olefination
Dotaz
Zobrazit nápovědu
BACKGROUND: Imidacloprid-urea is the primary imidacloprid soil metabolite, whereas imidacloprid-olefin is the main plant-relevant metabolite and is more toxic to insects than imidacloprid. We artificially contaminated potting soil and used quantitative UHPLC-QqQ-MS/MS to determine the imidacloprid, imidacloprid-olefin and imidacloprid-urea distributions in rapeseed green plant tissues and roots after 4 weeks of exposure. RESULTS: In soil, the imidacloprid/imidacloprid-urea molar ratios decreased similarly after the 250 and 2500 µg kg(-1) imidacloprid treatments. The imidacloprid/imidacloprid-urea molar ratios in the root and soil were similar, whereas in the green plant tissue, imidacloprid-urea increased more than twofold compared with the root. Although imidacloprid-olefin was prevalent in the green plant tissues, with imidacloprid/imidacloprid-olefin molar ratios of 2.24 and 1.47 for the 250 and 2500 µg kg(-1) treatments respectively, it was not detected in the root. However, imidacloprid-olefin was detected in the soil after the 2500 µg kg(-1) imidacloprid treatment. CONCLUSION: Significant proportions of imidacloprid-olefin and imidacloprid-urea in green plant tissues were demonstrated. The greater imidacloprid supply increased the imidacloprid-olefin/imidacloprid molar ratio in the green plant tissues. The absence of imidacloprid-olefin in the root excluded its retransport from leaves. The similar imidacloprid/imidacloprid-urea ratios in the soil and root indicated that the root serves primarily for transporting these substances. © 2016 Society of Chemical Industry.
- MeSH
- alkeny metabolismus MeSH
- Brassica rapa účinky léků metabolismus fyziologie MeSH
- dusíkaté sloučeniny metabolismus MeSH
- imidazoly metabolismus MeSH
- kořeny rostlin účinky léků metabolismus MeSH
- látky znečišťující půdu toxicita MeSH
- močovina metabolismus MeSH
- opylení MeSH
- půda chemie MeSH
- Publikační typ
- časopisecké články MeSH
Absorption, distribution, elimination and hemoglobin and DNA adduct formation were studied in the rat after inhalation of individual C2-C8 1-alkenes (olefins) at 300 p.p.m., 12 h a day for 3 consecutive days. The concentrations of olefins were measured in blood, lung, brain, liver, kidney and perirenal fat immediately after each exposure and 12 h after the third exposure. DNA adducts were determined by 32P-postlabeling in liver, and lymphocytes sampled immediately after the last exposure. Hemoglobin adducts were determined by GC/MS and GC/MS/MS in erythrocytes sampled immediately after the last exposure. Concentrations of 1-alkenes in blood and organs reached a steady-state level after the first 12 h exposure, and the concentrations 12 h after the last exposure were generally low, except in fat tissue. Concentrations of 1-alkenes in blood and the different tissues increased with increasing number of carbon atoms. In contrast, levels of hemoglobin and DNA adducts decreased with increasing number of carbon atoms. The decrease was most pronounced from C2 to C3. The decrease through the whole homologous series from ethene to 1-octene was most pronounced for hemoglobin adducts followed by the DNA adducts in the lymphocytes. All 1-alkenes caused formation of detectable levels of hemoglobin and DNA adducts, although the levels of hemoglobin adducts after C4-C8 exposure were low. The project illustrates important aspects of the use of biomarkers. The structure-activity approach gives possibilities for extrapolation within the homologous series.
