Organophosphates as Versatile Substrates in Organic Synthesis

. 2024 Apr 02 ; 29 (7) : . [epub] 20240402

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38611872

This review summarizes the applications of organophosphates in organic synthesis. After a brief introduction, it discusses cross-coupling reactions, including both transition-metal-catalyzed and transition-metal-free substitution reactions. Subsequently, oxidation and reduction reactions are described. In addition, this review highlights the applications of organophosphates in the synthesis of natural compounds, demonstrating their versatility and importance in modern synthetic chemistry.

Zobrazit více v PubMed

Lorke D.E., Petroianu G.A. Reversible cholinesterase inhibitors as pretreatment for exposure to organophosphates. A review. J. Appl. Toxicol. 2019;39:101–116. doi: 10.1002/jat.3662. PubMed DOI

Beynon K.I., Hutson D.H., Wright A.N. The Metabolism and Degradation of Vinyl Phosphate Insecticides. Springer; New York, NY, USA: 1973. pp. 55–142. PubMed

Lorke D.E., Petroianu G.A. Minireview: Does in-vitro testing of oximes help predict their in-vivo action after paraoxon exposure? J. Appl. Toxicol. 2009;29:459–469. doi: 10.1002/jat.1457. PubMed DOI

Kaonga C.C., Chidya R.C.G., Kosamu I.B.M., Abdel-dayem S.M., Mapoma H.W.T., Thole B., Mbewe R., Sakugawa H. Trends in usage of selected fungicides in Japan between 1962 and 2014: A review. Int. J. Environ. Sci. Technol. 2018;15:1801–1814. doi: 10.1007/s13762-017-1565-y. DOI

Cui X., Li W., Ryabchuk P., Junge K., Beller M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 2018;1:385–397. doi: 10.1038/s41929-018-0090-9. DOI

Mukherjee A., Milstein D. Homogeneous Catalysis by Cobalt and Manganese Pincer Complexes. ACS Catal. 2018;8:11435–11469. doi: 10.1021/acscatal.8b02869. DOI

Sordakis K., Tang C., Vogt L.K., Junge H., Dyson P.J., Beller M., Laurenczy G. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols. Chem. Rev. 2018;118:372–433. doi: 10.1021/acs.chemrev.7b00182. PubMed DOI

Atobe M. Organic electrosynthesis in flow microreactor. Curr. Opin. Electrochem. 2017;2:1–6. doi: 10.1016/j.coelec.2016.12.002. DOI

Cardoso D.S.P., Šljukić B., Santos D.M.F., Sequeira C.A.C. Organic Electrosynthesis: From Laboratorial Practice to Industrial Applications. Org. Proc. Res. Dev. 2017;21:1213–1226. doi: 10.1021/acs.oprd.7b00004. DOI

Marken F., Cresswell A.J., Bull S.D. Recent Advances in Paired Electrosynthesis. Chem. Rec. 2021;21:2585–2600. doi: 10.1002/tcr.202100047. PubMed DOI

Siu J.C., Fu N., Lin S. Catalyzing Electrosynthesis: A Homogeneous Electrocatalytic Approach to Reaction Discovery. Acc. Chem. Res. 2020;53:547–560. doi: 10.1021/acs.accounts.9b00529. PubMed DOI PMC

Yuan Y., Lei A. Is electrosynthesis always green and advantageous compared to traditional methods? Nat. Commun. 2020;11:802. doi: 10.1038/s41467-020-14322-z. PubMed DOI PMC

Fang Y., Zheng Y., Fang T., Chen Y., Zhu Y., Liang Q., Sheng H., Li Z., Chen C., Wang X. Photocatalysis: An overview of recent developments and technological advancements. Sci. China Chem. 2020;63:149–181. doi: 10.1007/s11426-019-9655-0. DOI

Gisbertz S., Pieber B. Heterogeneous Photocatalysis in Organic Synthesis. ChemPhotoChem. 2020;4:456–475. doi: 10.1002/cptc.202000014. DOI

Melchionna M., Fornasiero P. Updates on the Roadmap for Photocatalysis. ACS Catal. 2020;10:5493–5501. doi: 10.1021/acscatal.0c01204. DOI

Johansson Seechurn C.C.C., Kitching M.O., Colacot T.J., Snieckus V. Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 2012;51:5062–5085. doi: 10.1002/anie.201107017. PubMed DOI

Knappke C.E.I., Grupe S., Gärtner D., Corpet M., Gosmini C., von Wangelin A.J. Reductive Cross-Coupling Reactions between Two Electrophiles. Chem. Eur. J. 2014;20:6828–6842. doi: 10.1002/chem.201402302. PubMed DOI

Noël T., Buchwald S.L. Cross-coupling in flow. Chem. Soc. Rev. 2011;40:5010–5029. doi: 10.1039/c1cs15075h. PubMed DOI

So C.M., Kwong F.Y. Palladium-catalyzed cross-coupling reactions of aryl mesylates. Chem. Soc. Rev. 2011;40:4963–4972. doi: 10.1039/c1cs15114b. PubMed DOI

Thapa S., Shrestha B., Gurung S.K., Giri R. Copper-catalysed cross-coupling: An untapped potential. Org. Biomol. Chem. 2015;13:4816–4827. doi: 10.1039/C5OB00200A. PubMed DOI

Tobrman T. Vinyl Esters and Vinyl Sulfonates as Green Alternatives to Vinyl Bromide for the Synthesis of Monosubstituted Alkenes via Transition-Metal-Catalyzed Reactions. Chemistry. 2023;5:2288–2321. doi: 10.3390/chemistry5040153. DOI

Čubiňák M., Edlová T., Polák P., Tobrman T. Indolylboronic Acids: Preparation and Applications. Molecules. 2019;24:3523. doi: 10.3390/molecules24193523. PubMed DOI PMC

Heravi M.M., Ghanbarian M., Ghalavand N., Nazari N. Current Applications of the Sonogashira Reaction in the Synthesis of Heterocyclic Compounds: An Update. Curr. Org. Chem. 2018;22:1420–1457. doi: 10.2174/1385272822666180322122232. DOI

Malapit C.A., Howell A.R. Recent Applications of Oxetanes in the Synthesis of Heterocyclic Compounds. J. Org. Chem. 2015;80:8489–8495. doi: 10.1021/acs.joc.5b01255. PubMed DOI

Oeser P., Koudelka J., Petrenko A., Tobrman T. Recent Progress Concerning the N-Arylation of Indoles. Molecules. 2021;26:5079. doi: 10.3390/molecules26165079. PubMed DOI PMC

Panda S.S., Jain S.C. “In Water” Syntheses of Heterocyclic Compounds. Mini-Rev. Org. Chem. 2011;8:455–464. doi: 10.2174/157019311797440335. DOI

Veisi H., Ghorbani-Vaghei R. Recent progress in the application of N-halo reagents in the synthesis of heterocyclic compounds. Tetrahedron. 2010;66:7445–7463. doi: 10.1016/j.tet.2010.07.015. DOI

Volkova Y., Baranin S., Zavarzin I. A3 Coupling Reaction in the Synthesis of Heterocyclic Compounds. Adv. Synth. Catal. 2021;363:40–61. doi: 10.1002/adsc.202000866. DOI

Buttard F., Sharma J., Champagne P.A. Recent advances in the stereoselective synthesis of acyclic all-carbon tetrasubstituted alkenes. Chem. Commun. 2021;57:4071–4088. doi: 10.1039/D1CC00596K. PubMed DOI

Flynn A.B., Ogilvie W.W. Stereocontrolled Synthesis of Tetrasubstituted Olefins. Chem. Rev. 2007;107:4698–4745. doi: 10.1021/cr050051k. PubMed DOI

Mukherjee N., Planer S., Grela K. Formation of tetrasubstituted C–C double bonds via olefin metathesis: Challenges, catalysts, and applications in natural product synthesis. Org. Chem. Front. 2018;5:494–516. doi: 10.1039/C7QO00800G. DOI

Paek S.M. Synthesis of tetrasubstituted alkenes via metathesis. Molecules. 2012;17:3348–3358. doi: 10.3390/molecules17033348. PubMed DOI PMC

