cross-Acyloin Condensation. J. Org. Chem. 2018;83:9478–9483. doi: 10.1021/acs.joc.8b01172. PubMed DOI
Yamamoto Y., Ishida Y., Takamizu Y., Yasui T. Synthesis of (Difluoromethyl)cycloalkenes from 2-Cycloalkenones by Utilizing Phospha-Brook Rearrangement. Adv. Synth. Catal. 2019;361:3739–3743. doi: 10.1002/adsc.201900469. DOI
Cheibas C., Fincias N., Casaretto N., Garrec J., El Kaïm L. Passerini–Smiles Reaction of α-Ketophosphonates: Platform for Phospha-Brook/Smiles Embedded Cascades. Angew. Chem. Int. Ed. 2022;61:e202116249. doi: 10.1002/anie.202116249. PubMed DOI
Kaur R., Singh R.P. Stereoselective Reductive Coupling Reactions Utilizing [1,2]-Phospha-Brook Rearrangement: A Powerful Umpolung Approach. J. Org. Chem. 2023;88:10325–10338. doi: 10.1021/acs.joc.3c01055. PubMed DOI
Zhang X., Li Y., Miao Z. Research Progress in [1,2]-Phospha-Brook Rearrangement Reaction. Univ. Chem. 2021;36:2008082. doi: 10.3866/PKU.DXHX202008082. DOI
Melvin L.S. An efficient synthesis of 2-hydroxyphenylphosphonates. Tetrahedron Lett. 1981;22:3375–3376. doi: 10.1016/S0040-4039(01)81909-2. DOI
Delgado Rosario E., Rectenwald M.F., Gaffen J.R., Rheingold A.L., Protasiewicz J.D. Organophosphorus decorated lithium borate and phosphate salts with extended π-conjugated backbone. Dalton Trans. 2021;50:6667–6672. doi: 10.1039/D1DT00601K. PubMed DOI
Placidi M.P., Botta M., Kálmán F.K., Hagberg G.E., Baranyai Z., Krenzer A., Rogerson A.K., Tóth I., Logothetis N.K., Angelovski G. Aryl-Phosphonate Lanthanide Complexes and Their Fluorinated Derivatives: Investigation of Their Unusual Relaxometric Behavior and Potential Application as Dual Frequency 1H/19F MRI Probes. Chem. Eur. J. 2013;19:11644–11660. doi: 10.1002/chem.201300763. PubMed DOI
Kudryavtsev I.Y., Baulina T.Y.V., Pasechnik M.P., Matveev S.V., Matveeva A.G. Synthesis and Coordination Properties of Tripodal Ligand on the Triphenylphosphine Oxide Platform with Carbamoyl Side Arms. Phosphorus Sulfur Silicon Relat. Elem. 2014;189:946–962. doi: 10.1080/10426507.2014.904865. DOI
Kudryavtsev I.Y., Bykhovskaya O.V., Matveeva A.G., Baulina T.V., Pasechnik M.P., Matveev S.V., Vologzhanina A.V., Turanov A.N., Karandashev V.K., Brel V.K. New tripodal ligand on the triphenylphosphine oxide platform with 1,2,3-triazole side arms: Synthesis, structure, coordination, and extraction properties. Monatsh. Chem. 2020;151:1705–1713. doi: 10.1007/s00706-020-02702-6. DOI
Alessi M., Patel J.J., Zumbansen K., Snieckus V. The Tetraethylphosphorodiamidate (OP(O)(NEt2)2) Directed Metalation Group (DMG). Directed ortho and Lateral Metalation and the Phospha Anionic Fries Rearrangement. Org. Lett. 2020;22:2147–2151. doi: 10.1021/acs.orglett.0c00094. PubMed DOI
Patel J.J., Blackburn T., Alessi M., Sawinski H., Snieckus V. Tetraethylphosphorodiamidate-Directed Metalation Group: Directed Ortho and Remote Metalation, Cross Coupling, and Remote Phospha Anionic Fries Rearrangement Reactions. Org. Lett. 2020;22:3860–3864. doi: 10.1021/acs.orglett.0c01123. PubMed DOI
Taylor C., Watson A. The Anionic Phospho-Fries Rearrangement. Curr. Org. Chem. 2004;8:623–636. doi: 10.2174/1385272043370717. DOI
