• This record comes from PubMed

Latest Developments of the Julia-Kocienski Olefination Reaction: Mechanistic Considerations

. 2024 Jun 07 ; 29 (12) : . [epub] 20240607

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
IGA_PrF_2024_007 Palacký University Olomouc
IGA_PrF_2024_028 Palacký University Olomouc

Since its discovery, the Julia-Kocienski olefination reaction has over past 30 years become one of the key C-C connective methods that is used in late-stage natural product synthesis. The reaction proceeds under mild reaction conditions, with a wide substrate scope and functional group tolerance range and with high (E) selectivity. In this focused review, we discuss the reaction from a mechanistic point of view and disclose key features that play an important role in reaction selectivity. Finally, the mechanistic aspects of the newly developed modification of the Julia-Kocienski reaction, which allows the formation of both (E) and (Z) olefins from the same reaction partners, are discussed.

See more in PubMed

Markó I.E., Pospíšil J. Julia, Julia–Kocienski, and Related Sulfur-Based Alkenations. In: de Meijere A., editor. Science of Synthesis. Volume 47. Georg Thieme Verlag; Stuttgart, Germany: 2010. pp. 105–160.

Johnson C.R., Shanklin J.R., Kirchhoff R.A. Olefin Synthesis by Reductive Elimination of b-Hydroxysulfoximines. Methylenation of Carbonyl Compounds. J. Am. Chem. Soc. 1973;95:6462–6463. doi: 10.1021/ja00800a058. DOI

Maryanoff B.E., Reitz A.B. The Wittig Olefination Reaction and Modifications Involving Phosphoryl-Stabilized Carbanions. Stereochemistry, Mechanism, and Selected Synthetic Aspects. Chem. Rev. 1989;89:863–927. doi: 10.1021/cr00094a007. DOI

Bisceglia J.A., Orelli L.R. Recent Progress in the Horner-Wadsworth-Emmons Reaction. Curr. Org. Chem. 2015;19:744–775. doi: 10.2174/1385272819666150311231006. DOI

Van Staden L.F., Gravestock D., Ager D.J. New Developments in the Peterson Olefination Reaction. Chem. Soc. Rev. 2002;31:195–200. doi: 10.1039/a908402i. PubMed DOI

Coombs J.R., Zhang L., Morken J.P. Synthesis of Vinyl Boronates from Aldehydes by a Practical Boron-Wittig Reaction. Org. Lett. 2015;17:1708–1711. doi: 10.1021/acs.orglett.5b00480. PubMed DOI PMC

Wittig G., Geissler G. Zur Reaktionsweise Des Pentaphenyl-phosphors Und Einiger Derivate. Justus Liebigs Ann. Chem. 1953;580:44–57. doi: 10.1002/jlac.19535800107. DOI

Wittig G., Schöllkopf U. Über Triphenyl-phosphin-methylene Als Olefinbildende Reagenzien. Chem. Berichte. 1954;87:1318–1330. doi: 10.1002/cber.19540870919. DOI

Chatterjee B., Bera S., Mondal D. Julia-Kocienski Olefination: A Key Reaction for the Synthesis of Macrolides. Tetrahedron Asymmetry. 2014;25:1–55. doi: 10.1016/j.tetasy.2013.09.027. DOI

Legnani L., Porta A., Caramella P., Toma L., Zanoni G., Vidari G. Computational Mechanistic Study of the Julia-Kocieński Reaction. J. Org. Chem. 2015;80:3092–3100. doi: 10.1021/acs.joc.5b00008. PubMed DOI

Aïssa C. Mechanistic Manifold and New Developments of the Julia-Kocienski Reaction. Eur. J. Org. Chem. 2009;2009:1831–1844. doi: 10.1002/ejoc.200801117. DOI

Blakemore P.R. The Modified Julia Olefination: Alkene Synthesis via the Condensation of Metallated Heteroarylalkylsulfones with Carbonyl Compounds. J. Chem. Soc. Perkin 1. 2002;2:2563–2585. doi: 10.1039/b208078h. DOI

Blakemore P.R., Cole W.J., Kocieński P.J., Morley A. A Stereoselective Synthesis of Trans-1,2-Disubstituted Alkenes Based on the Condensation of Aldehydes with Metallated 1-Phenyl-1 H -Tetrazol-5-Yl Sulfones. Synlett. 1998;1998:26–28. doi: 10.1055/s-1998-1570. DOI