Edlová T., Čubiňák M., Tobrman T. Cross-Coupling Reactions of Double or Triple Electrophilic Templates for Alkene Synthesis. Synthesis. 2021;53:255–266. doi: 10.1055/s-0040-1707270. DOI

Negishi E.-I., Huang Z., Wang G., Mohan S., Wang C., Hattori H. Recent Advances in Efficient and Selective Synthesis of Di-, Tri-, and Tetrasubstituted Alkenes via Pd-Catalyzed Alkenylation−Carbonyl Olefination Synergy. Acc. Chem. Res. 2008;41:1474–1485. doi: 10.1021/ar800038e. PubMed DOI

Polák P., Váňová H., Dvořák D., Tobrman T. Recent progress in transition metal-catalyzed stereoselective synthesis of acyclic all-carbon tetrasubstituted alkenes. Tetrahedron Lett. 2016;57:3684–3693. doi: 10.1016/j.tetlet.2016.07.030. DOI

Reiser O. Palladium-Catalyzed Coupling Reactions for the Stereoselective Synthesis of Tri- and Tetrasubstituted Alkenes. Angew. Chem. Int. Ed. 2006;45:2838–2840. doi: 10.1002/anie.200600025. PubMed DOI

Krishnakumar V.K., Sharma M.M. Synthesis of Triaryl Phosphates via Phase-Transfer Catalysis. Synthesis. 1983;1983:558–559. doi: 10.1055/s-1983-30424. DOI

Zhong C., Huang Y., Zhang H., Zhou Q., Liu Y., Lu P. Enantioselective Synthesis of 3-Substituted Cyclobutenes by Catalytic Conjugate Addition/Trapping Strategies. Angew. Chem. Int. Ed. 2020;59:2750–2754. doi: 10.1002/anie.201913825. PubMed DOI

Kotek V., Polák P., Tobrman T. Efficient and simple preparation of functionalized 1,1-dibromoenol phosphates. Monat. Chem. 2016;147:405–412. doi: 10.1007/s00706-015-1613-6. DOI

Kawada H., Ikoma A., Ogawa N., Kobayashi Y. Activation of Marginally Reactive Boron Enolates by MeLi for the Formation of Enol Phosphates and Synthesis of the Δ9-THC Intermediate. J. Org. Chem. 2015;80:9192–9199. doi: 10.1021/acs.joc.5b01630. PubMed DOI

Perkow W. Umsetzungen mit Alkylphosphiten. I. Mitteil.: Umlagerungen bei der Reaktion mit Chloral und Bromal. Chem. Ber. 1954;87:755–758. doi: 10.1002/cber.19540870521. DOI

Adamek J. Special Issue “Organophosphorus Chemistry: A New Perspective”. Molecules. 2023;28:4752. doi: 10.3390/molecules28124752. PubMed DOI PMC

Keglevich G. Organophosphorus Chemistry 2021. Molecules. 2023;28:394. doi: 10.3390/molecules28010394. PubMed DOI PMC

Hanson P.R. Organophosphorus chemistry. Beilstein J. Org. Chem. 2014;10:2087–2088. doi: 10.3762/bjoc.10.217. PubMed DOI PMC

Han L.-B., Yang S.-D., Waterman R., Weigand J.J. Love in the Time of COVID. J. Org. Chem. 2020;85:14273–14275. doi: 10.1021/acs.joc.0c02568. PubMed DOI

Fiorito D., Folliet S., Liu Y., Mazet C. A General Nickel-Catalyzed Kumada Vinylation for the Preparation of 2-Substituted 1,3-Dienes. ACS Catal. 2018;8:1392–1398. doi: 10.1021/acscatal.7b04030. DOI

Braconi E., Cramer N. Crossed Regio- and Enantioselective Iron-Catalyzed [4+2]-Cycloadditions of Unactivated Dienes. Angew. Chem. Int. Ed. 2022;61:e202112148. doi: 10.1002/anie.202112148. PubMed DOI PMC

Braconi E., Götzinger A.C., Cramer N. Enantioselective Iron-Catalyzed Cross-[4+4]-Cycloaddition of 1,3-Dienes Provides Chiral Cyclooctadienes. J. Am. Chem. Soc. 2020;142:19819–19824. doi: 10.1021/jacs.0c09486. PubMed DOI

Kennedy C.R., Zhong H., Macaulay R.L., Chirik P.J. Regio- and Diastereoselective Iron-Catalyzed [4+4]-Cycloaddition of 1,3-Dienes. J. Am. Chem. Soc. 2019;141:8557–8573. doi: 10.1021/jacs.9b02443. PubMed DOI PMC

Li Y., Chen J., Ng J.J.W., Chiba S. Generation of Allylmagnesium Reagents by Hydromagnesiation of 2-Aryl-1,3-dienes. Angew. Chem. Int. Ed. 2023;62:e202217735. doi: 10.1002/anie.202217735. PubMed DOI

Ohta R., Shio Y., Akiyama T., Yamada M., Harada K., Arisawa M. Ligand-free reductive coupling of aldehydes with 1,3-dienes using a sulfur-modified Au-supported nickel nanoparticle catalyst. New J. Chem. 2023;47:7694–7700. doi: 10.1039/D3NJ00354J. DOI

Zhao H., Caldora H.P., Turner O., Douglas J.J., Leonori D. A Desaturative Approach for Aromatic Aldehyde Synthesis via Synergistic Enamine, Photoredox and Cobalt Triple Catalysis. Angew. Chem. Int. Ed. 2022;61:e202201870. doi: 10.1002/anie.202201870. PubMed DOI PMC

Li C., Shin K., Liu R.Y., Buchwald S.L. Engaging Aldehydes in CuH-Catalyzed Reductive Coupling Reactions: Stereoselective Allylation with Unactivated 1,3-Diene Pronucleophiles. Angew. Chem. Int. Ed. 2019;58:17074–17080. doi: 10.1002/anie.201911008. PubMed DOI PMC

Poisson P.-A., Tran G., Besnard C., Mazet C. Nickel-Catalyzed Kumada Vinylation of Enol Phosphates: A Comparative Mechanistic Study. ACS Catal. 2021;11:15041–15050. doi: 10.1021/acscatal.1c04800. DOI

Fiorito D., Simon M., Thomas C.M., Mazet C. Access to Highly Stereodefined 1,4-cis-Polydienes by a [Ni/Mg] Orthogonal Tandem Catalytic Polymerization. J. Am. Chem. Soc. 2021;143:13401–13407. doi: 10.1021/jacs.1c06553. PubMed DOI

Desfeux C., Besnard C., Mazet C. [n]Dendralenes as a Platform for Selective Catalysis: Ligand-Controlled Cu-Catalyzed Chemo-, Regio-, and Enantioselective Borylations. Org. Lett. 2020;22:8181–8187. doi: 10.1021/acs.orglett.0c01892. PubMed DOI

Saglam M.F., Fallon T., Paddon-Row M.N., Sherburn M.S. Discovery and Computational Rationalization of Diminishing Alternation in [n]Dendralenes. J. Am. Chem. Soc. 2016;138:1022–1032. doi: 10.1021/jacs.5b11889. PubMed DOI

Xing T., Zhang Z., Da Y.-X., Quan Z.-J., Wang X.-C. Iron-Catalyzed Kumada Cross-Coupling Reactions of Pyrimidin-2-yl Phosphates: An Efficient Approach to C2-Functionalized Pyrimidines. Asian J. Org. Chem. 2015;4:538–544. doi: 10.1002/ajoc.201500044. DOI

Li Z., Liu L., Sun H.-m., Shen Q., Zhang Y. Alkyl Grignard cross-coupling of aryl phosphates catalyzed by new, highly active ionic iron(ii) complexes containing a phosphine ligand and an imidazolium cation. Dalton Trans. 2016;45:17739–17747. doi: 10.1039/C6DT02995G. PubMed DOI

Li Z., Lu B., Sun H., Shen Q., Zhang Y. Ionic iron(III) complexes bearing a dialkylbenzimidazolium cation: Efficient catalysts for magnesium-mediated cross-couplings of aryl phosphates with alkyl bromides. Appl. Organometal. Chem. 2017;31:e3671. doi: 10.1002/aoc.3671. DOI

