Trisubstituted Alkenes as Valuable Building Blocks
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40871523
PubMed Central
PMC12388111
DOI
10.3390/molecules30163370
PII: molecules30163370
Knihovny.cz E-zdroje
- Klíčová slova
- addition, cyclization, ozonolysis, trisubstituted alkenes,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The stereoselective synthesis of trisubstituted alkenes has become a key topic in modern organic chemistry. At the same time, trisubstituted alkenes also serve as valuable starting materials for a wide range of transformations. However, it remains unclear to what extent these alkenes are utilized in comparison to their mono- and disubstituted counterparts. This review aims to provide a comprehensive overview of fundamental transformations involving all-carbon-substituted trisubstituted alkenes. The first section focuses on additions of carbon, oxygen, and nitrogen nucleophiles, as well as halogenation and carboxylation reactions. The second part discusses oxidative cleavage processes, while the final section addresses the cyclization and cycloisomerization reactions of trisubstituted alkenes.
Zobrazit více v PubMed
Sun D.-Y., Han G.-Y., Yang N.-N., Lan L.-F., Li X.-W., Guo Y.-W. Racemic Trinorsesquiterpenoids from the Beihai Sponge Spongia Officinalis: Structure and Biomimetic Total Synthesis. Org. Chem. Front. 2018;5:1022–1027. doi: 10.1039/C7QO01091E. DOI
Seo Y.-J., Lee K.-T., Rho J.-R., Choi J.-H. Phorbaketal A, Isolated from the Marine Sponge Phorbas sp., Exerts Its Anti-Inflammatory Effects Via Nf-κB Inhibition and Heme Oxygenase-1 Activation in Lipopolysaccharide-Stimulated Macrophages. Mar. Drugs. 2015;13:7005–7019. doi: 10.3390/md13117005. PubMed DOI PMC
Legha S.S. Tamoxifen in the Treatment of Breast Cancer. Ann. Intern. Med. 1988;109:219–228. doi: 10.7326/0003-4819-109-3-219. PubMed DOI
Conlon J.L. Diethylstilbestrol: Potential Health Risks for Women Exposed in Utero and Their Offspring. JAAPA. 2017;30:49–52. doi: 10.1097/01.JAA.0000511800.91372.34. PubMed DOI
Li M.-Y., Zhai S., Nong X.-M., Gu A., Li J., Lin G.-Q., Liu Y. Trisubstituted Alkenes Featuring Aryl Groups: Stereoselective Synthetic Strategies and Applications. Sci. China Chem. 2023;66:1261–1287. doi: 10.1007/s11426-022-1515-5. DOI
La D.D., Bhosale S.V., Jones L.A., Bhosale S.V. Tetraphenylethylene-Based AIE-Active Probes for Sensing Applications. ACS Appl. Mater. Interfaces. 2018;10:12189–12216. doi: 10.1021/acsami.7b12320. PubMed DOI
Yan D., Wu Q., Wang D., Tang B.Z. Innovative Synthetic Procedures for Luminogens Showing Aggregation-Induced Emission. Angew. Chem. Int. Ed. 2021;60:15724–15742. doi: 10.1002/anie.202006191. PubMed DOI
Bhakta S., Ghosh T. Emerging Nickel Catalysis in Heck Reactions: Recent Developments. Adv. Synth. Catal. 2020;362:5257–5274. doi: 10.1002/adsc.202000820. DOI
Burt L.K., Fuller R.O., Maiti D., Bissember A.C. Mizoroki-Heck-Type Transformations in Natural Product Synthesis: Case Studies in Carbopalladation and Forging All-Carbon Quaternary Stereocenters. Chem Catal. 2024;4:100921. doi: 10.1016/j.checat.2024.100921. DOI
Wu J., Du W., Zhang L., Li G., Xia Z. Gold-Catalyzed Heck and Suzuki-Type Reactions: Challenges and Recent Advances. Eur. J. Org. Chem. 2024;27:e202400793. doi: 10.1002/ejoc.202400793. DOI
Zhao G., Li W., Zhang J. Recent Advances in Palladium-Catalyzed Asymmetric Heck/Tsuji–Trost Reactions of 1,n-Dienes. Chem. Eur. J. 2024;30:e202400076. doi: 10.1002/chem.202400076. PubMed DOI
Bhakta S., Ghosh T. Nickel-Catalyzed Hydroarylation Reaction: A Useful Tool in Organic Synthesis. Org. Chem. Front. 2022;9:5074–5103. doi: 10.1039/D2QO00826B. DOI
