Trisubstituted Alkenes as Valuable Building Blocks

. 2025 Aug 13 ; 30 (16) : . [epub] 20250813

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40871523

The stereoselective synthesis of trisubstituted alkenes has become a key topic in modern organic chemistry. At the same time, trisubstituted alkenes also serve as valuable starting materials for a wide range of transformations. However, it remains unclear to what extent these alkenes are utilized in comparison to their mono- and disubstituted counterparts. This review aims to provide a comprehensive overview of fundamental transformations involving all-carbon-substituted trisubstituted alkenes. The first section focuses on additions of carbon, oxygen, and nitrogen nucleophiles, as well as halogenation and carboxylation reactions. The second part discusses oxidative cleavage processes, while the final section addresses the cyclization and cycloisomerization reactions of trisubstituted alkenes.

Zobrazit více v PubMed

Sun D.-Y., Han G.-Y., Yang N.-N., Lan L.-F., Li X.-W., Guo Y.-W. Racemic Trinorsesquiterpenoids from the Beihai Sponge Spongia Officinalis: Structure and Biomimetic Total Synthesis. Org. Chem. Front. 2018;5:1022–1027. doi: 10.1039/C7QO01091E. DOI

Seo Y.-J., Lee K.-T., Rho J.-R., Choi J.-H. Phorbaketal A, Isolated from the Marine Sponge Phorbas sp., Exerts Its Anti-Inflammatory Effects Via Nf-κB Inhibition and Heme Oxygenase-1 Activation in Lipopolysaccharide-Stimulated Macrophages. Mar. Drugs. 2015;13:7005–7019. doi: 10.3390/md13117005. PubMed DOI PMC

Legha S.S. Tamoxifen in the Treatment of Breast Cancer. Ann. Intern. Med. 1988;109:219–228. doi: 10.7326/0003-4819-109-3-219. PubMed DOI

Conlon J.L. Diethylstilbestrol: Potential Health Risks for Women Exposed in Utero and Their Offspring. JAAPA. 2017;30:49–52. doi: 10.1097/01.JAA.0000511800.91372.34. PubMed DOI

Li M.-Y., Zhai S., Nong X.-M., Gu A., Li J., Lin G.-Q., Liu Y. Trisubstituted Alkenes Featuring Aryl Groups: Stereoselective Synthetic Strategies and Applications. Sci. China Chem. 2023;66:1261–1287. doi: 10.1007/s11426-022-1515-5. DOI

La D.D., Bhosale S.V., Jones L.A., Bhosale S.V. Tetraphenylethylene-Based AIE-Active Probes for Sensing Applications. ACS Appl. Mater. Interfaces. 2018;10:12189–12216. doi: 10.1021/acsami.7b12320. PubMed DOI

Yan D., Wu Q., Wang D., Tang B.Z. Innovative Synthetic Procedures for Luminogens Showing Aggregation-Induced Emission. Angew. Chem. Int. Ed. 2021;60:15724–15742. doi: 10.1002/anie.202006191. PubMed DOI

Bhakta S., Ghosh T. Emerging Nickel Catalysis in Heck Reactions: Recent Developments. Adv. Synth. Catal. 2020;362:5257–5274. doi: 10.1002/adsc.202000820. DOI

Burt L.K., Fuller R.O., Maiti D., Bissember A.C. Mizoroki-Heck-Type Transformations in Natural Product Synthesis: Case Studies in Carbopalladation and Forging All-Carbon Quaternary Stereocenters. Chem Catal. 2024;4:100921. doi: 10.1016/j.checat.2024.100921. DOI

Wu J., Du W., Zhang L., Li G., Xia Z. Gold-Catalyzed Heck and Suzuki-Type Reactions: Challenges and Recent Advances. Eur. J. Org. Chem. 2024;27:e202400793. doi: 10.1002/ejoc.202400793. DOI

Zhao G., Li W., Zhang J. Recent Advances in Palladium-Catalyzed Asymmetric Heck/Tsuji–Trost Reactions of 1,n-Dienes. Chem. Eur. J. 2024;30:e202400076. doi: 10.1002/chem.202400076. PubMed DOI

Bhakta S., Ghosh T. Nickel-Catalyzed Hydroarylation Reaction: A Useful Tool in Organic Synthesis. Org. Chem. Front. 2022;9:5074–5103. doi: 10.1039/D2QO00826B. DOI

Bora J., Dutta M., Chetia B. Cobalt Catalyzed Alkenylation/Annulation Reactions of Alkynes Via C–H Activation: A Review. Tetrahedron. 2023;132:133248. doi: 10.1016/j.tet.2023.133248. DOI

Ghosh T., Chatterjee J., Bhakta S. Gold-Catalyzed Hydroarylation Reactions: A Comprehensive Overview. Org. Biomol. Chem. 2022;20:7151–7187. doi: 10.1039/D2OB00960A. PubMed DOI