Robiette R., Pospíšil J. On the Origin of E/Z Selectivity in the Modified Julia Olefination—Importance of the Elimination Step. Eur. J. Org. Chem. 2013:836–840. doi: 10.1002/ejoc.201201634. DOI

Baudin J.B., Hareau G., Julia S.A., Ruel O. A Direct Synthesis of Olefins by Reaction of Carbonyl Compounds with Lithio Derivatives of 2-[Alkyl- or (2′-Alkenyl)- or Benzyl-Sulfonyl]-Benzothiazoles. Tetrahedron Lett. 1991;32:1175–1178. doi: 10.1016/S0040-4039(00)92037-9. DOI

Gueyrard D. Extension of the Modified Julia Olefination on Carboxylic Acid Derivatives: Scope and Applications. Synlett. 2018;29:34–45. doi: 10.1055/s-0036-1590916. DOI

Julia M., Paris J.M. Syntheses a l’aide de Sulfones v(+)- Methode de Synthese Generale de Doubles Liaisons. Tetrahedron Lett. 1973;14:4833–4836. doi: 10.1016/S0040-4039(01)87348-2. DOI

Kocienski P.J., Lythgoe B., Ruston S. Scope and Stereochemistry of an Olefin Synthesis from β-Hydroxysulphones. J. Chem. Soc. Perkin 1. 1978:829–834. doi: 10.1039/P19780000829. DOI

Keck G.E., Savin K.A., Weglarz M.A. Use of Samarium Diiodide as an Alternative to Sodium/Mercury Amalgam in the Julia-Lythgoe Olefination. J. Org. Chem. 1995;60:3194–3204. doi: 10.1021/jo00115a041. DOI

Baudin J.B., Hareau G., Julia S.A., Lorne R., Ruel O. Stereochemistry of Direct Olefin Formation from Carbonyl Compounds and Lithiated Heterocyclic Sulfones. Bull. Soc. Chim. Fr. 1993;130:856–878.

Baudin J.B., Hareau G., Julia S.A., Ruel O. Stereochemistry of the Olefin Formation from Anti and Syn Heterocyclic β-Hydroxy-Sulfones. Bull. Soc. Chim. Fr. 1993;130:336–357.

Sakaine G., Leitis Z., Ločmele R., Smits G. Julia-Kocienski Olefination: A Tutorial Review. Eur. J. Org. Chem. 2023;26:e202201217. doi: 10.1002/ejoc.202201217. DOI

Ouzounthanasis K.A., Rizos S.R., Koumbis A.E. Julia-Kocienski Olefination in the Synthesis of Trisubstituted Alkenes: Recent Progress. Eur. J. Org. Chem. 2023;26:e202300626. doi: 10.1002/ejoc.202300626. DOI

Rinu P.X.T., Radhika S., Anilkumar G. Recent Applications and Trends in the Julia-Kocienski Olefination. ChemistrySelect. 2022;7:e202200760. doi: 10.1002/slct.202200760. DOI

Charette A.B., Berthelette C., St-Martin D. An Expedient Approach to E, Z-Dienes Using the Julia Olefination. Tetrahedron Lett. 2001;42:5149–5153. doi: 10.1016/S0040-4039(01)00941-8. DOI

Kocienski P.J., Bell A., Blakemore P.R. 1- Tert -Butyl-1 H -Tetrazol-5-Yl Sulfones in the Modified Julia Olefination. Synlett. 2000;2000:365–366. doi: 10.1055/s-2000-6536. DOI

Alonso D.A., Fuensanta M., Nájera C., Varea M. 3,5-Bis(Trifluoromethyl)Phenyl Sulfones in the Direct Julia−Kocienski Olefination. J. Org. Chem. 2005;70:6404–6416. doi: 10.1021/jo050852n. PubMed DOI

Mąkosza M., Bujok R. Synthesis of Benzylidenecyclopropanes from γ-Halopropyl Pentachlorophenyl Sulfones Using a Julia-Kocienski Olefination. Synlett. 2008;2008:586–588. doi: 10.1055/s-2008-1042758. DOI

Pospíšil J. Simple Protocol for Enhanced (E)-Selectivity in Julia–Kocienski Reaction. Tetrahedron Lett. 2011;52:2348–2352. doi: 10.1016/j.tetlet.2011.02.086. DOI