Bora J., Dutta M., Chetia B. Cobalt Catalyzed Alkenylation/Annulation Reactions of Alkynes Via C–H Activation: A Review. Tetrahedron. 2023;132:133248. doi: 10.1016/j.tet.2023.133248. DOI
Ghosh T., Chatterjee J., Bhakta S. Gold-Catalyzed Hydroarylation Reactions: A Comprehensive Overview. Org. Biomol. Chem. 2022;20:7151–7187. doi: 10.1039/D2OB00960A. PubMed DOI
Maayuri R., Gandeepan P. Manganese-Catalyzed Hydroarylation of Multiple Bonds. Org. Biomol. Chem. 2023;21:441–464. doi: 10.1039/D2OB01674E. PubMed DOI
Zhu W., Gunnoe T.B. Advances in Group 10 Transition-Metal-Catalyzed Arene Alkylation and Alkenylation. J. Am. Chem. Soc. 2021;143:6746–6766. doi: 10.1021/jacs.1c01810. PubMed DOI
Hoveyda A.H., Qin C., Sui X.Z., Liu Q., Li X., Nikbakht A. Taking Olefin Metathesis to the Limit: Stereocontrolled Synthesis of Trisubstituted Alkenes. Acc. Chem. Res. 2023;56:2426–2446. doi: 10.1021/acs.accounts.3c00341. PubMed DOI
Odewole O.A., Swart M.R., Erasmus E. Metathesis Reactions: Effect of Additives as Co-Catalysts to Grubbs’ or Schrock’s Catalyst. Tetrahedron. 2024;162:134105. doi: 10.1016/j.tet.2024.134105. DOI
Chrenko D., Pospíšil J. Latest Developments of the Julia–Kocienski Olefination Reaction: Mechanistic Considerations. Molecules. 2024;29:2719. doi: 10.3390/molecules29122719. PubMed DOI PMC
Ouzounthanasis K.A., Rizos S.R., Koumbis A.E. Julia-Kocienski Olefination in the Synthesis of Trisubstituted Alkenes: Recent Progress. Eur. J. Org. Chem. 2023;26:e202300626. doi: 10.1002/ejoc.202300626. DOI
Rinu P.X.T., Radhika S., Anilkumar G. Recent Applications and Trends in the Julia-Kocienski Olefination. ChemistrySelect. 2022;7:e202200760. doi: 10.1002/slct.202200760. DOI
Sakaine G., Leitis Z., Ločmele R., Smits G. Julia-Kocienski Olefination: A Tutorial Review. Eur. J. Org. Chem. 2023;26:e202201217. doi: 10.1002/ejoc.202201217. DOI
Varsha V., Radhika S., Anilkumar G. An Overview of Julia-Lythgoe Olefination. Curr. Org. Synth. 2024;21:97–126. doi: 10.2174/1570179420666230510104114. PubMed DOI
Janicki I., Kiełbasiński P. Still–Gennari Olefination and Its Applications in Organic Synthesis. Adv. Synth. Catal. 2020;362:2552–2596. doi: 10.1002/adsc.201901591. DOI
Ilia G., Simulescu V., Plesu N., Chiriac V., Merghes P. Wittig and Wittig–Horner Reactions under Sonication Conditions. Molecules. 2023;28:1958. doi: 10.3390/molecules28041958. PubMed DOI PMC
McNulty J., McLeod D., Das P., Zepeda-Velázquez C. Wittig Reactions of Trialkylphosphine-Derived Ylides: New Directions and Applications in Organic Synthesis. Phosphorus Sulfur Silicon Relat. Elem. 2015;190:619–632. doi: 10.1080/10426507.2014.980907. DOI
Cachatra V., Rauter A.P. Revisiting Wittig Olefination and Aza-Wittig Reaction for Carbohydrate Transformations and Stereocontrol in Sugar Chemistry. Curr. Org. Chem. 2014;18:1731–1748. doi: 10.2174/1385272819666140527230833. DOI
Bisceglia J.Á., Orelli L.R. Recent Progress in the Horner-Wadsworth-Emmons Reaction. Curr. Org. Chem. 2015;19:744–775. doi: 10.2174/1385272819666150311231006. DOI
Bilska-Markowska M., Kaźmierczak M. Horner–Wadsworth–Emmons Reaction as an Excellent Tool in the Synthesis of Fluoro-Containing Biologically Important Compounds. Org. Biomol. Chem. 2023;21:1095–1120. doi: 10.1039/D2OB01969H. PubMed DOI
Roman D., Sauer M., Beemelmanns C. Applications of the Horner–Wadsworth–Emmons Olefination in Modern Natural Product Synthesis. Synthesis. 2021;53:2713–2739.
Tobrman T., Mrkobrada S. Palladium-Catalyzed Cross-Coupling Reactions of Borylated Alkenes for the Stereoselective Synthesis of Tetrasubstituted Double Bond. Organics. 2022;3:210–239. doi: 10.3390/org3030017. DOI
Edlová T., Čubiňák M., Tobrman T. Cross-Coupling Reactions of Double or Triple Electrophilic Templates for Alkene Synthesis. Synthesis. 2021;53:255–266.