Maayuri R., Gandeepan P. Manganese-Catalyzed Hydroarylation of Multiple Bonds. Org. Biomol. Chem. 2023;21:441–464. doi: 10.1039/D2OB01674E. PubMed DOI

Zhu W., Gunnoe T.B. Advances in Group 10 Transition-Metal-Catalyzed Arene Alkylation and Alkenylation. J. Am. Chem. Soc. 2021;143:6746–6766. doi: 10.1021/jacs.1c01810. PubMed DOI

Hoveyda A.H., Qin C., Sui X.Z., Liu Q., Li X., Nikbakht A. Taking Olefin Metathesis to the Limit: Stereocontrolled Synthesis of Trisubstituted Alkenes. Acc. Chem. Res. 2023;56:2426–2446. doi: 10.1021/acs.accounts.3c00341. PubMed DOI

Odewole O.A., Swart M.R., Erasmus E. Metathesis Reactions: Effect of Additives as Co-Catalysts to Grubbs’ or Schrock’s Catalyst. Tetrahedron. 2024;162:134105. doi: 10.1016/j.tet.2024.134105. DOI

Chrenko D., Pospíšil J. Latest Developments of the Julia–Kocienski Olefination Reaction: Mechanistic Considerations. Molecules. 2024;29:2719. doi: 10.3390/molecules29122719. PubMed DOI PMC

Ouzounthanasis K.A., Rizos S.R., Koumbis A.E. Julia-Kocienski Olefination in the Synthesis of Trisubstituted Alkenes: Recent Progress. Eur. J. Org. Chem. 2023;26:e202300626. doi: 10.1002/ejoc.202300626. DOI

Rinu P.X.T., Radhika S., Anilkumar G. Recent Applications and Trends in the Julia-Kocienski Olefination. ChemistrySelect. 2022;7:e202200760. doi: 10.1002/slct.202200760. DOI

Sakaine G., Leitis Z., Ločmele R., Smits G. Julia-Kocienski Olefination: A Tutorial Review. Eur. J. Org. Chem. 2023;26:e202201217. doi: 10.1002/ejoc.202201217. DOI

Varsha V., Radhika S., Anilkumar G. An Overview of Julia-Lythgoe Olefination. Curr. Org. Synth. 2024;21:97–126. doi: 10.2174/1570179420666230510104114. PubMed DOI

Janicki I., Kiełbasiński P. Still–Gennari Olefination and Its Applications in Organic Synthesis. Adv. Synth. Catal. 2020;362:2552–2596. doi: 10.1002/adsc.201901591. DOI

Ilia G., Simulescu V., Plesu N., Chiriac V., Merghes P. Wittig and Wittig–Horner Reactions under Sonication Conditions. Molecules. 2023;28:1958. doi: 10.3390/molecules28041958. PubMed DOI PMC

McNulty J., McLeod D., Das P., Zepeda-Velázquez C. Wittig Reactions of Trialkylphosphine-Derived Ylides: New Directions and Applications in Organic Synthesis. Phosphorus Sulfur Silicon Relat. Elem. 2015;190:619–632. doi: 10.1080/10426507.2014.980907. DOI

Cachatra V., Rauter A.P. Revisiting Wittig Olefination and Aza-Wittig Reaction for Carbohydrate Transformations and Stereocontrol in Sugar Chemistry. Curr. Org. Chem. 2014;18:1731–1748. doi: 10.2174/1385272819666140527230833. DOI

Bisceglia J.Á., Orelli L.R. Recent Progress in the Horner-Wadsworth-Emmons Reaction. Curr. Org. Chem. 2015;19:744–775. doi: 10.2174/1385272819666150311231006. DOI

Bilska-Markowska M., Kaźmierczak M. Horner–Wadsworth–Emmons Reaction as an Excellent Tool in the Synthesis of Fluoro-Containing Biologically Important Compounds. Org. Biomol. Chem. 2023;21:1095–1120. doi: 10.1039/D2OB01969H. PubMed DOI

Roman D., Sauer M., Beemelmanns C. Applications of the Horner–Wadsworth–Emmons Olefination in Modern Natural Product Synthesis. Synthesis. 2021;53:2713–2739.

Tobrman T., Mrkobrada S. Palladium-Catalyzed Cross-Coupling Reactions of Borylated Alkenes for the Stereoselective Synthesis of Tetrasubstituted Double Bond. Organics. 2022;3:210–239. doi: 10.3390/org3030017. DOI

Edlová T., Čubiňák M., Tobrman T. Cross-Coupling Reactions of Double or Triple Electrophilic Templates for Alkene Synthesis. Synthesis. 2021;53:255–266.