Jana N., Nanda S. Asymmetric Total Syntheses of Cochliomycin A and Zeaenol. Eur. J. Org. Chem. 2012;2012:4313–4320. doi: 10.1002/ejoc.201200241. DOI

Mohapatra D.K., Reddy D.S., Mallampudi N.A., Yadav J.S. Stereoselective Total Syntheses of Paecilomycins e and F through a Protecting Group Directed Diastereoselective Intermolecular Nozaki-Hiyama-Kishi (NHK) Reaction. Eur. J. Org. Chem. 2014;2014:5023–5032. doi: 10.1002/ejoc.201402133. PubMed DOI

Sánchez D., Andreou T., Costa A.M., Meyer K.G., Williams D.R., Barasoain I., Díaz J.F., Lucena-Agell D., Vilarrasa J. Total Synthesis of Amphidinolide K, a Macrolide That Stabilizes F-Actin. J. Org. Chem. 2016;80:8511–8519. doi: 10.1021/acs.joc.5b00966. PubMed DOI

Wilson D.M., Britton R. Enantioselective Total Synthesis of the Marine Macrolides Salarins A and C. J. Am. Chem. Soc. 2024;146:8456–8463. doi: 10.1021/jacs.3c14553. PubMed DOI

Billard F., Robiette R., Pospíšil J. Julia-Kocienski Reaction-Based 1,3-Diene Synthesis: Aldehyde-Dependent (E, E/E, Z)-Selectivity. J. Org. Chem. 2012;77:6358–6364. doi: 10.1021/jo300929a. PubMed DOI

Rehman M., Surendran S., Siddavatam N., Rajendar G. The Influence of α-Coordinating Groups of Aldehydes on E/Z-Selectivity and the Use of Quaternary Ammonium Counter Ions for Enhanced E-Selectivity in the Julia–Kocienski Reaction. Org. Biomol. Chem. 2022;20:329–333. doi: 10.1039/d1ob02126e. PubMed DOI

Rajendar G., Corey E.J. A Systematic Study of Functionalized Oxiranes as Initiating Groups for Cationic Polycyclization Reactions. J. Am. Chem. Soc. 2015;137:5837–5844. doi: 10.1021/jacs.5b03229. PubMed DOI

Tsubone K., Hashizume K., Fuwa H., Sasaki M. Studies toward the Total Synthesis of Gambieric Acids: Convergent Synthesis of the GHIJ-Ring Fragment Having a Side Chain. Tetrahedron Lett. 2011;52:548–551. doi: 10.1016/j.tetlet.2010.11.127. DOI

Tsubone K., Hashizume K., Fuwa H., Sasaki M. Studies toward the Total Synthesis of Gambieric Acids, Potent Antifungal Polycyclic Ethers: Convergent Synthesis of a Fully Elaborated GHIJ-Ring Fragment. Tetrahedron. 2011;67:6600–6615. doi: 10.1016/j.tet.2011.05.082. DOI

Rej R.K., Kumar R., Nanda S. Asymmetric Synthesis of Cytospolides C and D through Successful Exploration of Stereoselective Julia-Kocienski Olefination and Suzuki Reaction Followed by Macrolactonization. Tetrahedron. 2015;71:3185–3194. doi: 10.1016/j.tet.2015.04.014. DOI

Eliel E.L., Frye S.V., Hortelano E.R., Chen X., Bai X. Asymmetric Synthesis and Cram’s (Chelate) Rule. Pure Appl. Chem. 1991;63:1591–1598. doi: 10.1351/pac199163111591. DOI

Bon D.J.-Y.D., Chrenko D., Kováč O., Ferugová V., Lasák P., Fuksová M., Zálešák F., Pospíšil J. Julia-Kocienski-Like Connective C−C and C=C Bond-Forming Reaction. Adv. Synth. Catal. 2024;366:480–487. doi: 10.1002/adsc.202301054. DOI

Nielsen M., Jacobsen C.B., Paixão M.W., Holub N., Jørgensen K.A. Asymmetric Organocatalytic Formal Alkynylation and Alkenylation of α,β-Unsaturated Aldehydes. J. Am. Chem. Soc. 2009;131:10581–10586. doi: 10.1021/ja903920j. PubMed DOI