Polák P., Váňová H., Dvořák D., Tobrman T. Recent Progress in Transition Metal-Catalyzed Stereoselective Synthesis of Acyclic All-Carbon Tetrasubstituted Alkenes. Tetrahedron Lett. 2016;57:3684–3693. doi: 10.1016/j.tetlet.2016.07.030. DOI
Negishi E.-i., Huang Z., Wang G., Mohan S., Wang C., Hattori H. Recent Advances in Efficient and Selective Synthesis of Di-, Tri-, and Tetrasubstituted Alkenes Via Pd-Catalyzed Alkenylation−Carbonyl Olefination Synergy. Acc. Chem. Res. 2008;41:1474–1485. doi: 10.1021/ar800038e. PubMed DOI
Reiser O. Palladium-Catalyzed Coupling Reactions for the Stereoselective Synthesis of Tri- and Tetrasubstituted Alkenes. Angew. Chem. Int. Ed. 2006;45:2838–2840. doi: 10.1002/anie.200600025. PubMed DOI
Buttard F., Sharma J., Champagne P.A. Recent Advances in the Stereoselective Synthesis of Acyclic All-Carbon Tetrasubstituted Alkenes. Chem. Commun. 2021;57:4071–4088. doi: 10.1039/D1CC00596K. PubMed DOI
Flynn A.B., Ogilvie W.W. Stereocontrolled Synthesis of Tetrasubstituted Olefins. Chem. Rev. 2007;107:4698–4745. doi: 10.1021/cr050051k. PubMed DOI
Oeser P., Tobrman T. Organophosphates as Versatile Substrates in Organic Synthesis. Molecules. 2024;29:1593. doi: 10.3390/molecules29071593. PubMed DOI PMC
Alkayal A., Tabas V., Montanaro S., Wright I.A., Malkov A.V., Buckley B.R. Harnessing Applied Potential: Selective Β-Hydrocarboxylation of Substituted Olefins. J. Am. Chem. Soc. 2020;142:1780–1785. doi: 10.1021/jacs.9b13305. PubMed DOI
Huang H., Ye J.-H., Zhu L., Ran C.-K., Miao M., Wang W., Chen H., Zhou W.-J., Lan Y., Yu B., et al. Visible-Light-Driven Anti-Markovnikov Hydrocarboxylation of Acrylates and Styrenes with CO2. CCS Chem. 2021;3:1746–1756. doi: 10.31635/ccschem.020.202000374. DOI
Qi W., Gu S., Xie L.-G. Reductive Radical-Polar Crossover Enabled Carboxylative Alkylation of Aryl Thianthrenium Salts with CO2 and Styrenes. Org. Lett. 2024;26:728–733. doi: 10.1021/acs.orglett.3c04183. PubMed DOI
Tanaka S., Tanaka Y., Chiba M., Hattori T. Lewis Acid-Mediated β-Selective Hydrocarboxylation of α,α-Diaryl- and α-Arylalkenes with R3SiH and CO2. Tetrahedron Lett. 2015;56:3830–3834. doi: 10.1016/j.tetlet.2015.04.090. DOI
Liao L.-L., Cao G.-M., Jiang Y.-X., Jin X.-H., Hu X.-L., Chruma J.J., Sun G.-Q., Gui Y.-Y., Yu D.-G. α-Amino Acids and Peptides as Bifunctional Reagents: Carbocarboxylation of Activated Alkenes Via Recycling CO2. J. Am. Chem. Soc. 2021;143:2812–2821. doi: 10.1021/jacs.0c11896. PubMed DOI
Chen X.-W., Zhu L., Gui Y.-Y., Jing K., Jiang Y.-X., Bo Z.-Y., Lan Y., Li J., Yu D.-G. Highly Selective and Catalytic Generation of Acyclic Quaternary Carbon Stereocenters Via Functionalization of 1,3-Dienes with CO2. J. Am. Chem. Soc. 2019;141:18825–18835. doi: 10.1021/jacs.9b09721. PubMed DOI
Ren K., Yuan R., Gui Y.-Y., Chen X.-W., Min S.-Y., Wang B.-Q., Yu D.-G. Cu-Catalyzed Reductive Aminomethylation of 1,3-Dienes with N,O-Acetals: Facile Construction of β-Chiral Amines with Quaternary Stereocenters. Org. Chem. Front. 2023;10:467–472. doi: 10.1039/D2QO01774A. DOI
Ye J.-H., Song L., Zhou W.-J., Ju T., Yin Z.-B., Yan S.-S., Zhang Z., Li J., Yu D.-G. Selective Oxytrifluoromethylation of Allylamines with CO2. Angew. Chem. Int. Ed. 2016;55:10022–10026. doi: 10.1002/anie.201603352. PubMed DOI
Sun L., Ye J.-H., Zhou W.-J., Zeng X., Yu D.-G. Oxy-Alkylation of Allylamines with Unactivated Alkyl Bromides and CO2 Via Visible-Light-Driven Palladium Catalysis. Org. Lett. 2018;20:3049–3052. doi: 10.1021/acs.orglett.8b01079. PubMed DOI