Wu S., Deligonal N., Protasiewicz J.D. An unusually unstable ortho-phosphinophenol and its use to prepare benzoxaphospholes having enhanced air-stability. Dalton Trans. 2013;42:14866–14874. doi: 10.1039/c3dt51919h. PubMed DOI
Xiong B., Li M., Liu Y., Zhou Y., Zhao C., Goto M., Yin S.-F., Han L.-B. Stereoselective Synthesis of Phosphoryl-Substituted Phenols. Adv. Synth. Catal. 2014;356:781–794. doi: 10.1002/adsc.201300913. DOI
Korb M., Schaarschmidt D., Lang H. Anionic Phospho-Fries Rearrangement at Ferrocene: One-Pot Approach to P,O-Substituted Ferrocenes. Organometallics. 2014;33:2099–2108. doi: 10.1021/om5002827. DOI
Herd O., Heßler A., Hingst M., Tepper M., Stelzer O. Water soluble phosphines VII. Palladium-catalyzed P–C cross coupling reactions between primary or secondary phosphines and functional aryliodides—A novel synthetic route to water soluble phosphines. J. Organomet. Chem. 1996;522:69–76. doi: 10.1016/0022-328X(96)06136-0. DOI
Korb M., Lang H. Planar Chirality from the Chiral Pool: Diastereoselective Anionic Phospho-Fries Rearrangements at Ferrocene. Organometallics. 2014;33:6643–6659. doi: 10.1021/om500953c. DOI
Korb M., Lehrich S.W., Lang H. Reactivity of Ferrocenyl Phosphates Bearing (Hetero-)Aromatics and [3]Ferrocenophanes toward Anionic Phospho-Fries Rearrangements. J. Org. Chem. 2017;82:3102–3124. doi: 10.1021/acs.joc.7b00030. PubMed DOI
Kakimoto N., Ogura Y., Watanabe H., Takikawa H. Total synthesis of both enantiomers of clavigerins B and C. Tetrahedron. 2020;76:131297. doi: 10.1016/j.tet.2020.131297. DOI
Wang Y., Ju W., Tian H., Sun S., Li X., Tian W., Gui J. Facile Access to Bridged Ring Systems via Point-to-Planar Chirality Transfer: Unified Synthesis of Ten Cyclocitrinols. J. Am. Chem. Soc. 2019;141:5021–5033. doi: 10.1021/jacs.9b00925. PubMed DOI
Wang Y., Ju W., Tian H., Tian W., Gui J. Scalable Synthesis of Cyclocitrinol. J. Am. Chem. Soc. 2018;140:9413–9416. doi: 10.1021/jacs.8b06444. PubMed DOI
Kaabi A., Besbes R. Amino Phosphate Monoesters: A Convenient Source of 2-Alkylamino-3-methoxy-3-phenylpropionates via Aziridinium Ions. Synth. Commun. 2013;43:1587–1593. doi: 10.1080/00397911.2011.653703. DOI
Shinohara R., Kawashima H., Ogawa N., Kobayashi Y. Substitution of Secondary Benzylic Phosphates with Diarylmethyl Anions. Tetrahedron. 2019;75:2717–2725. doi: 10.1016/j.tet.2019.03.050. DOI
Shinohara R., Ogawa N., Kawashima H., Wada K., Saito S., Yamazaki T., Kobayashi Y. SN2 Reaction of Diarylmethyl Anions at Secondary Alkyl and Cycloalkyl Carbons. Eur. J. Org. Chem. 2019;2019:1461–1478. doi: 10.1002/ejoc.201801596. DOI
Pallikonda G., Chakravarty M. Benzylic Phosphates in Friedel–Crafts Reactions with Activated and Unactivated Arenes: Access to Polyarylated Alkanes. J. Org. Chem. 2016;81:2135–2142. doi: 10.1021/acs.joc.5b02441. PubMed DOI
Yamamoto Y., Sakai M., Ishida Y., Yasui T. Synthesis of 1-(Difluoromethyl)alk-1-enes via Palladium-Catalyzed SN2′-Type Substitution Reaction of Difluoromethylated Allylic Phosphates with 1,3-Dicarbonyl Compounds and Imides. J. Org. Chem. 2021;86:1053–1064. doi: 10.1021/acs.joc.0c02538. PubMed DOI