Polák P., Váňová H., Dvořák D., Tobrman T. Recent Progress in Transition Metal-Catalyzed Stereoselective Synthesis of Acyclic All-Carbon Tetrasubstituted Alkenes. Tetrahedron Lett. 2016;57:3684–3693. doi: 10.1016/j.tetlet.2016.07.030. DOI

Negishi E.-i., Huang Z., Wang G., Mohan S., Wang C., Hattori H. Recent Advances in Efficient and Selective Synthesis of Di-, Tri-, and Tetrasubstituted Alkenes Via Pd-Catalyzed Alkenylation−Carbonyl Olefination Synergy. Acc. Chem. Res. 2008;41:1474–1485. doi: 10.1021/ar800038e. PubMed DOI

Reiser O. Palladium-Catalyzed Coupling Reactions for the Stereoselective Synthesis of Tri- and Tetrasubstituted Alkenes. Angew. Chem. Int. Ed. 2006;45:2838–2840. doi: 10.1002/anie.200600025. PubMed DOI

Buttard F., Sharma J., Champagne P.A. Recent Advances in the Stereoselective Synthesis of Acyclic All-Carbon Tetrasubstituted Alkenes. Chem. Commun. 2021;57:4071–4088. doi: 10.1039/D1CC00596K. PubMed DOI

Flynn A.B., Ogilvie W.W. Stereocontrolled Synthesis of Tetrasubstituted Olefins. Chem. Rev. 2007;107:4698–4745. doi: 10.1021/cr050051k. PubMed DOI

Oeser P., Tobrman T. Organophosphates as Versatile Substrates in Organic Synthesis. Molecules. 2024;29:1593. doi: 10.3390/molecules29071593. PubMed DOI PMC

Alkayal A., Tabas V., Montanaro S., Wright I.A., Malkov A.V., Buckley B.R. Harnessing Applied Potential: Selective Β-Hydrocarboxylation of Substituted Olefins. J. Am. Chem. Soc. 2020;142:1780–1785. doi: 10.1021/jacs.9b13305. PubMed DOI

Huang H., Ye J.-H., Zhu L., Ran C.-K., Miao M., Wang W., Chen H., Zhou W.-J., Lan Y., Yu B., et al. Visible-Light-Driven Anti-Markovnikov Hydrocarboxylation of Acrylates and Styrenes with CO2. CCS Chem. 2021;3:1746–1756. doi: 10.31635/ccschem.020.202000374. DOI

Qi W., Gu S., Xie L.-G. Reductive Radical-Polar Crossover Enabled Carboxylative Alkylation of Aryl Thianthrenium Salts with CO2 and Styrenes. Org. Lett. 2024;26:728–733. doi: 10.1021/acs.orglett.3c04183. PubMed DOI

Tanaka S., Tanaka Y., Chiba M., Hattori T. Lewis Acid-Mediated β-Selective Hydrocarboxylation of α,α-Diaryl- and α-Arylalkenes with R3SiH and CO2. Tetrahedron Lett. 2015;56:3830–3834. doi: 10.1016/j.tetlet.2015.04.090. DOI

Liao L.-L., Cao G.-M., Jiang Y.-X., Jin X.-H., Hu X.-L., Chruma J.J., Sun G.-Q., Gui Y.-Y., Yu D.-G. α-Amino Acids and Peptides as Bifunctional Reagents: Carbocarboxylation of Activated Alkenes Via Recycling CO2. J. Am. Chem. Soc. 2021;143:2812–2821. doi: 10.1021/jacs.0c11896. PubMed DOI

Chen X.-W., Zhu L., Gui Y.-Y., Jing K., Jiang Y.-X., Bo Z.-Y., Lan Y., Li J., Yu D.-G. Highly Selective and Catalytic Generation of Acyclic Quaternary Carbon Stereocenters Via Functionalization of 1,3-Dienes with CO2. J. Am. Chem. Soc. 2019;141:18825–18835. doi: 10.1021/jacs.9b09721. PubMed DOI

Ren K., Yuan R., Gui Y.-Y., Chen X.-W., Min S.-Y., Wang B.-Q., Yu D.-G. Cu-Catalyzed Reductive Aminomethylation of 1,3-Dienes with N,O-Acetals: Facile Construction of β-Chiral Amines with Quaternary Stereocenters. Org. Chem. Front. 2023;10:467–472. doi: 10.1039/D2QO01774A. DOI

Ye J.-H., Song L., Zhou W.-J., Ju T., Yin Z.-B., Yan S.-S., Zhang Z., Li J., Yu D.-G. Selective Oxytrifluoromethylation of Allylamines with CO2. Angew. Chem. Int. Ed. 2016;55:10022–10026. doi: 10.1002/anie.201603352. PubMed DOI

Sun L., Ye J.-H., Zhou W.-J., Zeng X., Yu D.-G. Oxy-Alkylation of Allylamines with Unactivated Alkyl Bromides and CO2 Via Visible-Light-Driven Palladium Catalysis. Org. Lett. 2018;20:3049–3052. doi: 10.1021/acs.orglett.8b01079. PubMed DOI