Baś S., Yamashita Y., Kobayashi S. Development of Brønsted Base–Photocatalyst Hybrid Systems for Highly Efficient C–C Bond Formation Reactions of Malonates with Styrenes. ACS Catal. 2020;10:10546–10550. doi: 10.1021/acscatal.0c02716. DOI
Cauwenbergh R., Sahoo P.K., Maiti R., Mathew A., Kuniyil, Das S. Selective Synthesis of Functionalized Linear Aliphatic Primary Amines Via Decarboxylative Radical-Polar Crossover. Green Chem. 2024;26:264–276. doi: 10.1039/D3GC03187J. DOI
Kitamura T., Komoto R., Oyamada J., Higashi M., Kishikawa Y. Iodine-Mediated Fluorination of Alkenes with an Hf Reagent: Regioselective Synthesis of 2-Fluoroalkyl Iodides. J. Org. Chem. 2021;86:18300–18303. doi: 10.1021/acs.joc.1c02422. PubMed DOI
Liu J., Rong J., Wood D.P., Wang Y., Liang S.H., Lin S. Co-Catalyzed Hydrofluorination of Alkenes: Photocatalytic Method Development and Electroanalytical Mechanistic Investigation. J. Am. Chem. Soc. 2024;146:4380–4392. doi: 10.1021/jacs.3c10989. PubMed DOI PMC
Fu N., Sauer G.S., Lin S. Electrocatalytic Radical Dichlorination of Alkenes with Nucleophilic Chlorine Sources. J. Am. Chem. Soc. 2017;139:15548–15553. doi: 10.1021/jacs.7b09388. PubMed DOI
Lu L., Fu N., Lin S. Three-Component Chlorophosphinoylation of Alkenes Via Anodically Coupled Electrolysis. Synlett. 2019;30:1199–1203. doi: 10.1055/s-0039-1689934. DOI
Zhang L., Zhao Z., Wang W., Liu S., Wang Y. Iodonium Ylides Enable the Direct Installation of Hydroxylamines and Oximes into a Broad Range of Alkenes. Org. Lett. 2019;21:9171–9174. doi: 10.1021/acs.orglett.9b03534. PubMed DOI
Zhang S., Li L., Wu P., Gong P., Liu R., Xu K. Substrate-Dependent Electrochemical Dimethoxylation of Olefins. Adv. Synth. Catal. 2019;361:485–489. doi: 10.1002/adsc.201801173. DOI
Cai C.-Y., Xu H.-C. Dehydrogenative Reagent-Free Annulation of Alkenes with Diols for the Synthesis of Saturated O-Heterocycles. Nat. Commun. 2018;9:3551. doi: 10.1038/s41467-018-06020-8. PubMed DOI PMC
Zhang J.-Z., Tang Y. Iron-Catalyzed Regioselective Oxo- and Hydroxy-Phthalimidation of Styrenes: Access to α-Hydroxyphthalimide Ketones. Adv. Synth. Catal. 2016;358:752–764. doi: 10.1002/adsc.201500732. DOI
Zhang Z., Li J., Cai Z., Kang S., Wang J., Cui Y., Han S., Sheng L., Yin Q., Dai A., et al. Electrochemical Aerobic Wacker-Type Oxygenation of Triaryl Substituted Alkenes to 1,2,2-Triarylethanones. Chem. Commun. 2024;60:3035–3038. doi: 10.1039/D3CC05770D. PubMed DOI
Liu S., Ju L., Wang X., Wu X., Zhang T., Wu Q. Electrochemical Oxidation-Induced Diazolation of Alkenes to Build N,N′-Ethylene-Bridged Bispyrazole Derivatives. Tetrahedron. 2023;148:133707. doi: 10.1016/j.tet.2023.133707. DOI
Musacchio A.J., Lainhart B.C., Zhang X., Naguib S.G., Sherwood T.C., Knowles R.R. Catalytic Intermolecular Hydroaminations of Unactivated Olefins with Secondary Alkyl Amines. Science. 2017;355:727–730. doi: 10.1126/science.aal3010. PubMed DOI PMC
Geunes E.P., Meinhardt J.M., Wu E.J., Knowles R.R. Photocatalytic Anti-Markovnikov Hydroamination of Alkenes with Primary Heteroaryl Amines. J. Am. Chem. Soc. 2023;145:21738–21744. doi: 10.1021/jacs.3c08428. PubMed DOI PMC
Wu Z.-J., Li Z., Ren Y., Meng L.-G. Overcoming Selectivity Trade-Offs in Alkene Azidodifluoroalkylation: An Enlightening Synergistic Catalytic Approach. Org. Lett. 2025;27:115–120. doi: 10.1021/acs.orglett.4c04015. PubMed DOI
