Latest Developments of the Julia-Kocienski Olefination Reaction: Mechanistic Considerations
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
IGA_PrF_2024_007
Palacký University Olomouc
IGA_PrF_2024_028
Palacký University Olomouc
PubMed
38930785
PubMed Central
PMC11206144
DOI
10.3390/molecules29122719
PII: molecules29122719
Knihovny.cz E-resources
- Keywords
- Julia–Kocienski reaction, olefination, reaction mechanism, reaction selectivity,
- Publication type
- Journal Article MeSH
- Review MeSH
Since its discovery, the Julia-Kocienski olefination reaction has over past 30 years become one of the key C-C connective methods that is used in late-stage natural product synthesis. The reaction proceeds under mild reaction conditions, with a wide substrate scope and functional group tolerance range and with high (E) selectivity. In this focused review, we discuss the reaction from a mechanistic point of view and disclose key features that play an important role in reaction selectivity. Finally, the mechanistic aspects of the newly developed modification of the Julia-Kocienski reaction, which allows the formation of both (E) and (Z) olefins from the same reaction partners, are discussed.
See more in PubMed
Markó I.E., Pospíšil J. Julia, Julia–Kocienski, and Related Sulfur-Based Alkenations. In: de Meijere A., editor. Science of Synthesis. Volume 47. Georg Thieme Verlag; Stuttgart, Germany: 2010. pp. 105–160.
Johnson C.R., Shanklin J.R., Kirchhoff R.A. Olefin Synthesis by Reductive Elimination of b-Hydroxysulfoximines. Methylenation of Carbonyl Compounds. J. Am. Chem. Soc. 1973;95:6462–6463. doi: 10.1021/ja00800a058. DOI
Maryanoff B.E., Reitz A.B. The Wittig Olefination Reaction and Modifications Involving Phosphoryl-Stabilized Carbanions. Stereochemistry, Mechanism, and Selected Synthetic Aspects. Chem. Rev. 1989;89:863–927. doi: 10.1021/cr00094a007. DOI
Bisceglia J.A., Orelli L.R. Recent Progress in the Horner-Wadsworth-Emmons Reaction. Curr. Org. Chem. 2015;19:744–775. doi: 10.2174/1385272819666150311231006. DOI
Van Staden L.F., Gravestock D., Ager D.J. New Developments in the Peterson Olefination Reaction. Chem. Soc. Rev. 2002;31:195–200. doi: 10.1039/a908402i. PubMed DOI
Coombs J.R., Zhang L., Morken J.P. Synthesis of Vinyl Boronates from Aldehydes by a Practical Boron-Wittig Reaction. Org. Lett. 2015;17:1708–1711. doi: 10.1021/acs.orglett.5b00480. PubMed DOI PMC
Wittig G., Geissler G. Zur Reaktionsweise Des Pentaphenyl-phosphors Und Einiger Derivate. Justus Liebigs Ann. Chem. 1953;580:44–57. doi: 10.1002/jlac.19535800107. DOI
Wittig G., Schöllkopf U. Über Triphenyl-phosphin-methylene Als Olefinbildende Reagenzien. Chem. Berichte. 1954;87:1318–1330. doi: 10.1002/cber.19540870919. DOI
Chatterjee B., Bera S., Mondal D. Julia-Kocienski Olefination: A Key Reaction for the Synthesis of Macrolides. Tetrahedron Asymmetry. 2014;25:1–55. doi: 10.1016/j.tetasy.2013.09.027. DOI
Legnani L., Porta A., Caramella P., Toma L., Zanoni G., Vidari G. Computational Mechanistic Study of the Julia-Kocieński Reaction. J. Org. Chem. 2015;80:3092–3100. doi: 10.1021/acs.joc.5b00008. PubMed DOI
Aïssa C. Mechanistic Manifold and New Developments of the Julia-Kocienski Reaction. Eur. J. Org. Chem. 2009;2009:1831–1844. doi: 10.1002/ejoc.200801117. DOI
Blakemore P.R. The Modified Julia Olefination: Alkene Synthesis via the Condensation of Metallated Heteroarylalkylsulfones with Carbonyl Compounds. J. Chem. Soc. Perkin 1. 2002;2:2563–2585. doi: 10.1039/b208078h. DOI