Ren J.-A., Chen X., Gui C., Miao C., Chu X.-Q., Xu H., Zhou X., Ma M., Shen Z.-L. Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Phosphates with Aryl Bromides. Adv. Synth. Catal. 2023;365:2511–2515. doi: 10.1002/adsc.202300663. DOI

Cui M., Oestreich M. Synthesis of Silylated Cyclobutanone and Cyclobutene Derivatives Involving 1,4-Addition of Zinc-Based Silicon Nucleophiles. Chem. Eur. J. 2021;27:16103–16106. doi: 10.1002/chem.202102993. PubMed DOI PMC

Moinizadeh N., Klemme R., Kansy M., Zimmer R., Reissig H.-U. Convenient Syntheses of Enantiopure 1,2-Oxazin-4-yl Nonaflates and Phosphates and Their Palladium-Catalyzed Cross-Couplings. Synthesis. 2013;45:2752–2762. doi: 10.1002/chin.201408197. DOI

Huang Y., Chen J., Liu Y., Lu P. Synthesis of Dibenzo[a,e]cyclooctene-5,11(6H,12H)-diones via the Elusive Benzocyclobutenone Anion. Synthesis. 2021;53:4477–4483. doi: 10.1055/a-1545-7706. DOI

Kotek V., Dvořáková H., Tobrman T. Modular and Highly Stereoselective Approach to All-Carbon Tetrasubstituted Alkenes. Org. Lett. 2015;17:608–611. doi: 10.1021/ol503624v. PubMed DOI

You W., Li Y., Brown M.K. Stereoselective Synthesis of All-Carbon Tetrasubstituted Alkenes from In Situ Generated Ketenes and Organometallic Reagents. Org. Lett. 2013;15:1610–1613. doi: 10.1021/ol400392r. PubMed DOI

Wang C.-S., Tan P.S.L., Ding W., Ito S., Yoshikai N. Regio- and Stereoselective Synthesis of Enol Carboxylate, Phosphate, and Sulfonate Esters via Iodo(III)functionalization of Alkynes. Org. Lett. 2022;24:430–434. doi: 10.1021/acs.orglett.1c04123. PubMed DOI

Bauer A., Maulide N. A Stereoselective Reductive Hosomi–Sakurai Reaction. Org. Lett. 2018;20:1461–1464. doi: 10.1021/acs.orglett.8b00276. PubMed DOI

Meyer D., Renaud P. Enantioselective Hydroazidation of Trisubstituted Non-Activated Alkenes. Angew. Chem. Int. Ed. 2017;56:10858–10861. doi: 10.1002/anie.201703340. PubMed DOI

Simlandy A.K., Lyu M.-Y., Brown M.K. Catalytic Arylboration of Spirocyclic Cyclobutenes: Rapid Access to Highly Substituted Spiro[3.n]alkanes. ACS Catal. 2021;11:12815–12820. doi: 10.1021/acscatal.1c03491. PubMed DOI PMC

Mizuta S., Galicia-López O., Engle K.M., Verhoog S., Wheelhouse K., Rassias G., Gouverneur V. Trifluoromethylation of Allylsilanes under Copper Catalysis. Chem. Eur. J. 2012;18:8583–8587. doi: 10.1002/chem.201201707. PubMed DOI

Narita K., Fujisaki N., Sakuma Y., Katoh T. A novel approach to oxazole-containing diterpenoid synthesis from plant roots: Salviamines E and F. Org. Biomol. Chem. 2019;17:655–663. doi: 10.1039/C8OB03030H. PubMed DOI

Cahiez G., Guerret O., Moyeux A., Dufour S., Lefevre N. Eco-Friendly and Industrially Scalable Synthesis of the Sex Pheromone of Lobesia botrana. Important Progress for the Eco-Protection of Vineyard. Org. Process Res. Dev. 2017;21:1542–1546. doi: 10.1021/acs.oprd.7b00206. DOI

Ikoma A., Ogawa N., Kondo D., Kawada H., Kobayashi Y. Synthesis of (−)-Piperitylmagnolol Featuring ortho-Selective Deiodination and Pd-Catalyzed Allylation. Org. Lett. 2016;18:2074–2077. doi: 10.1021/acs.orglett.6b00706. PubMed DOI

Mizoguchi H., Oikawa H., Oguri H. Biogenetically inspired synthesis and skeletal diversification of indole alkaloids. Nat. Chem. 2014;6:57–64. doi: 10.1038/nchem.1798. PubMed DOI

Ogawa H., Yang Z.-K., Minami H., Kojima K., Saito T., Wang C., Uchiyama M. Revisitation of Organoaluminum Reagents Affords a Versatile Protocol for C–X (X = N, O, F) Bond-Cleavage Cross-Coupling: A Systematic Study. ACS Catal. 2017;7:3988–3994. doi: 10.1021/acscatal.7b01058. DOI

Nakatsuji H., Ashida Y., Hori H., Sato Y., Honda A., Taira M., Tanabe Y. (E)- and (Z)-stereodefined enol phosphonates derived from β-ketoesters: Stereocomplementary synthesis of fully-substituted α,β-unsaturated esters. Org. Biomol. Chem. 2015;13:8205–8210. doi: 10.1039/C5OB01097G. PubMed DOI

Zhang Y., Guo H., Wu Q., Bi X., Shi E., Xiao J. Stereoselective synthesis of (E)-α,β-unsaturated esters: Triethylamine-catalyzed allylic rearrangement of enol phosphates. RSC Adv. 2023;13:13511–13515. doi: 10.1039/D3RA02430J. PubMed DOI PMC

Kotek V., Polák P., Dvořáková H., Tobrman T. Aluminum Chloride Promoted Cross-Coupling of Trisubstituted Enol Phosphates with Organozinc Reagents En Route to the Stereoselective Synthesis of Tamoxifen and Its Analogues. Eur. J. Org. Chem. 2016;2016:5037–5044. doi: 10.1002/ejoc.201600959. DOI

Polák P., Tobrman T. The synthesis of polysubstituted indoles from 3-bromo-2-indolyl phosphates. Org. Biomol. Chem. 2017;15:6233–6241. doi: 10.1039/C7OB01127J. PubMed DOI

Polák P., Tobrman T. Novel Selective Approach to Terminally Substituted [n]Dendralenes. Eur. J. Org. Chem. 2019;2019:957–968. doi: 10.1002/ejoc.201801522. DOI

Koudelka J., Tobrman T. Synthesis of 2-Substituted Cyclobutanones by a Suzuki Reaction and Dephosphorylation Sequence. Eur. J. Org. Chem. 2021;2021:3260–3269. doi: 10.1002/ejoc.202100464. DOI

Edlová T., Dvořáková H., Eigner V., Tobrman T. Substrate-Controlled Regioselective Bromination of 1,2-Disubstituted Cyclobutenes: An Application in the Synthesis of 2,3-Disubstituted Cyclobutenones. J. Org. Chem. 2021;86:5820–5831. doi: 10.1021/acs.joc.1c00261. PubMed DOI

Čubiňák M., Bigeon J., Galář P., Ondič L., Tobrman T. The Synthesis of Tetrasubstituted Cycloalkenes Bearing π-Conjugated Substituents and Their Optical Properties. ChemistrySelect. 2021;6:9904–9910. doi: 10.1002/slct.202103122. DOI

Čubiňák M., Tobrman T. Room-Temperature Negishi Reaction of Trisubstituted Vinyl Phosphates for the Synthesis of Tetrasubstituted Alkenes. J. Org. Chem. 2020;85:10728–10739. doi: 10.1021/acs.joc.0c01254. PubMed DOI

Fihri A., Bouhrara M., Nekoueishahraki B., Basset J.-M., Polshettiwar V. Nanocatalysts for Suzuki cross-coupling reactions. Chem. Soc. Rev. 2011;40:5181–5203. doi: 10.1039/c1cs15079k. PubMed DOI

Heravi M.M., Hashemi E. Recent applications of the Suzuki reaction in total synthesis. Tetrahedron. 2012;68:9145–9178. doi: 10.1016/j.tet.2012.08.058. DOI

Maluenda I., Navarro O. Recent Developments in the Suzuki-Miyaura Reaction: 2010–2014. Molecules. 2015;20:7528–7557. doi: 10.3390/molecules20057528. PubMed DOI PMC