Fu N., Sauer G.S., Lin S. A General, Electrocatalytic Approach to the Synthesis of Vicinal Diamines. Nat. Protoc. 2018;13:1725–1743. doi: 10.1038/s41596-018-0010-0. PubMed DOI
Fu N., Sauer G.S., Saha A., Loo A., Lin S. Metal-Catalyzed Electrochemical Diazidation of Alkenes. Science. 2017;357:575–579. doi: 10.1126/science.aan6206. PubMed DOI
Siu J.C., Sauer G.S., Saha A., Macey R.L., Fu N., Chauviré T., Lancaster K.M., Lin S. Electrochemical Azidooxygenation of Alkenes Mediated by a Tempo–N3 Charge-Transfer Complex. J. Am. Chem. Soc. 2018;140:12511–12520. doi: 10.1021/jacs.8b06744. PubMed DOI PMC
Ju M., Lee S., Marvich H.M., Lin S. Accessing Alkoxy Radicals Via Frustrated Radical Pairs: Diverse Oxidative Functionalizations of Tertiary Alcohols. J. Am. Chem. Soc. 2024;146:19696–19703. doi: 10.1021/jacs.4c07125. PubMed DOI PMC
Kendall A.J., Barry J.T., Seidenkranz D.T., Ryerson A., Hiatt C., Salazar C.A., Bryant D.J., Tyler D.R. Highly Efficient Biphasic Ozonolysis of Alkenes Using a High-Throughput Film-Shear Flow Reactor. Tetrahedron Lett. 2016;57:1342–1345. doi: 10.1016/j.tetlet.2016.02.042. DOI
Li X., Hua H., Liu Y., Yu L. Iron-Promoted Catalytic Activity of Selenium Endowing the Aerobic Oxidative Cracking Reaction of Alkenes. Org. Lett. 2023;25:6720–6724. doi: 10.1021/acs.orglett.3c02569. PubMed DOI
Wang T., Jing X., Chen C., Yu L. Organoselenium-Catalyzed Oxidative C=C Bond Cleavage: A Relatively Green Oxidation of Alkenes into Carbonyl Compounds with Hydrogen Peroxide. J. Org. Chem. 2017;82:9342–9349. doi: 10.1021/acs.joc.7b01245. PubMed DOI
Yap C.P., Ng J.K., Madrahimov S., Bengali A.A., Chwee T.S., Fan W.Y. Oxidation of Aromatic Alkenes and Alkynes Catalyzed by a Hexa-Acetonitrile Iron(II) Ionic Complex [Fe(Ch3CN)6][BF4]2. New J. Chem. 2018;42:11131–11136. doi: 10.1039/C8NJ02226G. DOI
Joarder D.D., Gayen S., Sarkar R., Bhattacharya R., Roy S., Maiti D.K. (Ar-tpy)RuII(Acn)3: A Water-Soluble Catalyst for Aldehyde Amidation, Olefin Oxo-Scissoring, and Alkyne Oxygenation. J. Org. Chem. 2019;84:8468–8480. doi: 10.1021/acs.joc.9b00487. PubMed DOI
Yu T., Guo M., Wen S., Zhao R., Wang J., Sun Y., Liu Q., Zhou H. Poly(Ethylene Glycol) Dimethyl Ether Mediated Oxidative Scission of Aromatic Olefins to Carbonyl Compounds by Molecular Oxygen. RSC Adv. 2021;11:13848–13852. doi: 10.1039/D1RA02007B. PubMed DOI PMC
Chen Y.-X., He J.-T., Wu M.-C., Liu Z.-L., Tang K., Xia P.-J., Chen K., Xiang H.-Y., Chen X.-Q., Yang H. Photochemical Organocatalytic Aerobic Cleavage of C=C Bonds Enabled by Charge-Transfer Complex Formation. Org. Lett. 2022;24:3920–3925. doi: 10.1021/acs.orglett.2c01192. PubMed DOI
Wise D.E., Gogarnoiu E.S., Duke A.D., Paolillo J.M., Vacala T.L., Hussain W.A., Parasram M. Photoinduced Oxygen Transfer Using Nitroarenes for the Anaerobic Cleavage of Alkenes. J. Am. Chem. Soc. 2022;144:15437–15442. doi: 10.1021/jacs.2c05648. PubMed DOI
Huang Z., Guan R., Shanmugam M., Bennett E.L., Robertson C.M., Brookfield A., McInnes E.J.L., Xiao J. Oxidative Cleavage of Alkenes by O2 with a Non-Heme Manganese Catalyst. J. Am. Chem. Soc. 2021;143:10005–10013. doi: 10.1021/jacs.1c05757. PubMed DOI PMC
Xue W., Jiang Y., Lu H., You B., Wang X., Tang C. Direct C−C Double Bond Cleavage of Alkenes Enabled by Highly Dispersed Cobalt Catalyst and Hydroxylamine. Angew. Chem. Int. Ed. 2023;62:e202314364. doi: 10.1002/anie.202314364. PubMed DOI