Yamamoto Y., Takase T., Kuroyanagi E., Yasui T. Synthesis of difluoromethylated diarylmethanes via Fe(OTf)3-catalyzed Friedel–Crafts reaction of 2,2-difluoro-1-arylethyl phosphates. Chem. Commun. 2021;57:3877–3880. doi: 10.1039/D1CC00765C. PubMed DOI
Shintani R., Ohzono A., Shirota K. Phosphinative cyclopropanation of allyl phosphates with lithium phosphides. Chem. Commun. 2020;56:11851–11854. doi: 10.1039/D0CC04854B. PubMed DOI
Levi S.M., Li Q., Rötheli A.R., Jacobsen E.N. Catalytic activation of glycosyl phosphates for stereoselective coupling reactions. Proc. Natl. Acad. Sci. USA. 2019;116:35–39. doi: 10.1073/pnas.1811186116. PubMed DOI PMC
Li Q., Levi S.M., Jacobsen E.N. Highly Selective β-Mannosylations and β-Rhamnosylations Catalyzed by Bis-thiourea. J. Am. Chem. Soc. 2020;142:11865–11872. doi: 10.1021/jacs.0c04255. PubMed DOI PMC
Li Y., Jie J., Li H., Yang H., Fu H. Synthesis of Spirotetrahydrofuran Oxindoles via Palladium-Catalyzed [4 + 1] Cycloaddition of Diphenyl 2-Oxoindolin-3-yl Phosphates and 2-Methylidenetrimethylene Carbonate. Org. Lett. 2021;23:6499–6503. doi: 10.1021/acs.orglett.1c02306. PubMed DOI
Chen Q., Teng Y., Xu F. Lanthanide Silylamide-Catalyzed Synthesis of Pyrano[2,3-b]indol-2-ones. Org. Lett. 2021;23:4785–4790. doi: 10.1021/acs.orglett.1c01506. PubMed DOI
Rokade B.V., Guiry P.J. Synthesis of α-Aryl Oxindoles by Friedel–Crafts Alkylation of Arenes. J. Org. Chem. 2020;85:6172–6180. doi: 10.1021/acs.joc.0c00370. PubMed DOI
Xing T., Wei K.-J., Quan Z.-J., Wang X.-C. Nucleophilic Substitution Reaction of Pyrimidin-2-yl Phosphates Using Amines and Thiols as Nucleophiles Mediated by PEG-400 as an Environmentally Friendly Solvent. Synthesis. 2015;47:3925–3935. doi: 10.1002/chin.201618164. DOI
Butt N.A., Zhang W. Transition metal-catalyzed allylic substitution reactions with unactivated allylic substrates. Chem. Soc. Rev. 2015;44:7929–7967. doi: 10.1039/C5CS00144G. PubMed DOI
Mohammadkhani L., Heravi M.M. Applications of Transition-Metal-Catalyzed Asymmetric Allylic Substitution in Total Synthesis of Natural Products: An Update. Chem. Rec. 2021;21:29–68. doi: 10.1002/tcr.202000086. PubMed DOI
Oliver S., Evans P.A. Transition-Metal-Catalyzed Allylic Substitution Reactions: Stereoselective Construction of α- and β-Substituted Carbonyl Compounds. Synthesis. 2013;45:3179–3198. doi: 10.1002/chin.201410252. DOI
Qu J., Helmchen G. Applications of Iridium-Catalyzed Asymmetric Allylic Substitution Reactions in Target-Oriented Synthesis. Acc. Chem. Res. 2017;50:2539–2555. doi: 10.1021/acs.accounts.7b00300. PubMed DOI
Sundararaju B., Achard M., Bruneau C. Transition metal catalyzed nucleophilic allylic substitution: Activation of allylic alcohols via π-allylic species. Chem. Soc. Rev. 2012;41:4467–4483. doi: 10.1039/c2cs35024f. PubMed DOI
Gao F., Carr J.L., Hoveyda A.H. A Broadly Applicable NHC–Cu-Catalyzed Approach for Efficient, Site-, and Enantioselective Coupling of Readily Accessible (Pinacolato)alkenylboron Compounds to Allylic Phosphates and Applications to Natural Product Synthesis. J. Am. Chem. Soc. 2014;136:2149–2161. doi: 10.1021/ja4126565. PubMed DOI PMC