Paul S., Islam M.M., Islam S.M. Suzuki–Miyaura reaction by heterogeneously supported Pd in water: Recent studies. RSC Adv. 2015;5:42193–42221. doi: 10.1039/C4RA17308B. DOI

Rossi R., Bellina F., Lessi M. Selective Palladium-Catalyzed Suzuki–Miyaura Reactions of Polyhalogenated Heteroarenes. Adv. Synth. Catal. 2012;354:1181–1255. doi: 10.1002/adsc.201100942. DOI

Chen H., Huang Z., Hu X., Tang G., Xu P., Zhao Y., Cheng C.-H. Nickel-Catalyzed Cross-Coupling of Aryl Phosphates with Arylboronic Acids. J. Org. Chem. 2011;76:2338–2344. doi: 10.1021/jo2000034. PubMed DOI

Gigant N., Honraedt A., Gras E., Gillaizeau I. Efficient Cross-Coupling of Dioxazaborocanes with α-Phosphate Enamides. Eur. J. Org. Chem. 2014;2014:7889–7894. doi: 10.1002/ejoc.201402927. DOI

Senra J.D., Silva A.C., Santos R.V., Malta L.F.B., Simas A.B.C. Palladium on Layered Double Hydroxide: A Heterogeneous System for the Enol Phosphate Carbon-Oxygen Bond Activation in Aqueous Media. J. Chem. 2017;2017:8418939. doi: 10.1155/2017/8418939. DOI

Leidy M.R., Mason Hoffman J., Pongdee R. Preparation of C-arylglycals via Suzuki–Miyaura cross-coupling of dihydropyranylphosphates. Tetrahedron Lett. 2013;54:6889–6891. doi: 10.1016/j.tetlet.2013.10.031. PubMed DOI PMC

Mole J., Philip R.M., Anilkumar G. Nickel-catalyzed (hetero)aryl borylations: An update. ARKIVOC. 2022;2022:165–199. doi: 10.24820/ark.5550190.p011.707. DOI

Steven A. Micelle-Mediated Chemistry in Water for the Synthesis of Drug Candidates. Synthesis. 2019;51:2632–2647. doi: 10.1055/s-0037-1610714. DOI

Jin S., Dang H.T., Haug G.C., He R., Nguyen V.D., Nguyen V.T., Arman H.D., Schanze K.S., Larionov O.V. Visible Light-Induced Borylation of C–O, C–N, and C–X Bonds. J. Am. Chem. Soc. 2020;142:1603–1613. doi: 10.1021/jacs.9b12519. PubMed DOI PMC

Chen K., Cheung M.S., Lin Z., Li P. Metal-free borylation of electron-rich aryl (pseudo)halides under continuous-flow photolytic conditions. Org. Chem. Front. 2016;3:875–879. doi: 10.1039/C6QO00109B. DOI

Begliomini S., Sernissi L., Scarpi D., Occhiato E.G. A Short, Chemo-Enzymatic Synthesis of Both Enantiomers of trans-3-Hydroxy pipecolic Acid. Eur. J. Org. Chem. 2014;2014:5448–5455. doi: 10.1002/ejoc.201402258. DOI

Rey-Rodriguez R., Jestin G., Gandon V., Grelier G., Retailleau P., Darses B., Dauban P., Gillaizeau I. Intermolecular Rhodium(II)-Catalyzed Allylic C(sp3)–H Amination of Cyclic Enamides. Adv. Synth. Catal. 2018;360:513–518. doi: 10.1002/adsc.201701188. DOI

Adamson N.J., Park S., Zhou P., Nguyen A.L., Malcolmson S.J. Enantioselective Construction of Quaternary Stereogenic Centers by the Addition of an Acyl Anion Equivalent to 1,3-Dienes. Org. Lett. 2020;22:2032–2037. doi: 10.1021/acs.orglett.0c00412. PubMed DOI

Liu Z., Yu P., Dong L., Wang W., Duan S., Wang B., Gong X., Ye L., Wang H., Tian J. Discovery of the Next-Generation Pan-TRK Kinase Inhibitors for the Treatment of Cancer. J. Med. Chem. 2021;64:10286–10296. doi: 10.1021/acs.jmedchem.1c00712. PubMed DOI

Kurimoto Y., Nasu T., Fujii Y., Asano K., Matsubara S. Asymmetric Cycloetherification of in Situ Generated Cyanohydrins through the Concomitant Construction of Three Chiral Carbon Centers. Org. Lett. 2019;21:2156–2160. doi: 10.1021/acs.orglett.9b00462. PubMed DOI

Fuwa H., Muto T., Sekine K., Sasaki M. Total Synthesis and Structure Revision of Didemnaketal B. Chem. Eur. J. 2014;20:1848–1860. doi: 10.1002/chem.201303713. PubMed DOI

Fuwa H., Sakamoto K., Muto T., Sasaki M. Concise synthesis of the C15–C38 fragment of okadaic acid, a specific inhibitor of protein phosphatases 1 and 2A. Tetrahedron. 2015;71:6369–6383. doi: 10.1016/j.tet.2015.04.001. DOI

Sallio R., Lebrun S., Gigant N., Gillaizeau I., Deniau E. Asymmetric Synthesis of 2-Heteroaryl Cyclic Amines: Total Synthesis of (–)-Anabasine. Eur. J. Org. Chem. 2014;2014:4381–4388. doi: 10.1002/ejoc.201402202. DOI

Hu X.-H., Yang X.-F., Loh T.-P. Selective Alkenylation and Hydroalkenylation of Enol Phosphates through Direct C–H Functionalization. Angew. Chem. Int. Ed. 2015;54:15535–15539. doi: 10.1002/anie.201506437. PubMed DOI

Jeon W.H., Lee T.S., Kim E.J., Moon B., Kang J. Palladium(II)-catalyzed ortho-arylation via phosphate-group-directed C–H activation. Tetrahedron. 2013;69:5152–5159. doi: 10.1016/j.tet.2013.04.067. DOI

Chan L.Y., Cheong L., Kim S. Pd(II)-Catalyzed ortho-Arylation of Aryl Phosphates and Aryl Hydrogen Phosphates with Diaryliodonium Triflates. Org. Lett. 2013;15:2186–2189. doi: 10.1021/ol400732q. PubMed DOI

Moselage M., Sauermann N., Richter S.C., Ackermann L. C–H Alkenylations with Alkenyl Acetates, Phosphates, Carbonates, and Carbamates by Cobalt Catalysis at 23 °C. Angew. Chem. Int. Ed. 2015;54:6352–6355. doi: 10.1002/anie.201412319. PubMed DOI

Sauermann N., Loup J., Kootz D., Yatham V.R., Berkessel A., Ackermann L. Triazolylidene Ligands Allow Cobalt-Catalyzed C–H/C–O Alkenyl ations at Ambient Temperature. Synthesis. 2017;49:3476–3484. doi: 10.1055/s-0036-1590471. DOI

Grosheva D., Cramer N. Ketene Aminal Phosphates: Competent Substrates for Enantioselective Pd(0)-Catalyzed C–H Functionalizations. ACS Catal. 2017;7:7417–7420. doi: 10.1021/acscatal.7b02783. DOI

Lee P.-S., Xu W., Yoshikai N. Directed C–H Alkenylation of Aryl Imines with Alkenyl Phosphates Promoted by a Cobalt–N-Heterocyclic Carbene Catalyst. Adv. Synth. Catal. 2017;359:4340–4347. doi: 10.1002/adsc.201701105. DOI

Xu W., Yoshikai N. Cobalt-catalyzed directed C–H alkenylation of pivalophenone N–H imine with alkenyl phosphates. Beilstein J. Org. Chem. 2018;14:709–715. doi: 10.3762/bjoc.14.60. PubMed DOI PMC

Huang J.-H., Yang L.-M. Nickel-Catalyzed Amination of Aryl Phosphates through Cleaving Aryl C–O Bonds. Org. Lett. 2011;13:3750–3753. doi: 10.1021/ol201437g. PubMed DOI

Chen Z., Chen X., So C.M. Palladium-Catalyzed C(sp2)–N Bond Cross-Coupling with Triaryl Phosphates. J. Org. Chem. 2019;84:6366–6376. doi: 10.1021/acs.joc.9b00703. PubMed DOI