Baś S., Yamashita Y., Kobayashi S. Development of Brønsted Base–Photocatalyst Hybrid Systems for Highly Efficient C–C Bond Formation Reactions of Malonates with Styrenes. ACS Catal. 2020;10:10546–10550. doi: 10.1021/acscatal.0c02716. DOI

Cauwenbergh R., Sahoo P.K., Maiti R., Mathew A., Kuniyil, Das S. Selective Synthesis of Functionalized Linear Aliphatic Primary Amines Via Decarboxylative Radical-Polar Crossover. Green Chem. 2024;26:264–276. doi: 10.1039/D3GC03187J. DOI

Kitamura T., Komoto R., Oyamada J., Higashi M., Kishikawa Y. Iodine-Mediated Fluorination of Alkenes with an Hf Reagent: Regioselective Synthesis of 2-Fluoroalkyl Iodides. J. Org. Chem. 2021;86:18300–18303. doi: 10.1021/acs.joc.1c02422. PubMed DOI

Liu J., Rong J., Wood D.P., Wang Y., Liang S.H., Lin S. Co-Catalyzed Hydrofluorination of Alkenes: Photocatalytic Method Development and Electroanalytical Mechanistic Investigation. J. Am. Chem. Soc. 2024;146:4380–4392. doi: 10.1021/jacs.3c10989. PubMed DOI PMC

Fu N., Sauer G.S., Lin S. Electrocatalytic Radical Dichlorination of Alkenes with Nucleophilic Chlorine Sources. J. Am. Chem. Soc. 2017;139:15548–15553. doi: 10.1021/jacs.7b09388. PubMed DOI

Lu L., Fu N., Lin S. Three-Component Chlorophosphinoylation of Alkenes Via Anodically Coupled Electrolysis. Synlett. 2019;30:1199–1203. doi: 10.1055/s-0039-1689934. DOI

Zhang L., Zhao Z., Wang W., Liu S., Wang Y. Iodonium Ylides Enable the Direct Installation of Hydroxylamines and Oximes into a Broad Range of Alkenes. Org. Lett. 2019;21:9171–9174. doi: 10.1021/acs.orglett.9b03534. PubMed DOI

Zhang S., Li L., Wu P., Gong P., Liu R., Xu K. Substrate-Dependent Electrochemical Dimethoxylation of Olefins. Adv. Synth. Catal. 2019;361:485–489. doi: 10.1002/adsc.201801173. DOI

Cai C.-Y., Xu H.-C. Dehydrogenative Reagent-Free Annulation of Alkenes with Diols for the Synthesis of Saturated O-Heterocycles. Nat. Commun. 2018;9:3551. doi: 10.1038/s41467-018-06020-8. PubMed DOI PMC

Zhang J.-Z., Tang Y. Iron-Catalyzed Regioselective Oxo- and Hydroxy-Phthalimidation of Styrenes: Access to α-Hydroxyphthalimide Ketones. Adv. Synth. Catal. 2016;358:752–764. doi: 10.1002/adsc.201500732. DOI

Zhang Z., Li J., Cai Z., Kang S., Wang J., Cui Y., Han S., Sheng L., Yin Q., Dai A., et al. Electrochemical Aerobic Wacker-Type Oxygenation of Triaryl Substituted Alkenes to 1,2,2-Triarylethanones. Chem. Commun. 2024;60:3035–3038. doi: 10.1039/D3CC05770D. PubMed DOI

Liu S., Ju L., Wang X., Wu X., Zhang T., Wu Q. Electrochemical Oxidation-Induced Diazolation of Alkenes to Build N,N′-Ethylene-Bridged Bispyrazole Derivatives. Tetrahedron. 2023;148:133707. doi: 10.1016/j.tet.2023.133707. DOI

Musacchio A.J., Lainhart B.C., Zhang X., Naguib S.G., Sherwood T.C., Knowles R.R. Catalytic Intermolecular Hydroaminations of Unactivated Olefins with Secondary Alkyl Amines. Science. 2017;355:727–730. doi: 10.1126/science.aal3010. PubMed DOI PMC

Geunes E.P., Meinhardt J.M., Wu E.J., Knowles R.R. Photocatalytic Anti-Markovnikov Hydroamination of Alkenes with Primary Heteroaryl Amines. J. Am. Chem. Soc. 2023;145:21738–21744. doi: 10.1021/jacs.3c08428. PubMed DOI PMC

Wu Z.-J., Li Z., Ren Y., Meng L.-G. Overcoming Selectivity Trade-Offs in Alkene Azidodifluoroalkylation: An Enlightening Synergistic Catalytic Approach. Org. Lett. 2025;27:115–120. doi: 10.1021/acs.orglett.4c04015. PubMed DOI