Jacobsen C.B., Nielsen M., Worgull D., Zweifel T., Fisker E., Jørgensen K.A. Asymmetric Organocatalytic Monofluorovinylations. J. Am. Chem. Soc. 2011;133:7398–7404. doi: 10.1021/ja110624k. PubMed DOI

Pospíšil J., Sato H. Practical Synthesis of β-Acyl and β-Alkoxycarbonyl Heterocyclic Sulfones. J. Org. Chem. 2011;76:2269–2272. doi: 10.1021/jo102326p. PubMed DOI

Pospíšil J., Robiette R., Sato H., Debrus K. Practical Synthesis of β-Oxo Benzo[d]Thiazolyl Sulfones: Scope and Limitations. Org. Biomol. Chem. 2012;10:1225–1234. doi: 10.1039/C1OB06510F. PubMed DOI

Bettens T., Alonso M., Geerlings P., De Proft F. Mechanochemical Felkin–Anh Model: Achieving Forbidden Reaction Outcomes with Mechanical Force. J. Org. Chem. 2023;88:2046–2056. doi: 10.1021/acs.joc.2c02318. PubMed DOI

Ager D.J. Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 47a: Alkenes. Georg Thieme Verlag; Stuttgart, Germany: 2014. Peterson Alkenation; p. 85.

Armstrong R., Aggarwal V. 50 Years of Zweifel Olefination: A Transition-Metal-Free Coupling. Synthesis. 2017;49:3323–3336. doi: 10.1055/s-0036-1589046. DOI

Li X., Song Q. Recent Progress on the Zweifel Olefination: An Update. Synthesis. 2023 doi: 10.1055/a-2172-1386. DOI

Fletcher S. The Mitsunobu Reaction in the 21st Century. Org. Chem. Front. 2015;2:739–752. doi: 10.1039/C5QO00016E. DOI

Dickman M.H., Pope M.T. Peroxo and Superoxo Complexes of Chromium, Molybdenum, and Tungsten. Chem. Rev. 1994;94:569–584. doi: 10.1021/cr00027a002. DOI

Adam W., Ortega-Schulte C.M. An Effective Synthesis of α-Cyanoenamines by Peterson Olefination. Synlett. 2003;2003:414–416. doi: 10.1055/s-2003-37119. DOI

Fürstner A., Brehm C., Cancho-Grande Y. Stereoselective Synthesis of Enamides by a Peterson Reaction Manifold. Org. Lett. 2001;3:3955–3957. doi: 10.1021/ol016848p. PubMed DOI

Ando K., Wada T., Okumura M., Sumida H. Stereoselective Synthesis of Z-α,β-Unsaturated Sulfones Using Peterson Reagents. Org. Lett. 2015;17:6026–6029. doi: 10.1021/acs.orglett.5b03008. PubMed DOI

Hamlin T.A., Kelly C.B., Cywar R.M., Leadbeater N.E. Methylenation of Perfluoroalkyl Ketones Using a Peterson Olefination Approach. J. Org. Chem. 2014;79:1145–1155. doi: 10.1021/jo402577n. PubMed DOI

Marciniec B. Hydrosilylation of Carbon—Carbon Multiple Bonds in Organic Synthesis. In: Marciniec B., editor. Hydrosilylation: A Comprehensive Review on Recent Advances. Springer; Dordrecht, The Netherlands: 2009. pp. 87–123.

Marciniec B. Hydrosilylation of Alkenes and Their Derivatives. In: Marciniec B., editor. Hydrosilylation: A Comprehensive Review on Recent Advances. Springer; Dordrecht, The Netherlands: 2009. pp. 3–51.

Armstrong R.J., García-Ruiz C., Myers E.L., Aggarwal V.K. Stereodivergent Olefination of Enantioenriched Boronic Esters. Angew. Chem. Int. Ed. 2017;129:804–808. doi: 10.1002/ange.201610387. PubMed DOI PMC

Linne Y., Lohrberg D., Struwe H., Linne E., Stohwasser A., Kalesse M. 1,2-Metallate Rearrangement as a Toolbox for the Synthesis of Allylic Alcohols. J. Org. Chem. 2023;88:12623–12629. doi: 10.1021/acs.joc.3c01309. PubMed DOI PMC

Yeung K., Mykura R.C., Aggarwal V.K. Lithiation–Borylation Methodology in the Total Synthesis of Natural Products. Nat. Synth. 2022;1:117–126. doi: 10.1038/s44160-021-00012-1. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...