Lee J., Torker S., Hoveyda A.H. Versatile Homoallylic Boronates by Chemo-, SN2′-, Diastereo- and Enantioselective Catalytic Sequence of Cu−H Addition to Vinyl-B(pin)/Allylic Substitution. Angew. Chem. Int. Ed. 2017;56:821–826. doi: 10.1002/anie.201611444. PubMed DOI PMC
Zhou Y., Shi Y., Torker S., Hoveyda A.H. SN2″-Selective and Enantioselective Substitution with Unsaturated Organoboron Compounds and Catalyzed by a Sulfonate-Containing NHC-Cu Complex. J. Am. Chem. Soc. 2018;140:16842–16854. doi: 10.1021/jacs.8b10885. PubMed DOI
Shi Y., Jung B., Torker S., Hoveyda A.H. N-Heterocyclic Carbene–Copper-Catalyzed Group-, Site-, and Enantioselective Allylic Substitution with a Readily Accessible Propargyl(pinacolato)boron Reagent: Utility in Stereoselective Synthesis and Mechanistic Attributes. J. Am. Chem. Soc. 2015;137:8948–8964. doi: 10.1021/jacs.5b05805. PubMed DOI
Zhang Z.-Q., Zhang B., Lu X., Liu J.-H., Lu X.-Y., Xiao B., Fu Y. Copper-Catalyzed SN2′-Selective Allylic Substitution Reaction of gem-Diborylalkanes. Org. Lett. 2016;18:952–955. doi: 10.1021/acs.orglett.5b03692. PubMed DOI
Shi Y., Hoveyda A.H. Catalytic SN2′- and Enantioselective Allylic Substitution with a Diborylmethane Reagent and Application in Synthesis. Angew. Chem. Int. Ed. 2016;55:3455–3458. doi: 10.1002/anie.201600309. PubMed DOI PMC
Wu F., Li Z., Fu C., Wang G., Zheng C., Wu X. Synergistic Ni/Pd Catalysis for Asymmetric Allylic Alkylation of 2-Acyl Imidazoles. Org. Lett. 2023;25:5448–5453. doi: 10.1021/acs.orglett.3c01726. PubMed DOI
Jacques R., Pullin R.D.C., Fletcher S.P. Desymmetrization of meso-bisphosphates using copper catalysis and alkylzirconocene nucleophiles. Nat. Commun. 2019;10:21. doi: 10.1038/s41467-018-07871-x. PubMed DOI PMC
Wang S., Zhang Q., Niu J., Guo X., Xiong T., Zhang Q. Copper-Catalyzed Asymmetric Hydroallylation of Vinylsilanes. Eur. J. Org. Chem. 2022;2022:e202101575. doi: 10.1002/ejoc.202101575. DOI
Wang Y.-M., Buchwald S.L. Enantioselective CuH-Catalyzed Hydroallylation of Vinylarenes. J. Am. Chem. Soc. 2016;138:5024–5027. doi: 10.1021/jacs.6b02527. PubMed DOI PMC
Yurino T., Tani R., Ohkuma T. Pd-Catalyzed Allylic Isocyanation: Nucleophilic N-Terminus Substitution of Ambident Cyanide. ACS Catal. 2019;9:4434–4440. doi: 10.1021/acscatal.9b00858. DOI
Yurino T., Tange Y., Ohkuma T. Palladium-Catalyzed Nucleophilic Isocyanation for the Synthesis of α-Aryl-α-Isocyanoacetoamide Derivatives. Bull. Chem. Soc. Jpn. 2021;94:2155–2161. doi: 10.1246/bcsj.20210214. DOI
Yurino T., Tange Y., Tani R., Ohkuma T. Ag2O-catalysed nucleophilic isocyanation: Selective formation of less-stable benzylic isonitriles. Org. Chem. Front. 2020;7:1308–1313. doi: 10.1039/D0QO00336K. DOI
Takise R., Itami K., Yamaguchi J. Cyanation of Phenol Derivatives with Aminoacetonitriles by Nickel Catalysis. Org. Lett. 2016;18:4428–4431. doi: 10.1021/acs.orglett.6b02265. PubMed DOI