Fu N., Sauer G.S., Lin S. A General, Electrocatalytic Approach to the Synthesis of Vicinal Diamines. Nat. Protoc. 2018;13:1725–1743. doi: 10.1038/s41596-018-0010-0. PubMed DOI

Fu N., Sauer G.S., Saha A., Loo A., Lin S. Metal-Catalyzed Electrochemical Diazidation of Alkenes. Science. 2017;357:575–579. doi: 10.1126/science.aan6206. PubMed DOI

Siu J.C., Sauer G.S., Saha A., Macey R.L., Fu N., Chauviré T., Lancaster K.M., Lin S. Electrochemical Azidooxygenation of Alkenes Mediated by a Tempo–N3 Charge-Transfer Complex. J. Am. Chem. Soc. 2018;140:12511–12520. doi: 10.1021/jacs.8b06744. PubMed DOI PMC

Ju M., Lee S., Marvich H.M., Lin S. Accessing Alkoxy Radicals Via Frustrated Radical Pairs: Diverse Oxidative Functionalizations of Tertiary Alcohols. J. Am. Chem. Soc. 2024;146:19696–19703. doi: 10.1021/jacs.4c07125. PubMed DOI PMC

Kendall A.J., Barry J.T., Seidenkranz D.T., Ryerson A., Hiatt C., Salazar C.A., Bryant D.J., Tyler D.R. Highly Efficient Biphasic Ozonolysis of Alkenes Using a High-Throughput Film-Shear Flow Reactor. Tetrahedron Lett. 2016;57:1342–1345. doi: 10.1016/j.tetlet.2016.02.042. DOI

Li X., Hua H., Liu Y., Yu L. Iron-Promoted Catalytic Activity of Selenium Endowing the Aerobic Oxidative Cracking Reaction of Alkenes. Org. Lett. 2023;25:6720–6724. doi: 10.1021/acs.orglett.3c02569. PubMed DOI

Wang T., Jing X., Chen C., Yu L. Organoselenium-Catalyzed Oxidative C=C Bond Cleavage: A Relatively Green Oxidation of Alkenes into Carbonyl Compounds with Hydrogen Peroxide. J. Org. Chem. 2017;82:9342–9349. doi: 10.1021/acs.joc.7b01245. PubMed DOI

Yap C.P., Ng J.K., Madrahimov S., Bengali A.A., Chwee T.S., Fan W.Y. Oxidation of Aromatic Alkenes and Alkynes Catalyzed by a Hexa-Acetonitrile Iron(II) Ionic Complex [Fe(Ch3CN)6][BF4]2. New J. Chem. 2018;42:11131–11136. doi: 10.1039/C8NJ02226G. DOI

Joarder D.D., Gayen S., Sarkar R., Bhattacharya R., Roy S., Maiti D.K. (Ar-tpy)RuII(Acn)3: A Water-Soluble Catalyst for Aldehyde Amidation, Olefin Oxo-Scissoring, and Alkyne Oxygenation. J. Org. Chem. 2019;84:8468–8480. doi: 10.1021/acs.joc.9b00487. PubMed DOI

Yu T., Guo M., Wen S., Zhao R., Wang J., Sun Y., Liu Q., Zhou H. Poly(Ethylene Glycol) Dimethyl Ether Mediated Oxidative Scission of Aromatic Olefins to Carbonyl Compounds by Molecular Oxygen. RSC Adv. 2021;11:13848–13852. doi: 10.1039/D1RA02007B. PubMed DOI PMC

Chen Y.-X., He J.-T., Wu M.-C., Liu Z.-L., Tang K., Xia P.-J., Chen K., Xiang H.-Y., Chen X.-Q., Yang H. Photochemical Organocatalytic Aerobic Cleavage of C=C Bonds Enabled by Charge-Transfer Complex Formation. Org. Lett. 2022;24:3920–3925. doi: 10.1021/acs.orglett.2c01192. PubMed DOI

Wise D.E., Gogarnoiu E.S., Duke A.D., Paolillo J.M., Vacala T.L., Hussain W.A., Parasram M. Photoinduced Oxygen Transfer Using Nitroarenes for the Anaerobic Cleavage of Alkenes. J. Am. Chem. Soc. 2022;144:15437–15442. doi: 10.1021/jacs.2c05648. PubMed DOI

Huang Z., Guan R., Shanmugam M., Bennett E.L., Robertson C.M., Brookfield A., McInnes E.J.L., Xiao J. Oxidative Cleavage of Alkenes by O2 with a Non-Heme Manganese Catalyst. J. Am. Chem. Soc. 2021;143:10005–10013. doi: 10.1021/jacs.1c05757. PubMed DOI PMC

Xue W., Jiang Y., Lu H., You B., Wang X., Tang C. Direct C−C Double Bond Cleavage of Alkenes Enabled by Highly Dispersed Cobalt Catalyst and Hydroxylamine. Angew. Chem. Int. Ed. 2023;62:e202314364. doi: 10.1002/anie.202314364. PubMed DOI