Yuan P.-F., Meng Q.-Y. Carboxylation of Alkenes with CO2 Via Photocatalytic Cleavage of C=C Double Bonds. Synlett. 2024;35:1937–1946. doi: 10.1055/s-0043-1763755. DOI
Li Y.-L., Li J., Ma A.-L., Huang Y.-N., Deng J. Metal-Free Synthesis of Indole Via Nis-Mediated Cascade C–N Bond Formation/Aromatization. J. Org. Chem. 2015;80:3841–3851. doi: 10.1021/acs.joc.5b00090. PubMed DOI
Youn S.W., Ko T.Y., Jang M.J., Jang S.S. Silver(I)-Mediated C–H Amination of 2-Alkenylanilines: Unique Solvent-Dependent Migratory Aptitude. Adv. Synth. Catal. 2015;357:227–234. doi: 10.1002/adsc.201400759. DOI
Youn S.W., Lee S.R. Unusual 1,2-Aryl Migration in Pd(II)-Catalyzed Aza-Wacker-Type Cyclization of 2-Alkenylanilines. Org. Biomol. Chem. 2015;13:4652–4656. doi: 10.1039/C5OB00361J. PubMed DOI
Zhang H.-M., Gao Z.-H., Yi L., Ye S. Brønsted Acid-Catalyzed Synthesis of N-Arylindoles from 2-Vinylanilines and Quinones. Chem. Asian J. 2016;11:2671–2674. doi: 10.1002/asia.201600420. PubMed DOI
Zhao C.-Y., Li K., Pang Y., Li J.-Q., Liang C., Su G.-F., Mo D.-L. Iodine(III) Reagent-Mediated Intramolecular Amination of 2-Alkenylanilines to Prepare Indoles. Adv. Synth. Catal. 2018;360:1919–1925. doi: 10.1002/adsc.201701551. DOI
Kim J.H., Lee S.A., Jeon T.S., Cha J.K., Kim Y.G. A Unified Approach to Mono- and 2,3-Disubstituted N–H Indoles. Synlett. 2023;34:1719–1722. doi: 10.1055/s-0042-1752656. DOI
Tong S., Xu Z., Mamboury M., Wang Q., Zhu J. Aqueous Titanium Trichloride Promoted Reductive Cyclization of O-Nitrostyrenes to Indoles: Development and Application to the Synthesis of Rizatriptan and Aspidospermidine. Angew. Chem. Int. Ed. 2015;54:11809–11812. doi: 10.1002/anie.201505713. PubMed DOI
Yang K., Zhou F., Kuang Z., Gao G., Driver T.G., Song Q. Diborane-Mediated Deoxygenation of O-Nitrostyrenes to Form Indoles. Org. Lett. 2016;18:4088–4091. doi: 10.1021/acs.orglett.6b01934. PubMed DOI
Zhou F., Wang D.-S., Driver T.G. Palladium-Catalyzed Formation of N-Heteroarenes from Nitroarenes Using Molybdenum Hexacarbonyl as the Source of Carbon Monoxide. Adv. Synth. Catal. 2015;357:3463–3468. doi: 10.1002/adsc.201500700. DOI
Cheng H., Hernández J.G., Bolm C. Mechanochemical Ruthenium-Catalyzed Hydroarylations of Alkynes under Ball-Milling Conditions. Org. Lett. 2017;19:6284–6287. doi: 10.1021/acs.orglett.7b02973. PubMed DOI
Yang D., Zhu Y., Yang N., Jiang Q., Liu R. One-Step Synthesis of Substituted Benzofurans from Ortho- Alkenylphenols Via Palladium-Catalyzed C–H Functionalization. Adv. Synth. Catal. 2016;358:1731–1735. doi: 10.1002/adsc.201600082. DOI
Wu L., Zhang Z., Liao J., Li J., Wu W., Jiang H. MnO2-Promoted Carboesterification of Alkenes with Anhydrides: A Facile Approach to δ-Lactones. Chem. Commun. 2016;52:2628–2631. doi: 10.1039/C5CC08867D. PubMed DOI
Kochi J.K., Jenkins C.L.I. Ligand Transfer of Halides (Chloride, Bromide, Iodide) and Pseudohalides (Thiocyanate, Azide, Cyanide) from Copper(II) to Alkyl Radicals. J. Org. Chem. 1971;36:3095–3102. doi: 10.1021/jo00820a008. DOI
Yang Q., Jia Z., Li L., Zhang L., Luo S. Visible-Light Promoted Arene C–H/C–X Lactonization Via Carboxylic Radical Aromatic Substitution. Org. Chem. Front. 2018;5:237–241. doi: 10.1039/C7QO00826K. DOI
Li L., Yang Q., Jia Z., Luo S. Organocatalytic Electrochemical C–H Lactonization of Aromatic Carboxylic Acids. Synthesis. 2018;50:2924–2929. doi: 10.1055/s-0036-1591558. DOI
