Latest Developments of the Julia-Kocienski Olefination Reaction: Mechanistic Considerations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
IGA_PrF_2024_007
Palacký University Olomouc
IGA_PrF_2024_028
Palacký University Olomouc
PubMed
38930785
PubMed Central
PMC11206144
DOI
10.3390/molecules29122719
PII: molecules29122719
Knihovny.cz E-zdroje
- Klíčová slova
- Julia–Kocienski reaction, olefination, reaction mechanism, reaction selectivity,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Since its discovery, the Julia-Kocienski olefination reaction has over past 30 years become one of the key C-C connective methods that is used in late-stage natural product synthesis. The reaction proceeds under mild reaction conditions, with a wide substrate scope and functional group tolerance range and with high (E) selectivity. In this focused review, we discuss the reaction from a mechanistic point of view and disclose key features that play an important role in reaction selectivity. Finally, the mechanistic aspects of the newly developed modification of the Julia-Kocienski reaction, which allows the formation of both (E) and (Z) olefins from the same reaction partners, are discussed.
Zobrazit více v PubMed
Markó I.E., Pospíšil J. Julia, Julia–Kocienski, and Related Sulfur-Based Alkenations. In: de Meijere A., editor. Science of Synthesis. Volume 47. Georg Thieme Verlag; Stuttgart, Germany: 2010. pp. 105–160.
Johnson C.R., Shanklin J.R., Kirchhoff R.A. Olefin Synthesis by Reductive Elimination of b-Hydroxysulfoximines. Methylenation of Carbonyl Compounds. J. Am. Chem. Soc. 1973;95:6462–6463. doi: 10.1021/ja00800a058. DOI
Maryanoff B.E., Reitz A.B. The Wittig Olefination Reaction and Modifications Involving Phosphoryl-Stabilized Carbanions. Stereochemistry, Mechanism, and Selected Synthetic Aspects. Chem. Rev. 1989;89:863–927. doi: 10.1021/cr00094a007. DOI
Bisceglia J.A., Orelli L.R. Recent Progress in the Horner-Wadsworth-Emmons Reaction. Curr. Org. Chem. 2015;19:744–775. doi: 10.2174/1385272819666150311231006. DOI
Van Staden L.F., Gravestock D., Ager D.J. New Developments in the Peterson Olefination Reaction. Chem. Soc. Rev. 2002;31:195–200. doi: 10.1039/a908402i. PubMed DOI
Coombs J.R., Zhang L., Morken J.P. Synthesis of Vinyl Boronates from Aldehydes by a Practical Boron-Wittig Reaction. Org. Lett. 2015;17:1708–1711. doi: 10.1021/acs.orglett.5b00480. PubMed DOI PMC
Wittig G., Geissler G. Zur Reaktionsweise Des Pentaphenyl-phosphors Und Einiger Derivate. Justus Liebigs Ann. Chem. 1953;580:44–57. doi: 10.1002/jlac.19535800107. DOI
Wittig G., Schöllkopf U. Über Triphenyl-phosphin-methylene Als Olefinbildende Reagenzien. Chem. Berichte. 1954;87:1318–1330. doi: 10.1002/cber.19540870919. DOI
Chatterjee B., Bera S., Mondal D. Julia-Kocienski Olefination: A Key Reaction for the Synthesis of Macrolides. Tetrahedron Asymmetry. 2014;25:1–55. doi: 10.1016/j.tetasy.2013.09.027. DOI
Legnani L., Porta A., Caramella P., Toma L., Zanoni G., Vidari G. Computational Mechanistic Study of the Julia-Kocieński Reaction. J. Org. Chem. 2015;80:3092–3100. doi: 10.1021/acs.joc.5b00008. PubMed DOI
Aïssa C. Mechanistic Manifold and New Developments of the Julia-Kocienski Reaction. Eur. J. Org. Chem. 2009;2009:1831–1844. doi: 10.1002/ejoc.200801117. DOI
Blakemore P.R. The Modified Julia Olefination: Alkene Synthesis via the Condensation of Metallated Heteroarylalkylsulfones with Carbonyl Compounds. J. Chem. Soc. Perkin 1. 2002;2:2563–2585. doi: 10.1039/b208078h. DOI