Li X.-H., Zheng B.-H., Ding C.-H., Hou X.-L. Enantioselective Synthesis of 2,3-Disubstituted Indanones via Pd-Catalyzed Intramolecular Asymmetric Allylic Alkylation of Ketones. Org. Lett. 2013;15:6086–6089. doi: 10.1021/ol402980v. PubMed DOI
Spoehrle S.S.M., West T.H., Taylor J.E., Slawin A.M.Z., Smith A.D. Tandem Palladium and Isothiourea Relay Catalysis: Enantioselective Synthesis of α-Amino Acid Derivatives via Allylic Amination and [2,3]-Sigmatropic Rearrangement. J. Am. Chem. Soc. 2017;139:11895–11902. doi: 10.1021/jacs.7b05619. PubMed DOI PMC
Trost B.M., Zhang G., Xu M., Qi X. ProPhenol Derived Ligands to Simultaneously Coordinate a Main-Group Metal and a Transition Metal: Application to a Zn−Cu Catalyzed Reaction. Chem. Eur. J. 2022;28:e202104268. doi: 10.1002/chem.202104268. PubMed DOI
Zhang P., Xu J., Gao Y., Li X., Tang G., Zhao Y. Synthesis of Diarylmethanes through Palladium-Catalyzed Coupling of Benzylic Phosphates with Arylsilanes. Synlett. 2014;25:2928–2932. doi: 10.1002/chin.201520096. DOI
Zhang Y., Raugh N., Koert U. Fluorotrifluoromethyl Group Installation: Tetrasubstituted Tertiary Stereocenters Containing C–F and C–CF3 Bonds via Copper-Mediated Allylic Substitution. Org. Lett. 2023;25:5641–5645. doi: 10.1021/acs.orglett.3c02032. PubMed DOI
Okumura M., Sarlah D. Arenophile-Mediated Dearomative Functionalization Strategies. Synlett. 2018;29:845–855. doi: 10.1055/s-0036-1591940. DOI
Petrenko A., Mrkobrada S., Tobrman T. State-or-the-Art Approaches to the Synthesis of 2H-Pyrroles. Targets Heterocycl. Syst. 2021;25:308–325. doi: 10.17374/targets.2022.25.308. DOI
Polák P., Tobrman T. Dearomatization Strategy for the Synthesis of Arylated 2H-Pyrroles and 2,3,5-Trisubstituted 1H-Pyrroles. Org. Lett. 2017;19:4608–4611. doi: 10.1021/acs.orglett.7b02219. PubMed DOI
Huang G., Yin B. Recent Developments in Transition Metal-Catalyzed Dearomative Cyclizations of Indoles as Dipolarophiles for the Construction of Indolines. Adv. Synth. Catal. 2019;361:405–425. doi: 10.1002/adsc.201800789. DOI
Komatsuda M., Muto K., Yamaguchi J. Pd-Catalyzed Dearomative Allylation of Benzyl Phosphates. Org. Lett. 2018;20:4354–4357. doi: 10.1021/acs.orglett.8b01807. PubMed DOI
Yanagimoto A., Komatsuda M., Muto K., Yamaguchi J. Dearomative Allylation of Naphthyl Cyanohydrins by Palladium Catalysis: Catalyst-Enhanced Site Selectivity. Org. Lett. 2020;22:3423–3427. doi: 10.1021/acs.orglett.0c00897. PubMed DOI
Trost B.M., Czabaniuk L.C. Palladium-Catalyzed Asymmetric Benzylation of Azlactones. Chem. Eur. J. 2013;19:15210–15218. doi: 10.1002/chem.201302390. PubMed DOI
Schwarz K.J., Yang C., Fyfe J.W.B., Snaddon T.N. Enantioselective α-Benzylation of Acyclic Esters Using π-Extended Electrophiles. Angew. Chem. Int. Ed. 2018;57:12102–12105. doi: 10.1002/anie.201806742. PubMed DOI PMC
Nagahara T., Yokoyama Y., Inamura K., Katakura S.-i., Komoriya S., Yamaguchi H., Hara T., Iwamoto M. Dibasic (Amidinoaryl)propanoic Acid Derivatives as Novel Blood Coagulation Factor Xa Inhibitors. J. Med. Chem. 1994;37:1200–1207. doi: 10.1021/jm00034a018. PubMed DOI
Miura H., Toyomasu T., Nishio H., Shishido T. Gold-catalyzed thioetherification of allyl, benzyl, and propargyl phosphates. Catal. Sci. Technol. 2022;12:1109–1116. doi: 10.1039/D1CY02085D. DOI