Chen X., Chen Z., So C.M. Exploration of Aryl Phosphates in Palladium-Catalyzed Mono-α-arylation of Aryl and Heteroaryl Ketones. J. Org. Chem. 2019;84:6337–6346. doi: 10.1021/acs.joc.9b00669. PubMed DOI

Wang Z.-C., Li Y.-Y., Zhang S.-Q., Hong X., Shi S.-L. Unsymmetric N-heterocyclic carbene ligand enabled nickel-catalysed arylation of bulky primary and secondary amines. Chem. Sci. 2023;14:4390–4396. doi: 10.1039/D3SC00492A. PubMed DOI PMC

Valiullina Z.R., Galeeva A.M., Gimalova F.A., Selezneva N.K., Khasanova L.S., Mavzyutov A.R., Miftakhov M.S. Synthesis and In Vitro Antibacterial Activity of New C-3-Modified Carbapenems. Russ. J. Bioorg. Chem. 2019;45:398–404. doi: 10.1134/S1068162019040125. DOI

Lee N., Tan C.-H., Leow D. Asymmetric Brook Rearrangement. Asian J. Org. Chem. 2019;8:25–31. doi: 10.1002/ajoc.201800585. DOI

Wang Z., Zhu C. Radical-mediated 1,2-Brook rearrangements. Chem Catal. 2021;1:250–252. doi: 10.1016/j.checat.2021.04.006. DOI

Zhang Y., Chen J.-J., Huang H.-M. Radical Brook Rearrangements: Concept and Recent Developments. Angew. Chem. Int. Ed. 2022;61:e202205671. doi: 10.1002/anie.202205671. PubMed DOI

Kondoh A., Aita K., Ishikawa S., Terada M. Synthesis of Tetrasubstituted Furans through One-Pot Formal [3 + 2] Cycloaddition Utilizing [1,2]-Phospha-Brook Rearrangement. Org. Lett. 2020;22:2105–2110. doi: 10.1021/acs.orglett.0c00619. PubMed DOI

Kondoh A., Ishikawa S., Aoki T., Terada M. Synthesis of 2,3-allenylamides utilizing [1,2]-phospha-Brook rearrangement and their application to gold-catalyzed cycloisomerization providing 2-aminofuran derivatives. Chem. Commun. 2016;52:12513–12516. doi: 10.1039/C6CC06591K. PubMed DOI

Kondoh A., Iino A., Ishikawa S., Aoki T., Terada M. Efficient Synthesis of Polysubstituted Pyrroles Based on [3+2] Cycloaddition Strategy Utilizing [1,2]-Phospha-Brook Rearrangement under Brønsted Base Catalysis. Chem. Eur. J. 2018;24:15246–15253. doi: 10.1002/chem.201803809. PubMed DOI

Kondoh A., Aoki T., Terada M. Synthesis of Phenanthrene Derivatives by Intramolecular Cyclization Utilizing the [1,2]-Phospha-Brook Rearrangement Catalyzed by a Brønsted Base. Chem. Eur. J. 2015;21:12577–12580. doi: 10.1002/chem.201501377. PubMed DOI

Kondoh A., Koda K., Kamata Y., Terada M. Synthesis of Indolizine Derivatives Utilizing [1,2]-Phospha-Brook Rearrangement/Cycloisomerization Sequence. Chem. Lett. 2017;46:1020–1023. doi: 10.1246/cl.170377. DOI

Kondoh A., Ojima R., Terada M. Formal Fluorinative Ring Opening of 2-Benzoylpyrrolidines Utilizing [1,2]-Phospha-Brook Rearrangement for Synthesis of 2-Aryl-3-fluoropiperidines. Org. Lett. 2021;23:7894–7899. doi: 10.1021/acs.orglett.1c02907. PubMed DOI

Kondoh A., Takei A., Terada M. Novel Methodology for the Efficient Synthesis of 3-Aryloxindoles: [1,2]-Phospha-Brook Rearrangement–Palladium-Catalyzed Cross-Coupling Sequence. Synlett. 2016;27:1848–1853. doi: 10.1002/chin.201649124. DOI

Kondoh A., Terada M. Synthesis of 2,2-Disubstituted 2H-Chromenes through Carbon-Carbon Bond Formation Utilizing a [1,2]-Phospha-Brook Rearrangement under Brønsted Base Catalysis. Chem. Eur. J. 2022;28:e202201198. doi: 10.1002/chem.202201198. PubMed DOI

Kondoh A., Aoki T., Terada M. Intramolecular Cyclization of Alkynyl α-Ketoanilide Utilizing [1,2]-Phospha-Brook Rearrangement Catalyzed by Phosphazene Base. Org. Lett. 2014;16:3528–3531. doi: 10.1021/ol501479t. PubMed DOI

Kondoh A., Aoki T., Terada M. Generation and Application of Homoenolate Equivalents Utilizing [1,2]-Phospha-Brook Rearrangement under Brønsted Base Catalysis. Chem. Eur. J. 2017;23:2769–2773. doi: 10.1002/chem.201605673. PubMed DOI

Kondoh A., Aoki T., Terada M. Organocatalytic Arylation of α-Ketoesters Based on Umpolung Strategy: Phosphazene-Catalyzed SNAr Reaction Utilizing [1,2]-Phospha-Brook Rearrangement. Chem. Eur. J. 2018;24:13110–13113. doi: 10.1002/chem.201803218. PubMed DOI

Kondoh A., Hirozane T., Terada M. Formal Umpolung Addition of Phosphites to 2-Azaaryl Ketones under Chiral Brønsted Base Catalysis: Enantioselective Protonation Utilizing [1,2]-Phospha-Brook Rearrangement. Chem. Eur. J. 2022;28:e202201240. doi: 10.1002/chem.202201240. PubMed DOI

Kondoh A., Ozawa R., Aoki T., Terada M. Intramolecular addition of benzyl anion to alkyne utilizing [1,2]-phospha-Brook rearrangement under Brønsted base catalysis. Org. Biomol. Chem. 2017;15:7277–7281. doi: 10.1039/C7OB02059G. PubMed DOI

Kondoh A., Tasato N., Aoki T., Terada M. Brønsted Base-Catalyzed Transformation of α,β-Epoxyketones Utilizing [1,2]-Phospha-Brook Rearrangement for the Synthesis of Allylic Alcohols Having a Tetrasubstituted Alkene Moiety. Org. Lett. 2020;22:5170–5175. doi: 10.1021/acs.orglett.0c01765. PubMed DOI

Kondoh A., Terada M. Brønsted base-catalyzed α-oxygenation of carbonyl compounds utilizing the [1,2]-phospha-Brook rearrangement. Org. Chem. Front. 2015;2:801–805. doi: 10.1039/C5QO00108K. DOI

Ranga S., Chakravarty M., Chatterjee T., Ghosal S. Mechanistic insights into n-BuLi mediated phospha-Brook rearrangement. New J. Chem. 2019;43:9886–9890. doi: 10.1039/C9NJ01867K. DOI

Tan Q., Guo N., Yang L., Wang F., Feng X., Liu X. Asymmetric Organocatalytic 1,6-Conjugate Addition of para-Quinone Methides Using [1,2]-Phospha-Brook Rearrangement. J. Org. Chem. 2023;88:9332–9342. doi: 10.1021/acs.joc.3c00910. PubMed DOI

Verma R.S., Pandey C.B., Kumar S., Tiwari B. Carbene-Catalyzed Tandem [1,2]-Phospha-Brook/[1,4]-Phosphate Rearrangement: Access to α-Ketophosphates via Controlled Cross-Acyloin Condensation. J. Org. Chem. 2018;83:9478–9483. doi: 10.1021/acs.joc.8b01172. PubMed DOI

Yamamoto Y., Ishida Y., Takamizu Y., Yasui T. Synthesis of (Difluoromethyl)cycloalkenes from 2-Cycloalkenones by Utilizing Phospha-Brook Rearrangement. Adv. Synth. Catal. 2019;361:3739–3743. doi: 10.1002/adsc.201900469. DOI

Cheibas C., Fincias N., Casaretto N., Garrec J., El Kaïm L. Passerini–Smiles Reaction of α-Ketophosphonates: Platform for Phospha-Brook/Smiles Embedded Cascades. Angew. Chem. Int. Ed. 2022;61:e202116249. doi: 10.1002/anie.202116249. PubMed DOI