Yu E., Kim H., Park C.-M. Metal- and Oxidant-Free Electrosynthesis of Heterocycles from 1,2-Diarylalkene Derivatives. Adv. Synth. Catal. 2022;364:4088–4096. doi: 10.1002/adsc.202200847. DOI
Baris N., Dračínský M., Tarábek J., Filgas J., Slavíček P., Ludvíková L., Boháčová S., Slanina T., Klepetářová B., Beier P. Photocatalytic Generation of Trifluoromethyl Nitrene for Alkene Aziridination. Angew. Chem. Int. Ed. 2024;63:e202315162. doi: 10.1002/anie.202315162. PubMed DOI
Liu S., Zhao W., Li J., Wu N., Liu C., Wang X., Li S., Zhu Y., Liang Y., Cheng X. Electrochemical Aziridination of Tetrasubstituted Alkenes with Ammonia. CCS Chem. 2022;4:693–703. doi: 10.31635/ccschem.021.202100826. DOI
Li J., Huang W., Chen J., He L., Cheng X., Li G. Electrochemical Aziridination by Alkene Activation Using a Sulfamate as the Nitrogen Source. Angew. Chem. Int. Ed. 2018;57:5695–5698. doi: 10.1002/anie.201801106. PubMed DOI
Ošeka M., Laudadio G., van Leest N.P., Dyga M., Bartolomeu A.d.A., Gooßen L.J., de Bruin B., de Oliveira K.T., Noël T. Electrochemical Aziridination of Internal Alkenes with Primary Amines. Chem. 2021;7:255–266. doi: 10.1016/j.chempr.2020.12.002. DOI
Kinoshita H., Yaguchi K., Tohjima T., Hirai N., Miura K. Diisobutylaluminum Hydride-Promoted Cyclization of O-(Trimethylsilylethynyl)Styrenes to Substituted Naphthalenes. Tetrahedron Let. 2016;57:2039–2043. doi: 10.1016/j.tetlet.2016.03.099. DOI
García-García P., Sanjuán A.M., Rashid M.A., Martínez-Cuezva A., Fernández-Rodríguez M.A., Rodríguez F., Sanz R. Synthesis of Functionalized 1H-Indenes and Benzofulvenes through Iodocyclization of o-(Alkynyl)Styrenes. J. Org. Chem. 2017;82:1155–1165. doi: 10.1021/acs.joc.6b02788. PubMed DOI
Humanes M., Sans-Panadés E., Virumbrales C., Milián A., Sanz R., García-García P., Fernández-Rodríguez M.A. Selective Synthesis of Boron-Functionalized Indenes and Benzofulvenes by BCl3-Promoted Cyclizations of Ortho-Alkynylstyrenes. Org. Lett. 2024;26:6568–6573. doi: 10.1021/acs.orglett.4c02092. PubMed DOI PMC
Sanjuán A.M., Virumbrales C., García-García P., Fernández-Rodríguez M.A., Sanz R. Formal [4 + 1] Cycloadditions of β,β-Diaryl-Substituted ortho-(Alkynyl)Styrenes through Gold(I)-Catalyzed Cycloisomerization Reactions. Org. Lett. 2016;18:1072–1075. doi: 10.1021/acs.orglett.6b00191. PubMed DOI
Virumbrales C., El-Remaily M.A.E.A.A.A., Suárez-Pantiga S., Fernández-Rodríguez M.A., Rodríguez F., Sanz R. Gold(I) Catalysis Applied to the Stereoselective Synthesis of Indeno[2,1-b]Thiochromene Derivatives and Seleno Analogues. Org. Lett. 2022;24:8077–8082. doi: 10.1021/acs.orglett.2c03411. PubMed DOI PMC
Wu R., Chen Y., Zhu S. Rh(II)-Catalyzed Enynal Cycloisomerization for the Generation of Vinyl Carbene: Divergent Access to Polycyclic Heterocycles. ACS Catal. 2023;13:132–140. doi: 10.1021/acscatal.2c04832. DOI
Wang H., Cai S., Ai W., Xu X., Li B., Wang B. Silver-Catalyzed Activation of Pyridotriazoles for Formal Intramolecular Carbene Insertion into Vinylic C(Sp2)–H Bonds. Org. Lett. 2020;22:7255–7260. doi: 10.1021/acs.orglett.0c02586. PubMed DOI
Yang J., Rérat A., Lim Y.J., Gosmini C., Yoshikai N. Cobalt-Catalyzed Enantio- and Diastereoselective Intramolecular Hydroacylation of Trisubstituted Alkenes. Angew. Chem. Int. Ed. 2017;56:2449–2453. doi: 10.1002/anie.201611518. PubMed DOI