Blakemore P.R., Cole W.J., Kocieński P.J., Morley A. A Stereoselective Synthesis of Trans-1,2-Disubstituted Alkenes Based on the Condensation of Aldehydes with Metallated 1-Phenyl-1 H -Tetrazol-5-Yl Sulfones. Synlett. 1998;1998:26–28. doi: 10.1055/s-1998-1570. DOI
Robiette R., Pospíšil J. On the Origin of E/Z Selectivity in the Modified Julia Olefination—Importance of the Elimination Step. Eur. J. Org. Chem. 2013:836–840. doi: 10.1002/ejoc.201201634. DOI
Baudin J.B., Hareau G., Julia S.A., Ruel O. A Direct Synthesis of Olefins by Reaction of Carbonyl Compounds with Lithio Derivatives of 2-[Alkyl- or (2′-Alkenyl)- or Benzyl-Sulfonyl]-Benzothiazoles. Tetrahedron Lett. 1991;32:1175–1178. doi: 10.1016/S0040-4039(00)92037-9. DOI
Gueyrard D. Extension of the Modified Julia Olefination on Carboxylic Acid Derivatives: Scope and Applications. Synlett. 2018;29:34–45. doi: 10.1055/s-0036-1590916. DOI
Julia M., Paris J.M. Syntheses a l’aide de Sulfones v(+)- Methode de Synthese Generale de Doubles Liaisons. Tetrahedron Lett. 1973;14:4833–4836. doi: 10.1016/S0040-4039(01)87348-2. DOI
Kocienski P.J., Lythgoe B., Ruston S. Scope and Stereochemistry of an Olefin Synthesis from β-Hydroxysulphones. J. Chem. Soc. Perkin 1. 1978:829–834. doi: 10.1039/P19780000829. DOI
Keck G.E., Savin K.A., Weglarz M.A. Use of Samarium Diiodide as an Alternative to Sodium/Mercury Amalgam in the Julia-Lythgoe Olefination. J. Org. Chem. 1995;60:3194–3204. doi: 10.1021/jo00115a041. DOI
Baudin J.B., Hareau G., Julia S.A., Lorne R., Ruel O. Stereochemistry of Direct Olefin Formation from Carbonyl Compounds and Lithiated Heterocyclic Sulfones. Bull. Soc. Chim. Fr. 1993;130:856–878.
Baudin J.B., Hareau G., Julia S.A., Ruel O. Stereochemistry of the Olefin Formation from Anti and Syn Heterocyclic β-Hydroxy-Sulfones. Bull. Soc. Chim. Fr. 1993;130:336–357.
Sakaine G., Leitis Z., Ločmele R., Smits G. Julia-Kocienski Olefination: A Tutorial Review. Eur. J. Org. Chem. 2023;26:e202201217. doi: 10.1002/ejoc.202201217. DOI
Ouzounthanasis K.A., Rizos S.R., Koumbis A.E. Julia-Kocienski Olefination in the Synthesis of Trisubstituted Alkenes: Recent Progress. Eur. J. Org. Chem. 2023;26:e202300626. doi: 10.1002/ejoc.202300626. DOI
Rinu P.X.T., Radhika S., Anilkumar G. Recent Applications and Trends in the Julia-Kocienski Olefination. ChemistrySelect. 2022;7:e202200760. doi: 10.1002/slct.202200760. DOI
Charette A.B., Berthelette C., St-Martin D. An Expedient Approach to E, Z-Dienes Using the Julia Olefination. Tetrahedron Lett. 2001;42:5149–5153. doi: 10.1016/S0040-4039(01)00941-8. DOI
Kocienski P.J., Bell A., Blakemore P.R. 1- Tert -Butyl-1 H -Tetrazol-5-Yl Sulfones in the Modified Julia Olefination. Synlett. 2000;2000:365–366. doi: 10.1055/s-2000-6536. DOI
Alonso D.A., Fuensanta M., Nájera C., Varea M. 3,5-Bis(Trifluoromethyl)Phenyl Sulfones in the Direct Julia−Kocienski Olefination. J. Org. Chem. 2005;70:6404–6416. doi: 10.1021/jo050852n. PubMed DOI
Mąkosza M., Bujok R. Synthesis of Benzylidenecyclopropanes from γ-Halopropyl Pentachlorophenyl Sulfones Using a Julia-Kocienski Olefination. Synlett. 2008;2008:586–588. doi: 10.1055/s-2008-1042758. DOI
Pospíšil J. Simple Protocol for Enhanced (E)-Selectivity in Julia–Kocienski Reaction. Tetrahedron Lett. 2011;52:2348–2352. doi: 10.1016/j.tetlet.2011.02.086. DOI
Jana N., Nanda S. Asymmetric Total Syntheses of Cochliomycin A and Zeaenol. Eur. J. Org. Chem. 2012;2012:4313–4320. doi: 10.1002/ejoc.201200241. DOI
Mohapatra D.K., Reddy D.S., Mallampudi N.A., Yadav J.S. Stereoselective Total Syntheses of Paecilomycins e and F through a Protecting Group Directed Diastereoselective Intermolecular Nozaki-Hiyama-Kishi (NHK) Reaction. Eur. J. Org. Chem. 2014;2014:5023–5032. doi: 10.1002/ejoc.201402133. PubMed DOI