Kaur R., Singh R.P. Stereoselective Reductive Coupling Reactions Utilizing [1,2]-Phospha-Brook Rearrangement: A Powerful Umpolung Approach. J. Org. Chem. 2023;88:10325–10338. doi: 10.1021/acs.joc.3c01055. PubMed DOI

Zhang X., Li Y., Miao Z. Research Progress in [1,2]-Phospha-Brook Rearrangement Reaction. Univ. Chem. 2021;36:2008082. doi: 10.3866/PKU.DXHX202008082. DOI

Melvin L.S. An efficient synthesis of 2-hydroxyphenylphosphonates. Tetrahedron Lett. 1981;22:3375–3376. doi: 10.1016/S0040-4039(01)81909-2. DOI

Delgado Rosario E., Rectenwald M.F., Gaffen J.R., Rheingold A.L., Protasiewicz J.D. Organophosphorus decorated lithium borate and phosphate salts with extended π-conjugated backbone. Dalton Trans. 2021;50:6667–6672. doi: 10.1039/D1DT00601K. PubMed DOI

Placidi M.P., Botta M., Kálmán F.K., Hagberg G.E., Baranyai Z., Krenzer A., Rogerson A.K., Tóth I., Logothetis N.K., Angelovski G. Aryl-Phosphonate Lanthanide Complexes and Their Fluorinated Derivatives: Investigation of Their Unusual Relaxometric Behavior and Potential Application as Dual Frequency 1H/19F MRI Probes. Chem. Eur. J. 2013;19:11644–11660. doi: 10.1002/chem.201300763. PubMed DOI

Kudryavtsev I.Y., Baulina T.Y.V., Pasechnik M.P., Matveev S.V., Matveeva A.G. Synthesis and Coordination Properties of Tripodal Ligand on the Triphenylphosphine Oxide Platform with Carbamoyl Side Arms. Phosphorus Sulfur Silicon Relat. Elem. 2014;189:946–962. doi: 10.1080/10426507.2014.904865. DOI

Kudryavtsev I.Y., Bykhovskaya O.V., Matveeva A.G., Baulina T.V., Pasechnik M.P., Matveev S.V., Vologzhanina A.V., Turanov A.N., Karandashev V.K., Brel V.K. New tripodal ligand on the triphenylphosphine oxide platform with 1,2,3-triazole side arms: Synthesis, structure, coordination, and extraction properties. Monatsh. Chem. 2020;151:1705–1713. doi: 10.1007/s00706-020-02702-6. DOI

Alessi M., Patel J.J., Zumbansen K., Snieckus V. The Tetraethylphosphorodiamidate (OP(O)(NEt2)2) Directed Metalation Group (DMG). Directed ortho and Lateral Metalation and the Phospha Anionic Fries Rearrangement. Org. Lett. 2020;22:2147–2151. doi: 10.1021/acs.orglett.0c00094. PubMed DOI

Patel J.J., Blackburn T., Alessi M., Sawinski H., Snieckus V. Tetraethylphosphorodiamidate-Directed Metalation Group: Directed Ortho and Remote Metalation, Cross Coupling, and Remote Phospha Anionic Fries Rearrangement Reactions. Org. Lett. 2020;22:3860–3864. doi: 10.1021/acs.orglett.0c01123. PubMed DOI

Taylor C., Watson A. The Anionic Phospho-Fries Rearrangement. Curr. Org. Chem. 2004;8:623–636. doi: 10.2174/1385272043370717. DOI

Wu S., Deligonal N., Protasiewicz J.D. An unusually unstable ortho-phosphinophenol and its use to prepare benzoxaphospholes having enhanced air-stability. Dalton Trans. 2013;42:14866–14874. doi: 10.1039/c3dt51919h. PubMed DOI

Xiong B., Li M., Liu Y., Zhou Y., Zhao C., Goto M., Yin S.-F., Han L.-B. Stereoselective Synthesis of Phosphoryl-Substituted Phenols. Adv. Synth. Catal. 2014;356:781–794. doi: 10.1002/adsc.201300913. DOI

Korb M., Schaarschmidt D., Lang H. Anionic Phospho-Fries Rearrangement at Ferrocene: One-Pot Approach to P,O-Substituted Ferrocenes. Organometallics. 2014;33:2099–2108. doi: 10.1021/om5002827. DOI

Herd O., Heßler A., Hingst M., Tepper M., Stelzer O. Water soluble phosphines VII. Palladium-catalyzed P–C cross coupling reactions between primary or secondary phosphines and functional aryliodides—A novel synthetic route to water soluble phosphines. J. Organomet. Chem. 1996;522:69–76. doi: 10.1016/0022-328X(96)06136-0. DOI

Korb M., Lang H. Planar Chirality from the Chiral Pool: Diastereoselective Anionic Phospho-Fries Rearrangements at Ferrocene. Organometallics. 2014;33:6643–6659. doi: 10.1021/om500953c. DOI

Korb M., Lehrich S.W., Lang H. Reactivity of Ferrocenyl Phosphates Bearing (Hetero-)Aromatics and [3]Ferrocenophanes toward Anionic Phospho-Fries Rearrangements. J. Org. Chem. 2017;82:3102–3124. doi: 10.1021/acs.joc.7b00030. PubMed DOI

Kakimoto N., Ogura Y., Watanabe H., Takikawa H. Total synthesis of both enantiomers of clavigerins B and C. Tetrahedron. 2020;76:131297. doi: 10.1016/j.tet.2020.131297. DOI

Wang Y., Ju W., Tian H., Sun S., Li X., Tian W., Gui J. Facile Access to Bridged Ring Systems via Point-to-Planar Chirality Transfer: Unified Synthesis of Ten Cyclocitrinols. J. Am. Chem. Soc. 2019;141:5021–5033. doi: 10.1021/jacs.9b00925. PubMed DOI

Wang Y., Ju W., Tian H., Tian W., Gui J. Scalable Synthesis of Cyclocitrinol. J. Am. Chem. Soc. 2018;140:9413–9416. doi: 10.1021/jacs.8b06444. PubMed DOI

Kaabi A., Besbes R. Amino Phosphate Monoesters: A Convenient Source of 2-Alkylamino-3-methoxy-3-phenylpropionates via Aziridinium Ions. Synth. Commun. 2013;43:1587–1593. doi: 10.1080/00397911.2011.653703. DOI

Shinohara R., Kawashima H., Ogawa N., Kobayashi Y. Substitution of Secondary Benzylic Phosphates with Diarylmethyl Anions. Tetrahedron. 2019;75:2717–2725. doi: 10.1016/j.tet.2019.03.050. DOI

Shinohara R., Ogawa N., Kawashima H., Wada K., Saito S., Yamazaki T., Kobayashi Y. SN2 Reaction of Diarylmethyl Anions at Secondary Alkyl and Cycloalkyl Carbons. Eur. J. Org. Chem. 2019;2019:1461–1478. doi: 10.1002/ejoc.201801596. DOI

Pallikonda G., Chakravarty M. Benzylic Phosphates in Friedel–Crafts Reactions with Activated and Unactivated Arenes: Access to Polyarylated Alkanes. J. Org. Chem. 2016;81:2135–2142. doi: 10.1021/acs.joc.5b02441. PubMed DOI

Yamamoto Y., Sakai M., Ishida Y., Yasui T. Synthesis of 1-(Difluoromethyl)alk-1-enes via Palladium-Catalyzed SN2′-Type Substitution Reaction of Difluoromethylated Allylic Phosphates with 1,3-Dicarbonyl Compounds and Imides. J. Org. Chem. 2021;86:1053–1064. doi: 10.1021/acs.joc.0c02538. PubMed DOI

Yamamoto Y., Takase T., Kuroyanagi E., Yasui T. Synthesis of difluoromethylated diarylmethanes via Fe(OTf)3-catalyzed Friedel–Crafts reaction of 2,2-difluoro-1-arylethyl phosphates. Chem. Commun. 2021;57:3877–3880. doi: 10.1039/D1CC00765C. PubMed DOI

Shintani R., Ohzono A., Shirota K. Phosphinative cyclopropanation of allyl phosphates with lithium phosphides. Chem. Commun. 2020;56:11851–11854. doi: 10.1039/D0CC04854B. PubMed DOI

