Contrasting levels of β-diversity and underlying phylogenetic trends indicate different paths to chemical diversity in highland and lowland willow species

. 2023 Sep ; 26 (9) : 1559-1571. [epub] 20230622

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu dopisy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37345539

Grantová podpora
MSM200962004 Akademie Věd České Republiky
MEMOVA CZ.02.2.69/0.0/0.0/18_053/ EU Operational Programme Research
20-10543Y Grantová Agentura České Republiky
ASCEND BII (DBI 2021898) National Science Foundation
Cedar Creek LTER (DEB 1831944) National Science Foundation
DEB 2240430 National Science Foundation

Diverse specialised metabolites contributed to the success of vascular plants in colonising most terrestrial habitats. Understanding how distinct aspects of chemical diversity arise through heterogeneous environmental pressures can help us understand the effects of abiotic and biotic stress on plant evolution and community assembly. We examined highland and lowland willow species within a phylogenetic framework to test for trends in their chemical α-diversity (richness) and β-diversity (variation among species sympatric in elevation). We show that differences in chemistry among willows growing at different elevations occur mainly through shifts in chemical β-diversity and due to convergence or divergence among species sharing their elevation level. We also detect contrasting phylogenetic trends in concentration and α-diversity of metabolites in highland and lowland willow species. The resulting elevational patterns contribute to the chemical diversity of willows and suggest that variable selective pressure across ecological gradients may, more generally, underpin complex changes in plant chemistry.

Zobrazit více v PubMed

Abràmoff, M.D., Magalhães, P.J. & Ram, S.J. (2004) Image processing with ImageJ. Biophotonics International, 11, 36-42.

Bakhtiari, M., Glauser, G., Defossez, E. & Rasmann, S. (2021) Ecological convergence of secondary phytochemicals along elevational gradients. New Phytologist, 229, 1755-1767.

Becerra, J.X. (2007) The impact of herbivore-plant coevolution on plant community structure. Proceedings of the National Academy of Sciences of the United States of America, 104, 7483-7488.

Becerra, J.X. (2015) On the factors that promote the diversity of herbivorous insects and plants in tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 112, 6098-6103.

Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57, 289-300.

Cavender-Bares, J., Ackerly, D.D., Baum, D. & Bazzaz, F. (2004) Phylogenetic overdispersion in Floridian oak communities. The American Naturalist, 163, 823-843.

Chambers, J.M. & Hastie, T.J. (2017) Statistical models. In: Statistical models in S. New York: Routledge, pp. 13-44.

Defossez, E., Pellissier, L. & Rasmann, S. (2018) The unfolding of plant growth form-defence syndromes along elevation gradients. Ecology Letters, 21, 609-618.

Defossez, E., Pitteloud, C., Descombes, P., Glauser, G., Allard, P.-M., Walker, T.W. et al. (2021) Spatial and evolutionary predictability of phytochemical diversity. Proceedings of the National Academy of Sciences of the United States of America, 118, e2013344118.

Denno, R.F., Larsson, S. & Olmstead, K.L. (1990) Role of enemy-free space and plant quality in host-plant selection by willow beetles. Ecology, 71, 124-137.

Dobzhansky, T. (1950) Evolution in the tropics. American Scientist, 38, 209-221.

Dührkop, K., Fleischauer, M., Ludwig, M., Aksenov, A.A., Melnik, A.V., Meusel, M. et al. (2019) SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nature Methods, 16, 299-302.

Dührkop, K., Nothias, L.-F., Fleischauer, M., Reher, R., Ludwig, M., Hoffmann, M.A. et al. (2021) Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nature Biotechnology, 39, 462-471.

Dührkop, K., Shen, H., Meusel, M., Rousu, J. & Böcker, S. (2015) Searching molecular structure databases with tandem mass spectra using CSI: FingerID. Proceedings of the National Academy of Sciences of the United States of America, 112, 12580-12585.

Dyer, L.A., Singer, M.S., Lill, J.T., Stireman, J.O., Gentry, G.L., Marquis, R.J. et al. (2007) Host specificity of lepidoptera in tropical and temperate forests. Nature, 448, 696-U699.