Blakemore P.R., Cole W.J., Kocieński P.J., Morley A. A Stereoselective Synthesis of Trans-1,2-Disubstituted Alkenes Based on the Condensation of Aldehydes with Metallated 1-Phenyl-1 H -Tetrazol-5-Yl Sulfones. Synlett. 1998;1998:26–28. doi: 10.1055/s-1998-1570. DOI
Robiette R., Pospíšil J. On the Origin of E/Z Selectivity in the Modified Julia Olefination—Importance of the Elimination Step. Eur. J. Org. Chem. 2013:836–840. doi: 10.1002/ejoc.201201634. DOI
Baudin J.B., Hareau G., Julia S.A., Ruel O. A Direct Synthesis of Olefins by Reaction of Carbonyl Compounds with Lithio Derivatives of 2-[Alkyl- or (2′-Alkenyl)- or Benzyl-Sulfonyl]-Benzothiazoles. Tetrahedron Lett. 1991;32:1175–1178. doi: 10.1016/S0040-4039(00)92037-9. DOI
Gueyrard D. Extension of the Modified Julia Olefination on Carboxylic Acid Derivatives: Scope and Applications. Synlett. 2018;29:34–45. doi: 10.1055/s-0036-1590916. DOI
Julia M., Paris J.M. Syntheses a l’aide de Sulfones v(+)- Methode de Synthese Generale de Doubles Liaisons. Tetrahedron Lett. 1973;14:4833–4836. doi: 10.1016/S0040-4039(01)87348-2. DOI
Kocienski P.J., Lythgoe B., Ruston S. Scope and Stereochemistry of an Olefin Synthesis from β-Hydroxysulphones. J. Chem. Soc. Perkin 1. 1978:829–834. doi: 10.1039/P19780000829. DOI
Keck G.E., Savin K.A., Weglarz M.A. Use of Samarium Diiodide as an Alternative to Sodium/Mercury Amalgam in the Julia-Lythgoe Olefination. J. Org. Chem. 1995;60:3194–3204. doi: 10.1021/jo00115a041. DOI
Baudin J.B., Hareau G., Julia S.A., Lorne R., Ruel O. Stereochemistry of Direct Olefin Formation from Carbonyl Compounds and Lithiated Heterocyclic Sulfones. Bull. Soc. Chim. Fr. 1993;130:856–878.
Baudin J.B., Hareau G., Julia S.A., Ruel O. Stereochemistry of the Olefin Formation from Anti and Syn Heterocyclic β-Hydroxy-Sulfones. Bull. Soc. Chim. Fr. 1993;130:336–357.
Sakaine G., Leitis Z., Ločmele R., Smits G. Julia-Kocienski Olefination: A Tutorial Review. Eur. J. Org. Chem. 2023;26:e202201217. doi: 10.1002/ejoc.202201217. DOI
Ouzounthanasis K.A., Rizos S.R., Koumbis A.E. Julia-Kocienski Olefination in the Synthesis of Trisubstituted Alkenes: Recent Progress. Eur. J. Org. Chem. 2023;26:e202300626. doi: 10.1002/ejoc.202300626. DOI
Rinu P.X.T., Radhika S., Anilkumar G. Recent Applications and Trends in the Julia-Kocienski Olefination. ChemistrySelect. 2022;7:e202200760. doi: 10.1002/slct.202200760. DOI
Charette A.B., Berthelette C., St-Martin D. An Expedient Approach to E, Z-Dienes Using the Julia Olefination. Tetrahedron Lett. 2001;42:5149–5153. doi: 10.1016/S0040-4039(01)00941-8. DOI
Kocienski P.J., Bell A., Blakemore P.R. 1- Tert -Butyl-1 H -Tetrazol-5-Yl Sulfones in the Modified Julia Olefination. Synlett. 2000;2000:365–366. doi: 10.1055/s-2000-6536. DOI
Alonso D.A., Fuensanta M., Nájera C., Varea M. 3,5-Bis(Trifluoromethyl)Phenyl Sulfones in the Direct Julia−Kocienski Olefination. J. Org. Chem. 2005;70:6404–6416. doi: 10.1021/jo050852n. PubMed DOI
Mąkosza M., Bujok R. Synthesis of Benzylidenecyclopropanes from γ-Halopropyl Pentachlorophenyl Sulfones Using a Julia-Kocienski Olefination. Synlett. 2008;2008:586–588. doi: 10.1055/s-2008-1042758. DOI
Pospíšil J. Simple Protocol for Enhanced (E)-Selectivity in Julia–Kocienski Reaction. Tetrahedron Lett. 2011;52:2348–2352. doi: 10.1016/j.tetlet.2011.02.086. DOI
Jana N., Nanda S. Asymmetric Total Syntheses of Cochliomycin A and Zeaenol. Eur. J. Org. Chem. 2012;2012:4313–4320. doi: 10.1002/ejoc.201200241. DOI
Mohapatra D.K., Reddy D.S., Mallampudi N.A., Yadav J.S. Stereoselective Total Syntheses of Paecilomycins e and F through a Protecting Group Directed Diastereoselective Intermolecular Nozaki-Hiyama-Kishi (NHK) Reaction. Eur. J. Org. Chem. 2014;2014:5023–5032. doi: 10.1002/ejoc.201402133. PubMed DOI