Levi S.M., Li Q., Rötheli A.R., Jacobsen E.N. Catalytic activation of glycosyl phosphates for stereoselective coupling reactions. Proc. Natl. Acad. Sci. USA. 2019;116:35–39. doi: 10.1073/pnas.1811186116. PubMed DOI PMC

Li Q., Levi S.M., Jacobsen E.N. Highly Selective β-Mannosylations and β-Rhamnosylations Catalyzed by Bis-thiourea. J. Am. Chem. Soc. 2020;142:11865–11872. doi: 10.1021/jacs.0c04255. PubMed DOI PMC

Li Y., Jie J., Li H., Yang H., Fu H. Synthesis of Spirotetrahydrofuran Oxindoles via Palladium-Catalyzed [4 + 1] Cycloaddition of Diphenyl 2-Oxoindolin-3-yl Phosphates and 2-Methylidenetrimethylene Carbonate. Org. Lett. 2021;23:6499–6503. doi: 10.1021/acs.orglett.1c02306. PubMed DOI

Chen Q., Teng Y., Xu F. Lanthanide Silylamide-Catalyzed Synthesis of Pyrano[2,3-b]indol-2-ones. Org. Lett. 2021;23:4785–4790. doi: 10.1021/acs.orglett.1c01506. PubMed DOI

Rokade B.V., Guiry P.J. Synthesis of α-Aryl Oxindoles by Friedel–Crafts Alkylation of Arenes. J. Org. Chem. 2020;85:6172–6180. doi: 10.1021/acs.joc.0c00370. PubMed DOI

Xing T., Wei K.-J., Quan Z.-J., Wang X.-C. Nucleophilic Substitution Reaction of Pyrimidin-2-yl Phosphates Using Amines and Thiols as Nucleophiles Mediated by PEG-400 as an Environmentally Friendly Solvent. Synthesis. 2015;47:3925–3935. doi: 10.1002/chin.201618164. DOI

Butt N.A., Zhang W. Transition metal-catalyzed allylic substitution reactions with unactivated allylic substrates. Chem. Soc. Rev. 2015;44:7929–7967. doi: 10.1039/C5CS00144G. PubMed DOI

Mohammadkhani L., Heravi M.M. Applications of Transition-Metal-Catalyzed Asymmetric Allylic Substitution in Total Synthesis of Natural Products: An Update. Chem. Rec. 2021;21:29–68. doi: 10.1002/tcr.202000086. PubMed DOI

Oliver S., Evans P.A. Transition-Metal-Catalyzed Allylic Substitution Reactions: Stereoselective Construction of α- and β-Substituted Carbonyl Compounds. Synthesis. 2013;45:3179–3198. doi: 10.1002/chin.201410252. DOI

Qu J., Helmchen G. Applications of Iridium-Catalyzed Asymmetric Allylic Substitution Reactions in Target-Oriented Synthesis. Acc. Chem. Res. 2017;50:2539–2555. doi: 10.1021/acs.accounts.7b00300. PubMed DOI

Sundararaju B., Achard M., Bruneau C. Transition metal catalyzed nucleophilic allylic substitution: Activation of allylic alcohols via π-allylic species. Chem. Soc. Rev. 2012;41:4467–4483. doi: 10.1039/c2cs35024f. PubMed DOI

Gao F., Carr J.L., Hoveyda A.H. A Broadly Applicable NHC–Cu-Catalyzed Approach for Efficient, Site-, and Enantioselective Coupling of Readily Accessible (Pinacolato)alkenylboron Compounds to Allylic Phosphates and Applications to Natural Product Synthesis. J. Am. Chem. Soc. 2014;136:2149–2161. doi: 10.1021/ja4126565. PubMed DOI PMC

Lee J., Torker S., Hoveyda A.H. Versatile Homoallylic Boronates by Chemo-, SN2′-, Diastereo- and Enantioselective Catalytic Sequence of Cu−H Addition to Vinyl-B(pin)/Allylic Substitution. Angew. Chem. Int. Ed. 2017;56:821–826. doi: 10.1002/anie.201611444. PubMed DOI PMC

Zhou Y., Shi Y., Torker S., Hoveyda A.H. SN2″-Selective and Enantioselective Substitution with Unsaturated Organoboron Compounds and Catalyzed by a Sulfonate-Containing NHC-Cu Complex. J. Am. Chem. Soc. 2018;140:16842–16854. doi: 10.1021/jacs.8b10885. PubMed DOI

Shi Y., Jung B., Torker S., Hoveyda A.H. N-Heterocyclic Carbene–Copper-Catalyzed Group-, Site-, and Enantioselective Allylic Substitution with a Readily Accessible Propargyl(pinacolato)boron Reagent: Utility in Stereoselective Synthesis and Mechanistic Attributes. J. Am. Chem. Soc. 2015;137:8948–8964. doi: 10.1021/jacs.5b05805. PubMed DOI

Zhang Z.-Q., Zhang B., Lu X., Liu J.-H., Lu X.-Y., Xiao B., Fu Y. Copper-Catalyzed SN2′-Selective Allylic Substitution Reaction of gem-Diborylalkanes. Org. Lett. 2016;18:952–955. doi: 10.1021/acs.orglett.5b03692. PubMed DOI

Shi Y., Hoveyda A.H. Catalytic SN2′- and Enantioselective Allylic Substitution with a Diborylmethane Reagent and Application in Synthesis. Angew. Chem. Int. Ed. 2016;55:3455–3458. doi: 10.1002/anie.201600309. PubMed DOI PMC

Wu F., Li Z., Fu C., Wang G., Zheng C., Wu X. Synergistic Ni/Pd Catalysis for Asymmetric Allylic Alkylation of 2-Acyl Imidazoles. Org. Lett. 2023;25:5448–5453. doi: 10.1021/acs.orglett.3c01726. PubMed DOI

Jacques R., Pullin R.D.C., Fletcher S.P. Desymmetrization of meso-bisphosphates using copper catalysis and alkylzirconocene nucleophiles. Nat. Commun. 2019;10:21. doi: 10.1038/s41467-018-07871-x. PubMed DOI PMC

Wang S., Zhang Q., Niu J., Guo X., Xiong T., Zhang Q. Copper-Catalyzed Asymmetric Hydroallylation of Vinylsilanes. Eur. J. Org. Chem. 2022;2022:e202101575. doi: 10.1002/ejoc.202101575. DOI

Wang Y.-M., Buchwald S.L. Enantioselective CuH-Catalyzed Hydroallylation of Vinylarenes. J. Am. Chem. Soc. 2016;138:5024–5027. doi: 10.1021/jacs.6b02527. PubMed DOI PMC

Yurino T., Tani R., Ohkuma T. Pd-Catalyzed Allylic Isocyanation: Nucleophilic N-Terminus Substitution of Ambident Cyanide. ACS Catal. 2019;9:4434–4440. doi: 10.1021/acscatal.9b00858. DOI

Yurino T., Tange Y., Ohkuma T. Palladium-Catalyzed Nucleophilic Isocyanation for the Synthesis of α-Aryl-α-Isocyanoacetoamide Derivatives. Bull. Chem. Soc. Jpn. 2021;94:2155–2161. doi: 10.1246/bcsj.20210214. DOI

Yurino T., Tange Y., Tani R., Ohkuma T. Ag2O-catalysed nucleophilic isocyanation: Selective formation of less-stable benzylic isonitriles. Org. Chem. Front. 2020;7:1308–1313. doi: 10.1039/D0QO00336K. DOI

Takise R., Itami K., Yamaguchi J. Cyanation of Phenol Derivatives with Aminoacetonitriles by Nickel Catalysis. Org. Lett. 2016;18:4428–4431. doi: 10.1021/acs.orglett.6b02265. PubMed DOI

Li X.-H., Zheng B.-H., Ding C.-H., Hou X.-L. Enantioselective Synthesis of 2,3-Disubstituted Indanones via Pd-Catalyzed Intramolecular Asymmetric Allylic Alkylation of Ketones. Org. Lett. 2013;15:6086–6089. doi: 10.1021/ol402980v. PubMed DOI