Yuan P.-F., Meng Q.-Y. Carboxylation of Alkenes with CO2 Via Photocatalytic Cleavage of C=C Double Bonds. Synlett. 2024;35:1937–1946. doi: 10.1055/s-0043-1763755. DOI

Li Y.-L., Li J., Ma A.-L., Huang Y.-N., Deng J. Metal-Free Synthesis of Indole Via Nis-Mediated Cascade C–N Bond Formation/Aromatization. J. Org. Chem. 2015;80:3841–3851. doi: 10.1021/acs.joc.5b00090. PubMed DOI

Youn S.W., Ko T.Y., Jang M.J., Jang S.S. Silver(I)-Mediated C–H Amination of 2-Alkenylanilines: Unique Solvent-Dependent Migratory Aptitude. Adv. Synth. Catal. 2015;357:227–234. doi: 10.1002/adsc.201400759. DOI

Youn S.W., Lee S.R. Unusual 1,2-Aryl Migration in Pd(II)-Catalyzed Aza-Wacker-Type Cyclization of 2-Alkenylanilines. Org. Biomol. Chem. 2015;13:4652–4656. doi: 10.1039/C5OB00361J. PubMed DOI

Zhang H.-M., Gao Z.-H., Yi L., Ye S. Brønsted Acid-Catalyzed Synthesis of N-Arylindoles from 2-Vinylanilines and Quinones. Chem. Asian J. 2016;11:2671–2674. doi: 10.1002/asia.201600420. PubMed DOI

Zhao C.-Y., Li K., Pang Y., Li J.-Q., Liang C., Su G.-F., Mo D.-L. Iodine(III) Reagent-Mediated Intramolecular Amination of 2-Alkenylanilines to Prepare Indoles. Adv. Synth. Catal. 2018;360:1919–1925. doi: 10.1002/adsc.201701551. DOI

Kim J.H., Lee S.A., Jeon T.S., Cha J.K., Kim Y.G. A Unified Approach to Mono- and 2,3-Disubstituted N–H Indoles. Synlett. 2023;34:1719–1722. doi: 10.1055/s-0042-1752656. DOI

Tong S., Xu Z., Mamboury M., Wang Q., Zhu J. Aqueous Titanium Trichloride Promoted Reductive Cyclization of O-Nitrostyrenes to Indoles: Development and Application to the Synthesis of Rizatriptan and Aspidospermidine. Angew. Chem. Int. Ed. 2015;54:11809–11812. doi: 10.1002/anie.201505713. PubMed DOI

Yang K., Zhou F., Kuang Z., Gao G., Driver T.G., Song Q. Diborane-Mediated Deoxygenation of O-Nitrostyrenes to Form Indoles. Org. Lett. 2016;18:4088–4091. doi: 10.1021/acs.orglett.6b01934. PubMed DOI

Zhou F., Wang D.-S., Driver T.G. Palladium-Catalyzed Formation of N-Heteroarenes from Nitroarenes Using Molybdenum Hexacarbonyl as the Source of Carbon Monoxide. Adv. Synth. Catal. 2015;357:3463–3468. doi: 10.1002/adsc.201500700. DOI

Cheng H., Hernández J.G., Bolm C. Mechanochemical Ruthenium-Catalyzed Hydroarylations of Alkynes under Ball-Milling Conditions. Org. Lett. 2017;19:6284–6287. doi: 10.1021/acs.orglett.7b02973. PubMed DOI

Yang D., Zhu Y., Yang N., Jiang Q., Liu R. One-Step Synthesis of Substituted Benzofurans from Ortho- Alkenylphenols Via Palladium-Catalyzed C–H Functionalization. Adv. Synth. Catal. 2016;358:1731–1735. doi: 10.1002/adsc.201600082. DOI

Wu L., Zhang Z., Liao J., Li J., Wu W., Jiang H. MnO2-Promoted Carboesterification of Alkenes with Anhydrides: A Facile Approach to δ-Lactones. Chem. Commun. 2016;52:2628–2631. doi: 10.1039/C5CC08867D. PubMed DOI

Kochi J.K., Jenkins C.L.I. Ligand Transfer of Halides (Chloride, Bromide, Iodide) and Pseudohalides (Thiocyanate, Azide, Cyanide) from Copper(II) to Alkyl Radicals. J. Org. Chem. 1971;36:3095–3102. doi: 10.1021/jo00820a008. DOI

Yang Q., Jia Z., Li L., Zhang L., Luo S. Visible-Light Promoted Arene C–H/C–X Lactonization Via Carboxylic Radical Aromatic Substitution. Org. Chem. Front. 2018;5:237–241. doi: 10.1039/C7QO00826K. DOI