Zhang K., Provot O., Alami M., Tran C., Hamze A. Pd-Catalyzed Coupling of N-Tosylhydrazones with Benzylic Phosphates: Toward the Synthesis of Di- or Tri-Substituted Alkenes. J. Org. Chem. 2022;87:1249–1261. doi: 10.1021/acs.joc.1c02580. PubMed DOI
Sharpless K.B., Amberg W., Bennani Y.L., Crispino G.A., Hartung J., Jeong K.S., Kwong H.L., Morikawa K., Wang Z.M. The osmium-catalyzed asymmetric dihydroxylation: A new ligand class and a process improvement. J. Org. Chem. 1992;57:2768–2771. doi: 10.1021/jo00036a003. DOI
Krawczyk E., Mielniczak G., Owsianik K., Łuczak J. Asymmetric oxidation of enol phosphates to α-hydroxy ketones using Sharpless reagents and a fructose derived dioxirane. Tetrahedron Asymmetry. 2012;23:1480–1489. doi: 10.1016/j.tetasy.2012.09.012. DOI
Owsianik K., Krawczyk E., Mielniczak G., Koprowski M., Sieroń L. Three-step synthesis of chiral and sterically hindered amino alcohols based on cyclic enol phosphates. Tetrahedron. 2018;74:7343–7350. doi: 10.1016/j.tet.2018.10.072. DOI
Krawczyk E., Koprowski M., Mielniczak G., Owsianik K. Asymmetric synthesis of 5,7-O-dimethyleucomols via enantioselective oxidation of enol phosphates. Tetrahedron Asymmetry. 2015;26:876–883. doi: 10.1016/j.tetasy.2015.06.015. DOI
Bulman Page P.C., Almutairi S.M., Chan Y., Stephenson G.R., Gama Y., Goodyear R.L., Douteau A., Allin S.M., Jones G.A. Asymmetric Oxidation of Enol Derivatives to α-Alkoxy Carbonyls Using Iminium Salt Catalysts: A Synthetic and Computational Study. J. Org. Chem. 2019;84:544–559. doi: 10.1021/acs.joc.8b02354. PubMed DOI
Wang H., Lu Q., Qian C., Liu C., Liu W., Chen K., Lei A. Solvent-Enabled Radical Selectivities: Controlled Syntheses of Sulfoxides and Sulfides. Angew. Chem. Int. Ed. 2016;55:1094–1097. doi: 10.1002/anie.201508729. PubMed DOI
Wang H., Wang G., Lu Q., Chiang C.-W., Peng P., Zhou J., Lei A. Catalyst-Free Difunctionalization of Activated Alkenes in Water: Efficient Synthesis of β-Keto Sulfides and Sulfones. Chem. Eur. J. 2016;22:14489–14493. doi: 10.1002/chem.201603041. PubMed DOI
Liu L., Li Y., Wang F., Ning R., Kong D., Wu M. A new synthetic approach to oxindoles (1,3-dihydro-2H-indol-2-ones) by reductive dephosphorylation with hydroiodic acid of 3-(diethylphosphoryloxy)- oxindoles, derived from isatins (1H-Indole-2,3-diones) ARKIVOC. 2022;2022:135–146. doi: 10.24820/ark.5550190.p011.766. DOI
Chowdhury S., Standaert R.F. Deoxygenation of Unhindered Alcohols via Reductive Dealkylation of Derived Phosphate Esters. J. Org. Chem. 2016;81:9957–9963. doi: 10.1021/acs.joc.6b01699. PubMed DOI
Wang H., Wang Z., Zhao G., Ramadoss V., Tian L., Wang Y. Electrochemical Deoxygenative Barbier-Type Reaction. Org. Lett. 2022;24:3668–3673. doi: 10.1021/acs.orglett.2c01286. PubMed DOI
Tomkiel A.M., Siergiejczyk L., Naróg D., Płoszyńska J., Sobkowiak A., Morzycki J.W. Electrochemical cholesterylation of sugars with cholesteryl diphenylphosphate. Steroids. 2017;117:44–51. doi: 10.1016/j.steroids.2016.05.011. PubMed DOI
Trisubstituted Alkenes as Valuable Building Blocks