Sánchez D., Andreou T., Costa A.M., Meyer K.G., Williams D.R., Barasoain I., Díaz J.F., Lucena-Agell D., Vilarrasa J. Total Synthesis of Amphidinolide K, a Macrolide That Stabilizes F-Actin. J. Org. Chem. 2016;80:8511–8519. doi: 10.1021/acs.joc.5b00966. PubMed DOI
Wilson D.M., Britton R. Enantioselective Total Synthesis of the Marine Macrolides Salarins A and C. J. Am. Chem. Soc. 2024;146:8456–8463. doi: 10.1021/jacs.3c14553. PubMed DOI
Billard F., Robiette R., Pospíšil J. Julia-Kocienski Reaction-Based 1,3-Diene Synthesis: Aldehyde-Dependent (E, E/E, Z)-Selectivity. J. Org. Chem. 2012;77:6358–6364. doi: 10.1021/jo300929a. PubMed DOI
Rehman M., Surendran S., Siddavatam N., Rajendar G. The Influence of α-Coordinating Groups of Aldehydes on E/Z-Selectivity and the Use of Quaternary Ammonium Counter Ions for Enhanced E-Selectivity in the Julia–Kocienski Reaction. Org. Biomol. Chem. 2022;20:329–333. doi: 10.1039/d1ob02126e. PubMed DOI
Rajendar G., Corey E.J. A Systematic Study of Functionalized Oxiranes as Initiating Groups for Cationic Polycyclization Reactions. J. Am. Chem. Soc. 2015;137:5837–5844. doi: 10.1021/jacs.5b03229. PubMed DOI
Tsubone K., Hashizume K., Fuwa H., Sasaki M. Studies toward the Total Synthesis of Gambieric Acids: Convergent Synthesis of the GHIJ-Ring Fragment Having a Side Chain. Tetrahedron Lett. 2011;52:548–551. doi: 10.1016/j.tetlet.2010.11.127. DOI
Tsubone K., Hashizume K., Fuwa H., Sasaki M. Studies toward the Total Synthesis of Gambieric Acids, Potent Antifungal Polycyclic Ethers: Convergent Synthesis of a Fully Elaborated GHIJ-Ring Fragment. Tetrahedron. 2011;67:6600–6615. doi: 10.1016/j.tet.2011.05.082. DOI
Rej R.K., Kumar R., Nanda S. Asymmetric Synthesis of Cytospolides C and D through Successful Exploration of Stereoselective Julia-Kocienski Olefination and Suzuki Reaction Followed by Macrolactonization. Tetrahedron. 2015;71:3185–3194. doi: 10.1016/j.tet.2015.04.014. DOI
Eliel E.L., Frye S.V., Hortelano E.R., Chen X., Bai X. Asymmetric Synthesis and Cram’s (Chelate) Rule. Pure Appl. Chem. 1991;63:1591–1598. doi: 10.1351/pac199163111591. DOI
Bon D.J.-Y.D., Chrenko D., Kováč O., Ferugová V., Lasák P., Fuksová M., Zálešák F., Pospíšil J. Julia-Kocienski-Like Connective C−C and C=C Bond-Forming Reaction. Adv. Synth. Catal. 2024;366:480–487. doi: 10.1002/adsc.202301054. DOI
Nielsen M., Jacobsen C.B., Paixão M.W., Holub N., Jørgensen K.A. Asymmetric Organocatalytic Formal Alkynylation and Alkenylation of α,β-Unsaturated Aldehydes. J. Am. Chem. Soc. 2009;131:10581–10586. doi: 10.1021/ja903920j. PubMed DOI
Jacobsen C.B., Nielsen M., Worgull D., Zweifel T., Fisker E., Jørgensen K.A. Asymmetric Organocatalytic Monofluorovinylations. J. Am. Chem. Soc. 2011;133:7398–7404. doi: 10.1021/ja110624k. PubMed DOI
Pospíšil J., Sato H. Practical Synthesis of β-Acyl and β-Alkoxycarbonyl Heterocyclic Sulfones. J. Org. Chem. 2011;76:2269–2272. doi: 10.1021/jo102326p. PubMed DOI
Pospíšil J., Robiette R., Sato H., Debrus K. Practical Synthesis of β-Oxo Benzo[d]Thiazolyl Sulfones: Scope and Limitations. Org. Biomol. Chem. 2012;10:1225–1234. doi: 10.1039/C1OB06510F. PubMed DOI
Bettens T., Alonso M., Geerlings P., De Proft F. Mechanochemical Felkin–Anh Model: Achieving Forbidden Reaction Outcomes with Mechanical Force. J. Org. Chem. 2023;88:2046–2056. doi: 10.1021/acs.joc.2c02318. PubMed DOI
Ager D.J. Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 47a: Alkenes. Georg Thieme Verlag; Stuttgart, Germany: 2014. Peterson Alkenation; p. 85.