Spoehrle S.S.M., West T.H., Taylor J.E., Slawin A.M.Z., Smith A.D. Tandem Palladium and Isothiourea Relay Catalysis: Enantioselective Synthesis of α-Amino Acid Derivatives via Allylic Amination and [2,3]-Sigmatropic Rearrangement. J. Am. Chem. Soc. 2017;139:11895–11902. doi: 10.1021/jacs.7b05619. PubMed DOI PMC

Trost B.M., Zhang G., Xu M., Qi X. ProPhenol Derived Ligands to Simultaneously Coordinate a Main-Group Metal and a Transition Metal: Application to a Zn−Cu Catalyzed Reaction. Chem. Eur. J. 2022;28:e202104268. doi: 10.1002/chem.202104268. PubMed DOI

Zhang P., Xu J., Gao Y., Li X., Tang G., Zhao Y. Synthesis of Diarylmethanes through Palladium-Catalyzed Coupling of Benzylic Phosphates with Arylsilanes. Synlett. 2014;25:2928–2932. doi: 10.1002/chin.201520096. DOI

Zhang Y., Raugh N., Koert U. Fluorotrifluoromethyl Group Installation: Tetrasubstituted Tertiary Stereocenters Containing C–F and C–CF3 Bonds via Copper-Mediated Allylic Substitution. Org. Lett. 2023;25:5641–5645. doi: 10.1021/acs.orglett.3c02032. PubMed DOI

Okumura M., Sarlah D. Arenophile-Mediated Dearomative Functionalization Strategies. Synlett. 2018;29:845–855. doi: 10.1055/s-0036-1591940. DOI

Petrenko A., Mrkobrada S., Tobrman T. State-or-the-Art Approaches to the Synthesis of 2H-Pyrroles. Targets Heterocycl. Syst. 2021;25:308–325. doi: 10.17374/targets.2022.25.308. DOI

Polák P., Tobrman T. Dearomatization Strategy for the Synthesis of Arylated 2H-Pyrroles and 2,3,5-Trisubstituted 1H-Pyrroles. Org. Lett. 2017;19:4608–4611. doi: 10.1021/acs.orglett.7b02219. PubMed DOI

Huang G., Yin B. Recent Developments in Transition Metal-Catalyzed Dearomative Cyclizations of Indoles as Dipolarophiles for the Construction of Indolines. Adv. Synth. Catal. 2019;361:405–425. doi: 10.1002/adsc.201800789. DOI

Komatsuda M., Muto K., Yamaguchi J. Pd-Catalyzed Dearomative Allylation of Benzyl Phosphates. Org. Lett. 2018;20:4354–4357. doi: 10.1021/acs.orglett.8b01807. PubMed DOI

Yanagimoto A., Komatsuda M., Muto K., Yamaguchi J. Dearomative Allylation of Naphthyl Cyanohydrins by Palladium Catalysis: Catalyst-Enhanced Site Selectivity. Org. Lett. 2020;22:3423–3427. doi: 10.1021/acs.orglett.0c00897. PubMed DOI

Trost B.M., Czabaniuk L.C. Palladium-Catalyzed Asymmetric Benzylation of Azlactones. Chem. Eur. J. 2013;19:15210–15218. doi: 10.1002/chem.201302390. PubMed DOI

Schwarz K.J., Yang C., Fyfe J.W.B., Snaddon T.N. Enantioselective α-Benzylation of Acyclic Esters Using π-Extended Electrophiles. Angew. Chem. Int. Ed. 2018;57:12102–12105. doi: 10.1002/anie.201806742. PubMed DOI PMC

Nagahara T., Yokoyama Y., Inamura K., Katakura S.-i., Komoriya S., Yamaguchi H., Hara T., Iwamoto M. Dibasic (Amidinoaryl)propanoic Acid Derivatives as Novel Blood Coagulation Factor Xa Inhibitors. J. Med. Chem. 1994;37:1200–1207. doi: 10.1021/jm00034a018. PubMed DOI

Miura H., Toyomasu T., Nishio H., Shishido T. Gold-catalyzed thioetherification of allyl, benzyl, and propargyl phosphates. Catal. Sci. Technol. 2022;12:1109–1116. doi: 10.1039/D1CY02085D. DOI

Zhang K., Provot O., Alami M., Tran C., Hamze A. Pd-Catalyzed Coupling of N-Tosylhydrazones with Benzylic Phosphates: Toward the Synthesis of Di- or Tri-Substituted Alkenes. J. Org. Chem. 2022;87:1249–1261. doi: 10.1021/acs.joc.1c02580. PubMed DOI

Sharpless K.B., Amberg W., Bennani Y.L., Crispino G.A., Hartung J., Jeong K.S., Kwong H.L., Morikawa K., Wang Z.M. The osmium-catalyzed asymmetric dihydroxylation: A new ligand class and a process improvement. J. Org. Chem. 1992;57:2768–2771. doi: 10.1021/jo00036a003. DOI

Krawczyk E., Mielniczak G., Owsianik K., Łuczak J. Asymmetric oxidation of enol phosphates to α-hydroxy ketones using Sharpless reagents and a fructose derived dioxirane. Tetrahedron Asymmetry. 2012;23:1480–1489. doi: 10.1016/j.tetasy.2012.09.012. DOI

Owsianik K., Krawczyk E., Mielniczak G., Koprowski M., Sieroń L. Three-step synthesis of chiral and sterically hindered amino alcohols based on cyclic enol phosphates. Tetrahedron. 2018;74:7343–7350. doi: 10.1016/j.tet.2018.10.072. DOI

Krawczyk E., Koprowski M., Mielniczak G., Owsianik K. Asymmetric synthesis of 5,7-O-dimethyleucomols via enantioselective oxidation of enol phosphates. Tetrahedron Asymmetry. 2015;26:876–883. doi: 10.1016/j.tetasy.2015.06.015. DOI

Bulman Page P.C., Almutairi S.M., Chan Y., Stephenson G.R., Gama Y., Goodyear R.L., Douteau A., Allin S.M., Jones G.A. Asymmetric Oxidation of Enol Derivatives to α-Alkoxy Carbonyls Using Iminium Salt Catalysts: A Synthetic and Computational Study. J. Org. Chem. 2019;84:544–559. doi: 10.1021/acs.joc.8b02354. PubMed DOI

Wang H., Lu Q., Qian C., Liu C., Liu W., Chen K., Lei A. Solvent-Enabled Radical Selectivities: Controlled Syntheses of Sulfoxides and Sulfides. Angew. Chem. Int. Ed. 2016;55:1094–1097. doi: 10.1002/anie.201508729. PubMed DOI

Wang H., Wang G., Lu Q., Chiang C.-W., Peng P., Zhou J., Lei A. Catalyst-Free Difunctionalization of Activated Alkenes in Water: Efficient Synthesis of β-Keto Sulfides and Sulfones. Chem. Eur. J. 2016;22:14489–14493. doi: 10.1002/chem.201603041. PubMed DOI

Liu L., Li Y., Wang F., Ning R., Kong D., Wu M. A new synthetic approach to oxindoles (1,3-dihydro-2H-indol-2-ones) by reductive dephosphorylation with hydroiodic acid of 3-(diethylphosphoryloxy)- oxindoles, derived from isatins (1H-Indole-2,3-diones) ARKIVOC. 2022;2022:135–146. doi: 10.24820/ark.5550190.p011.766. DOI

Chowdhury S., Standaert R.F. Deoxygenation of Unhindered Alcohols via Reductive Dealkylation of Derived Phosphate Esters. J. Org. Chem. 2016;81:9957–9963. doi: 10.1021/acs.joc.6b01699. PubMed DOI

Wang H., Wang Z., Zhao G., Ramadoss V., Tian L., Wang Y. Electrochemical Deoxygenative Barbier-Type Reaction. Org. Lett. 2022;24:3668–3673. doi: 10.1021/acs.orglett.2c01286. PubMed DOI

Tomkiel A.M., Siergiejczyk L., Naróg D., Płoszyńska J., Sobkowiak A., Morzycki J.W. Electrochemical cholesterylation of sugars with cholesteryl diphenylphosphate. Steroids. 2017;117:44–51. doi: 10.1016/j.steroids.2016.05.011. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Trisubstituted Alkenes as Valuable Building Blocks

. 2025 Aug 13 ; 30 (16) : . [epub] 20250813

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...