Biegasiewicz K.F., Cooper S.J., Gao X., Oblinsky D.G., Kim J.H., Garfinkle S.E., Joyce L.A., Sandoval B.A., Scholes G.D., Hyster T.K. Photoexcitation of Flavoenzymes Enables a Stereoselective Radical Cyclization. Science. 2019;364:1166–1169. doi: 10.1126/science.aaw1143. PubMed DOI PMC
Turek-Herman J.R., Rosenberger M., Hyster T.K. Synthesis of β-Quaternary Lactams Using Photoenzymatic Catalysis. Asian J. Org. Chem. 2023;12:e202300274. doi: 10.1002/ajoc.202300274. PubMed DOI PMC
Laguerre N., Riehl P.S., Oblinsky D.G., Emmanuel M.A., Black M.J., Scholes G.D., Hyster T.K. Radical Termination Via β-Scission Enables Photoenzymatic Allylic Alkylation Using “Ene”-Reductases. ACS Catal. 2022;12:9801–9805. doi: 10.1021/acscatal.2c02294. PubMed DOI PMC
Clayman P.D., Hyster T.K. Photoenzymatic Generation of Unstabilized Alkyl Radicals: An Asymmetric Reductive Cyclization. J. Am. Chem. Soc. 2020;142:15673–15677. doi: 10.1021/jacs.0c07918. PubMed DOI PMC
Nguyen S.T., Zhu Q., Knowles R.R. PCET-Enabled Olefin Hydroamidation Reactions with N-Alkyl Amides. ACS Catal. 2019;9:4502–4507. doi: 10.1021/acscatal.9b00966. PubMed DOI PMC
Choi G.J., Knowles R.R. Catalytic Alkene Carboaminations Enabled by Oxidative Proton-Coupled Electron Transfer. J. Am. Chem. Soc. 2015;137:9226–9229. doi: 10.1021/jacs.5b05377. PubMed DOI PMC
Roos C.B., Demaerel J., Graff D.E., Knowles R.R. Enantioselective Hydroamination of Alkenes with Sulfonamides Enabled by Proton-Coupled Electron Transfer. J. Am. Chem. Soc. 2020;142:5974–5979. doi: 10.1021/jacs.0c01332. PubMed DOI PMC
Xu E.Y., Werth J., Roos C.B., Bendelsmith A.J., Sigman M.S., Knowles R.R. Noncovalent Stabilization of Radical Intermediates in the Enantioselective Hydroamination of Alkenes with Sulfonamides. J. Am. Chem. Soc. 2022;144:18948–18958. doi: 10.1021/jacs.2c07099. PubMed DOI PMC
Zhang Z., Liao L.-L., Yan S.-S., Wang L., He Y.-Q., Ye J.-H., Li J., Zhi Y.-G., Yu D.-G. Lactamization of Sp2 C−H Bonds with CO2: Transition-Metal-Free and Redox-Neutral. Angew. Chem. Int. Ed. 2016;55:7068–7072. doi: 10.1002/anie.201602095. PubMed DOI
Jiang H., Lang K., Lu H., Wojtas L., Zhang X.P. Intramolecular Radical Aziridination of Allylic Sulfamoyl Azides by Cobalt(II)-Based Metalloradical Catalysis: Effective Construction of Strained Heterobicyclic Structures. Angew. Chem. Int. Ed. 2016;55:11604–11608. doi: 10.1002/anie.201605238. PubMed DOI PMC
Xu H., Wang D.-S., Zhu Z., Deb A., Zhang X.P. New Mode of Asymmetric Induction for Enantioselective Radical N-Heterobicyclization Via Kinetically Stable Chiral Radical Center. Chem. 2024;10:283–298. doi: 10.1016/j.chempr.2023.09.010. PubMed DOI PMC
Lee W.-C.C., Wang J., Zhu Y., Zhang X.P. Asymmetric Radical Bicyclization for Stereoselective Construction of Tricyclic Chromanones and Chromanes with Fused Cyclopropanes. J. Am. Chem. Soc. 2023;145:11622–11632. doi: 10.1021/jacs.3c01618. PubMed DOI PMC
Wang X., Ke J., Zhu Y., Deb A., Xu Y., Zhang X.P. Asymmetric Radical Process for General Synthesis of Chiral Heteroaryl Cyclopropanes. J. Am. Chem. Soc. 2021;143:11121–11129. doi: 10.1021/jacs.1c04655. PubMed DOI PMC
Zhang C., Wang D.-S., Lee W.-C.C., McKillop A.M., Zhang X.P. Controlling Enantioselectivity and Diastereoselectivity in Radical Cascade Cyclization for Construction of Bicyclic Structures. J. Am. Chem. Soc. 2021;143:11130–11140. doi: 10.1021/jacs.1c04719. PubMed DOI PMC