Li L., Yang Q., Jia Z., Luo S. Organocatalytic Electrochemical C–H Lactonization of Aromatic Carboxylic Acids. Synthesis. 2018;50:2924–2929. doi: 10.1055/s-0036-1591558. DOI

Yu E., Kim H., Park C.-M. Metal- and Oxidant-Free Electrosynthesis of Heterocycles from 1,2-Diarylalkene Derivatives. Adv. Synth. Catal. 2022;364:4088–4096. doi: 10.1002/adsc.202200847. DOI

Baris N., Dračínský M., Tarábek J., Filgas J., Slavíček P., Ludvíková L., Boháčová S., Slanina T., Klepetářová B., Beier P. Photocatalytic Generation of Trifluoromethyl Nitrene for Alkene Aziridination. Angew. Chem. Int. Ed. 2024;63:e202315162. doi: 10.1002/anie.202315162. PubMed DOI

Liu S., Zhao W., Li J., Wu N., Liu C., Wang X., Li S., Zhu Y., Liang Y., Cheng X. Electrochemical Aziridination of Tetrasubstituted Alkenes with Ammonia. CCS Chem. 2022;4:693–703. doi: 10.31635/ccschem.021.202100826. DOI

Li J., Huang W., Chen J., He L., Cheng X., Li G. Electrochemical Aziridination by Alkene Activation Using a Sulfamate as the Nitrogen Source. Angew. Chem. Int. Ed. 2018;57:5695–5698. doi: 10.1002/anie.201801106. PubMed DOI

Ošeka M., Laudadio G., van Leest N.P., Dyga M., Bartolomeu A.d.A., Gooßen L.J., de Bruin B., de Oliveira K.T., Noël T. Electrochemical Aziridination of Internal Alkenes with Primary Amines. Chem. 2021;7:255–266. doi: 10.1016/j.chempr.2020.12.002. DOI

Kinoshita H., Yaguchi K., Tohjima T., Hirai N., Miura K. Diisobutylaluminum Hydride-Promoted Cyclization of O-(Trimethylsilylethynyl)Styrenes to Substituted Naphthalenes. Tetrahedron Let. 2016;57:2039–2043. doi: 10.1016/j.tetlet.2016.03.099. DOI

García-García P., Sanjuán A.M., Rashid M.A., Martínez-Cuezva A., Fernández-Rodríguez M.A., Rodríguez F., Sanz R. Synthesis of Functionalized 1H-Indenes and Benzofulvenes through Iodocyclization of o-(Alkynyl)Styrenes. J. Org. Chem. 2017;82:1155–1165. doi: 10.1021/acs.joc.6b02788. PubMed DOI

Humanes M., Sans-Panadés E., Virumbrales C., Milián A., Sanz R., García-García P., Fernández-Rodríguez M.A. Selective Synthesis of Boron-Functionalized Indenes and Benzofulvenes by BCl3-Promoted Cyclizations of Ortho-Alkynylstyrenes. Org. Lett. 2024;26:6568–6573. doi: 10.1021/acs.orglett.4c02092. PubMed DOI PMC

Sanjuán A.M., Virumbrales C., García-García P., Fernández-Rodríguez M.A., Sanz R. Formal [4 + 1] Cycloadditions of β,β-Diaryl-Substituted ortho-(Alkynyl)Styrenes through Gold(I)-Catalyzed Cycloisomerization Reactions. Org. Lett. 2016;18:1072–1075. doi: 10.1021/acs.orglett.6b00191. PubMed DOI

Virumbrales C., El-Remaily M.A.E.A.A.A., Suárez-Pantiga S., Fernández-Rodríguez M.A., Rodríguez F., Sanz R. Gold(I) Catalysis Applied to the Stereoselective Synthesis of Indeno[2,1-b]Thiochromene Derivatives and Seleno Analogues. Org. Lett. 2022;24:8077–8082. doi: 10.1021/acs.orglett.2c03411. PubMed DOI PMC

Wu R., Chen Y., Zhu S. Rh(II)-Catalyzed Enynal Cycloisomerization for the Generation of Vinyl Carbene: Divergent Access to Polycyclic Heterocycles. ACS Catal. 2023;13:132–140. doi: 10.1021/acscatal.2c04832. DOI

Wang H., Cai S., Ai W., Xu X., Li B., Wang B. Silver-Catalyzed Activation of Pyridotriazoles for Formal Intramolecular Carbene Insertion into Vinylic C(Sp2)–H Bonds. Org. Lett. 2020;22:7255–7260. doi: 10.1021/acs.orglett.0c02586. PubMed DOI

Yang J., Rérat A., Lim Y.J., Gosmini C., Yoshikai N. Cobalt-Catalyzed Enantio- and Diastereoselective Intramolecular Hydroacylation of Trisubstituted Alkenes. Angew. Chem. Int. Ed. 2017;56:2449–2453. doi: 10.1002/anie.201611518. PubMed DOI