- MeSH
- absorpce MeSH
- adukty DNA biosyntéza MeSH
- alkeny farmakokinetika farmakologie metabolismus MeSH
- aplikace inhalační MeSH
- chromatografie na tenké vrstvě MeSH
- DNA metabolismus účinky léků MeSH
- hemoglobiny metabolismus účinky léků MeSH
- krysa rodu rattus MeSH
- potkani Sprague-Dawley MeSH
- tkáňová distribuce MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
3-Hydroxycyclopent-1-ene-1-carboxylic acid (HOCPCA (1)) is a potent ligand for high-affinity γ-hydroxybutyric acid binding sites in the central nervous system. Various approaches to the introduction of a hydrogen label onto the HOCPCA skeleton are reported. The outcomes of the feasible C─H activation of olefin carbon (C-2) by iridium catalyst are compared with the reduction of the carbonyl group (C-3) by freshly prepared borodeuterides. The most efficient iridium catalysts proved to be Kerr bulky phosphine N-heterocyclic species providing outstanding deuterium enrichment (up to 91%) in a short period of time. The highest deuterium enrichment (>99%) was achieved through the reduction of ketone precursor 2 by lithium trimethoxyborodeuteride. Hence, analogical conditions were used for the tritiation experiment. [3 H]-HOCPCA selectively labeled on the position C-3 was synthetized with radiochemical purity >99%, an isolated yield of 637 mCi and specific activity = 28.9 Ci/mmol.
Materials on the basis of cycloolefin copolymers (COC) are suitable for subchondral defect repairs. The objective of this study was to evaluate the influence of surface modification of COC and COC/LLDPE blends on the viability and gene expression of chondrocytes. Human chondrocytes were incubated on the surface of the studied materials. Half of the materials were plasmatically modified with a subsequent type II collagen application. The gene expression of matrix metalloproteinases (MMP-1,-3,-13), pro-inflammatory cytokines (IL-1, TNF-alpha) and apoptotic molecules (BAX, Bcl-2) was evaluated using quantitative Taq-Man PCR after 48 h incubation. Chondrocyte viability was evaluated by the MTT test after 2, 4 and 8 days of incubation. The synthesis of MMPs was measured by ELISA assay in cell culture medium after 48 h of incubation. Chondrocytes incubated on plasmatically modified in contrast to unmodified materials demonstrated significantly increased gene expression of IL-1 (p<0.05), MMP-1 and MMP-3 (p<0.05 for both comparisons) as well as MMP-13 (p<0.001). Increased gene expression was confirmed by significantly increased production of active forms of particular MMPs into the cell culture medium. Unlike surface unmodified polymers, the modified materials showed timedependent reduction of chondrocyte viability. The gene expression of TNF-? and apoptotic molecules by chondrocytes was not significantly changed by different materials. Cycloolefin copolymers and their blends may represent suitable materials for tissue engineering, however, their surface modification followed by collagen type II application may, at least under in vitro conditions, reduce the viability of chondrocytes and induce their pro-destructive behavior. The potential benefit or disadvantage of surface modifications of materials for osteochondral defect repairs needs to be further elucidated.
- MeSH
- apoptóza účinky léků MeSH
- biokompatibilní materiály farmakologie MeSH
- buněčné linie MeSH
- chondrocyty cytologie fyziologie účinky léků MeSH
- cykloalkany farmakologie MeSH
- exprese genu účinky léků MeSH
- financování organizované MeSH
- interleukin-1 genetika MeSH
- kolagen typ II farmakologie MeSH
- lidé MeSH
- matrixová metaloproteinasa 1 genetika metabolismus MeSH
- matrixová metaloproteinasa 13 genetika metabolismus MeSH
- matrixová metaloproteinasa 3 genetika metabolismus MeSH
- osteoartróza farmakoterapie patologie MeSH
- polymery farmakologie MeSH
- protézy a implantáty MeSH
- testování materiálů MeSH
- TNF-alfa genetika MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
Závěrečná zpráva o řešení grantu Interní grantové agentury MZ ČR
Přeruš. str. : il. ; 32 cm
Vývoj 32p-postlabeling metody k hodnocení expozice alkenů(etylén,oktylén,1,3-butadien a jejich směsi).Biomonitorování osob exponovaných alkenů v chemických provozech(rafinerie,výroba plastických hmot).
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- environmentální vědy
- embryologie a teratologie
- genetika, lékařská genetika
- NLK Publikační typ
- závěrečné zprávy o řešení grantu IGA MZ ČR