Sánchez D., Andreou T., Costa A.M., Meyer K.G., Williams D.R., Barasoain I., Díaz J.F., Lucena-Agell D., Vilarrasa J. Total Synthesis of Amphidinolide K, a Macrolide That Stabilizes F-Actin. J. Org. Chem. 2016;80:8511–8519. doi: 10.1021/acs.joc.5b00966. PubMed DOI
Wilson D.M., Britton R. Enantioselective Total Synthesis of the Marine Macrolides Salarins A and C. J. Am. Chem. Soc. 2024;146:8456–8463. doi: 10.1021/jacs.3c14553. PubMed DOI
Billard F., Robiette R., Pospíšil J. Julia-Kocienski Reaction-Based 1,3-Diene Synthesis: Aldehyde-Dependent (E, E/E, Z)-Selectivity. J. Org. Chem. 2012;77:6358–6364. doi: 10.1021/jo300929a. PubMed DOI
Rehman M., Surendran S., Siddavatam N., Rajendar G. The Influence of α-Coordinating Groups of Aldehydes on E/Z-Selectivity and the Use of Quaternary Ammonium Counter Ions for Enhanced E-Selectivity in the Julia–Kocienski Reaction. Org. Biomol. Chem. 2022;20:329–333. doi: 10.1039/d1ob02126e. PubMed DOI
Rajendar G., Corey E.J. A Systematic Study of Functionalized Oxiranes as Initiating Groups for Cationic Polycyclization Reactions. J. Am. Chem. Soc. 2015;137:5837–5844. doi: 10.1021/jacs.5b03229. PubMed DOI
Tsubone K., Hashizume K., Fuwa H., Sasaki M. Studies toward the Total Synthesis of Gambieric Acids: Convergent Synthesis of the GHIJ-Ring Fragment Having a Side Chain. Tetrahedron Lett. 2011;52:548–551. doi: 10.1016/j.tetlet.2010.11.127. DOI
Tsubone K., Hashizume K., Fuwa H., Sasaki M. Studies toward the Total Synthesis of Gambieric Acids, Potent Antifungal Polycyclic Ethers: Convergent Synthesis of a Fully Elaborated GHIJ-Ring Fragment. Tetrahedron. 2011;67:6600–6615. doi: 10.1016/j.tet.2011.05.082. DOI
Rej R.K., Kumar R., Nanda S. Asymmetric Synthesis of Cytospolides C and D through Successful Exploration of Stereoselective Julia-Kocienski Olefination and Suzuki Reaction Followed by Macrolactonization. Tetrahedron. 2015;71:3185–3194. doi: 10.1016/j.tet.2015.04.014. DOI
Eliel E.L., Frye S.V., Hortelano E.R., Chen X., Bai X. Asymmetric Synthesis and Cram’s (Chelate) Rule. Pure Appl. Chem. 1991;63:1591–1598. doi: 10.1351/pac199163111591. DOI
Bon D.J.-Y.D., Chrenko D., Kováč O., Ferugová V., Lasák P., Fuksová M., Zálešák F., Pospíšil J. Julia-Kocienski-Like Connective C−C and C=C Bond-Forming Reaction. Adv. Synth. Catal. 2024;366:480–487. doi: 10.1002/adsc.202301054. DOI
Nielsen M., Jacobsen C.B., Paixão M.W., Holub N., Jørgensen K.A. Asymmetric Organocatalytic Formal Alkynylation and Alkenylation of α,β-Unsaturated Aldehydes. J. Am. Chem. Soc. 2009;131:10581–10586. doi: 10.1021/ja903920j. PubMed DOI
Jacobsen C.B., Nielsen M., Worgull D., Zweifel T., Fisker E., Jørgensen K.A. Asymmetric Organocatalytic Monofluorovinylations. J. Am. Chem. Soc. 2011;133:7398–7404. doi: 10.1021/ja110624k. PubMed DOI
Pospíšil J., Sato H. Practical Synthesis of β-Acyl and β-Alkoxycarbonyl Heterocyclic Sulfones. J. Org. Chem. 2011;76:2269–2272. doi: 10.1021/jo102326p. PubMed DOI
Pospíšil J., Robiette R., Sato H., Debrus K. Practical Synthesis of β-Oxo Benzo[d]Thiazolyl Sulfones: Scope and Limitations. Org. Biomol. Chem. 2012;10:1225–1234. doi: 10.1039/C1OB06510F. PubMed DOI
Bettens T., Alonso M., Geerlings P., De Proft F. Mechanochemical Felkin–Anh Model: Achieving Forbidden Reaction Outcomes with Mechanical Force. J. Org. Chem. 2023;88:2046–2056. doi: 10.1021/acs.joc.2c02318. PubMed DOI
Ager D.J. Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 47a: Alkenes. Georg Thieme Verlag; Stuttgart, Germany: 2014. Peterson Alkenation; p. 85.