Biegasiewicz K.F., Cooper S.J., Gao X., Oblinsky D.G., Kim J.H., Garfinkle S.E., Joyce L.A., Sandoval B.A., Scholes G.D., Hyster T.K. Photoexcitation of Flavoenzymes Enables a Stereoselective Radical Cyclization. Science. 2019;364:1166–1169. doi: 10.1126/science.aaw1143. PubMed DOI PMC

Turek-Herman J.R., Rosenberger M., Hyster T.K. Synthesis of β-Quaternary Lactams Using Photoenzymatic Catalysis. Asian J. Org. Chem. 2023;12:e202300274. doi: 10.1002/ajoc.202300274. PubMed DOI PMC

Laguerre N., Riehl P.S., Oblinsky D.G., Emmanuel M.A., Black M.J., Scholes G.D., Hyster T.K. Radical Termination Via β-Scission Enables Photoenzymatic Allylic Alkylation Using “Ene”-Reductases. ACS Catal. 2022;12:9801–9805. doi: 10.1021/acscatal.2c02294. PubMed DOI PMC

Clayman P.D., Hyster T.K. Photoenzymatic Generation of Unstabilized Alkyl Radicals: An Asymmetric Reductive Cyclization. J. Am. Chem. Soc. 2020;142:15673–15677. doi: 10.1021/jacs.0c07918. PubMed DOI PMC

Nguyen S.T., Zhu Q., Knowles R.R. PCET-Enabled Olefin Hydroamidation Reactions with N-Alkyl Amides. ACS Catal. 2019;9:4502–4507. doi: 10.1021/acscatal.9b00966. PubMed DOI PMC

Choi G.J., Knowles R.R. Catalytic Alkene Carboaminations Enabled by Oxidative Proton-Coupled Electron Transfer. J. Am. Chem. Soc. 2015;137:9226–9229. doi: 10.1021/jacs.5b05377. PubMed DOI PMC

Roos C.B., Demaerel J., Graff D.E., Knowles R.R. Enantioselective Hydroamination of Alkenes with Sulfonamides Enabled by Proton-Coupled Electron Transfer. J. Am. Chem. Soc. 2020;142:5974–5979. doi: 10.1021/jacs.0c01332. PubMed DOI PMC

Xu E.Y., Werth J., Roos C.B., Bendelsmith A.J., Sigman M.S., Knowles R.R. Noncovalent Stabilization of Radical Intermediates in the Enantioselective Hydroamination of Alkenes with Sulfonamides. J. Am. Chem. Soc. 2022;144:18948–18958. doi: 10.1021/jacs.2c07099. PubMed DOI PMC

Zhang Z., Liao L.-L., Yan S.-S., Wang L., He Y.-Q., Ye J.-H., Li J., Zhi Y.-G., Yu D.-G. Lactamization of Sp2 C−H Bonds with CO2: Transition-Metal-Free and Redox-Neutral. Angew. Chem. Int. Ed. 2016;55:7068–7072. doi: 10.1002/anie.201602095. PubMed DOI

Jiang H., Lang K., Lu H., Wojtas L., Zhang X.P. Intramolecular Radical Aziridination of Allylic Sulfamoyl Azides by Cobalt(II)-Based Metalloradical Catalysis: Effective Construction of Strained Heterobicyclic Structures. Angew. Chem. Int. Ed. 2016;55:11604–11608. doi: 10.1002/anie.201605238. PubMed DOI PMC

Xu H., Wang D.-S., Zhu Z., Deb A., Zhang X.P. New Mode of Asymmetric Induction for Enantioselective Radical N-Heterobicyclization Via Kinetically Stable Chiral Radical Center. Chem. 2024;10:283–298. doi: 10.1016/j.chempr.2023.09.010. PubMed DOI PMC

Lee W.-C.C., Wang J., Zhu Y., Zhang X.P. Asymmetric Radical Bicyclization for Stereoselective Construction of Tricyclic Chromanones and Chromanes with Fused Cyclopropanes. J. Am. Chem. Soc. 2023;145:11622–11632. doi: 10.1021/jacs.3c01618. PubMed DOI PMC

Wang X., Ke J., Zhu Y., Deb A., Xu Y., Zhang X.P. Asymmetric Radical Process for General Synthesis of Chiral Heteroaryl Cyclopropanes. J. Am. Chem. Soc. 2021;143:11121–11129. doi: 10.1021/jacs.1c04655. PubMed DOI PMC

Zhang C., Wang D.-S., Lee W.-C.C., McKillop A.M., Zhang X.P. Controlling Enantioselectivity and Diastereoselectivity in Radical Cascade Cyclization for Construction of Bicyclic Structures. J. Am. Chem. Soc. 2021;143:11130–11140. doi: 10.1021/jacs.1c04719. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...