Armstrong R., Aggarwal V. 50 Years of Zweifel Olefination: A Transition-Metal-Free Coupling. Synthesis. 2017;49:3323–3336. doi: 10.1055/s-0036-1589046. DOI
Li X., Song Q. Recent Progress on the Zweifel Olefination: An Update. Synthesis. 2023 doi: 10.1055/a-2172-1386. DOI
Fletcher S. The Mitsunobu Reaction in the 21st Century. Org. Chem. Front. 2015;2:739–752. doi: 10.1039/C5QO00016E. DOI
Dickman M.H., Pope M.T. Peroxo and Superoxo Complexes of Chromium, Molybdenum, and Tungsten. Chem. Rev. 1994;94:569–584. doi: 10.1021/cr00027a002. DOI
Adam W., Ortega-Schulte C.M. An Effective Synthesis of α-Cyanoenamines by Peterson Olefination. Synlett. 2003;2003:414–416. doi: 10.1055/s-2003-37119. DOI
Fürstner A., Brehm C., Cancho-Grande Y. Stereoselective Synthesis of Enamides by a Peterson Reaction Manifold. Org. Lett. 2001;3:3955–3957. doi: 10.1021/ol016848p. PubMed DOI
Ando K., Wada T., Okumura M., Sumida H. Stereoselective Synthesis of Z-α,β-Unsaturated Sulfones Using Peterson Reagents. Org. Lett. 2015;17:6026–6029. doi: 10.1021/acs.orglett.5b03008. PubMed DOI
Hamlin T.A., Kelly C.B., Cywar R.M., Leadbeater N.E. Methylenation of Perfluoroalkyl Ketones Using a Peterson Olefination Approach. J. Org. Chem. 2014;79:1145–1155. doi: 10.1021/jo402577n. PubMed DOI
Marciniec B. Hydrosilylation of Carbon—Carbon Multiple Bonds in Organic Synthesis. In: Marciniec B., editor. Hydrosilylation: A Comprehensive Review on Recent Advances. Springer; Dordrecht, The Netherlands: 2009. pp. 87–123.
Marciniec B. Hydrosilylation of Alkenes and Their Derivatives. In: Marciniec B., editor. Hydrosilylation: A Comprehensive Review on Recent Advances. Springer; Dordrecht, The Netherlands: 2009. pp. 3–51.
Armstrong R.J., García-Ruiz C., Myers E.L., Aggarwal V.K. Stereodivergent Olefination of Enantioenriched Boronic Esters. Angew. Chem. Int. Ed. 2017;129:804–808. doi: 10.1002/ange.201610387. PubMed DOI PMC
Linne Y., Lohrberg D., Struwe H., Linne E., Stohwasser A., Kalesse M. 1,2-Metallate Rearrangement as a Toolbox for the Synthesis of Allylic Alcohols. J. Org. Chem. 2023;88:12623–12629. doi: 10.1021/acs.joc.3c01309. PubMed DOI PMC
Yeung K., Mykura R.C., Aggarwal V.K. Lithiation–Borylation Methodology in the Total Synthesis of Natural Products. Nat. Synth. 2022;1:117–126. doi: 10.1038/s44160-021-00012-1. DOI