Armstrong R., Aggarwal V. 50 Years of Zweifel Olefination: A Transition-Metal-Free Coupling. Synthesis. 2017;49:3323–3336. doi: 10.1055/s-0036-1589046. DOI
Li X., Song Q. Recent Progress on the Zweifel Olefination: An Update. Synthesis. 2023 doi: 10.1055/a-2172-1386. DOI
Fletcher S. The Mitsunobu Reaction in the 21st Century. Org. Chem. Front. 2015;2:739–752. doi: 10.1039/C5QO00016E. DOI
Dickman M.H., Pope M.T. Peroxo and Superoxo Complexes of Chromium, Molybdenum, and Tungsten. Chem. Rev. 1994;94:569–584. doi: 10.1021/cr00027a002. DOI
Adam W., Ortega-Schulte C.M. An Effective Synthesis of α-Cyanoenamines by Peterson Olefination. Synlett. 2003;2003:414–416. doi: 10.1055/s-2003-37119. DOI
Fürstner A., Brehm C., Cancho-Grande Y. Stereoselective Synthesis of Enamides by a Peterson Reaction Manifold. Org. Lett. 2001;3:3955–3957. doi: 10.1021/ol016848p. PubMed DOI
Ando K., Wada T., Okumura M., Sumida H. Stereoselective Synthesis of Z-α,β-Unsaturated Sulfones Using Peterson Reagents. Org. Lett. 2015;17:6026–6029. doi: 10.1021/acs.orglett.5b03008. PubMed DOI
Hamlin T.A., Kelly C.B., Cywar R.M., Leadbeater N.E. Methylenation of Perfluoroalkyl Ketones Using a Peterson Olefination Approach. J. Org. Chem. 2014;79:1145–1155. doi: 10.1021/jo402577n. PubMed DOI
Marciniec B. Hydrosilylation of Carbon—Carbon Multiple Bonds in Organic Synthesis. In: Marciniec B., editor. Hydrosilylation: A Comprehensive Review on Recent Advances. Springer; Dordrecht, The Netherlands: 2009. pp. 87–123.
Marciniec B. Hydrosilylation of Alkenes and Their Derivatives. In: Marciniec B., editor. Hydrosilylation: A Comprehensive Review on Recent Advances. Springer; Dordrecht, The Netherlands: 2009. pp. 3–51.
Armstrong R.J., García-Ruiz C., Myers E.L., Aggarwal V.K. Stereodivergent Olefination of Enantioenriched Boronic Esters. Angew. Chem. Int. Ed. 2017;129:804–808. doi: 10.1002/ange.201610387. PubMed DOI PMC
Linne Y., Lohrberg D., Struwe H., Linne E., Stohwasser A., Kalesse M. 1,2-Metallate Rearrangement as a Toolbox for the Synthesis of Allylic Alcohols. J. Org. Chem. 2023;88:12623–12629. doi: 10.1021/acs.joc.3c01309. PubMed DOI PMC
Yeung K., Mykura R.C., Aggarwal V.K. Lithiation–Borylation Methodology in the Total Synthesis of Natural Products. Nat. Synth. 2022;1:117–126. doi: 10.1038/s44160-021-00012-1. DOI