Ehrlich, P.R. & Raven, P.H. (1964) Butterflies and plants-a study in coevolution. Evolution, 18, 586-608.

Engström, M., Arvola, J., Nenonen, S., Virtanen, V., Leppa, M., Tahtinen, P. et al. (2019) Structural features of hydrolyzable tannins determine their ability to form insoluble complexes with bovine serum albumin. Journal of Agricultural and Food Chemistry, 67, 6798-6808.

Engström, M.T., Pälijärvi, M., Fryganas, C., Grabber, J.H., Mueller-Harvey, I. & Salminen, J.-P. (2014) Rapid qualitative and quantitative analyses of proanthocyanidin oligomers and polymers by UPLC-MS/MS. Journal of Agricultural and Food Chemistry, 62, 3390-3399.

Engström, M.T., Pälijärvi, M. & Salminen, J.-P. (2015) Rapid fingerprint analysis of plant extracts for ellagitannins, gallic acid, and quinic acid derivatives and quercetin-, kaempferol- and myricetin-based flavonol glycosides by UPLC-QqQ-MS/MS. Journal of Agricultural and Food Chemistry, 63, 4068-4079.

Harmon, L.J., Weir, J.T., Brock, C.D., Glor, R.E. & Challenger, W. (2008) GEIGER: investigating evolutionary radiations. Bioinformatics, 24, 129-131.

He, L., Wagner, N.D. & Hörandl, E. (2021) Restriction-site associated DNA sequencing data reveal a radiation of willow species (L., Salicaceae) in the Hengduan Mountains and adjacent areas. Journal of Systematics and Evolution, 59, 44-57.

Hjalten, J., Niemi, L., Wennstrom, A., Ericson, L., Roininen, H. & Julkunen-Tiitto, R. (2007) Variable responses of natural enemies to Salix triandra phenotypes with different secondary chemistry. Oikos, 116, 751-758.

Jombart, T., Balloux, F. & Dray, S. (2010) Adephylo: new tools for investigating the phylogenetic signal in biological traits. Bioinformatics, 26, 1907-1909.

Karger, D.N. & Zimmermann, N.E. (2019) Climatologies at high resolution for the earth land surface areas CHELSA V1. 2: technical specification. Switzerland: Swiss Federal Research Institute WSL.

Keck, F., Rimet, F., Bouchez, A. & Franc, A. (2016) Phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecology and Evolution, 6, 2774-2780.

Kursar, T.A., Dexter, K.G., Lokvam, J., Pennington, R.T., Richardson, J.E., Weber, M.G. et al. (2009) The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proceedings of the National Academy of Sciences of the United States of America, 106, 18073-18078.

Landsberg, J. & Gillieson, D. (1995) Regional and local variation in insect herbivory, vegetation and soils of eucalypt associations in contrasted landscape positions along a climatic gradient. Australian Journal of Ecology, 20, 299-315.

Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. (2019) Package ‘emmeans’.

Malisch, C.S., Salminen, J.-P., Kölliker, R., Engström, M.T., Suter, D., Studer, B. et al. (2016) Drought effects on proanthocyanidins in sainfoin (Onobrychis viciifolia Scop.) are dependent on the plant's ontogenetic stage. Journal of Agricultural and Food Chemistry, 64, 9307-9316.

Maron, J.L., Agrawal, A.A. & Schemske, D.W. (2019) Plant-herbivore coevolution and plant speciation. Ecology, 100, e02704.

Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., Von Haeseler, A. et al. (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37, 1530-1534.

Moles, A.T., Bonser, S.P., Poore, A.G.B., Wallis, I.R. & Foley, W.J. (2011) Assessing the evidence for latitudinal gradients in plant defence and herbivory. Functional Ecology, 25, 380-388.

Moreira, X., Petry, W.K., Mooney, K.A., Rasmann, S. & Abdala-Roberts, L. (2018) Elevational gradients in plant defences and insect herbivory: recent advances in the field and prospects for future research. Ecography, 41, 1485-1496.

Ning, D., Yuan, M., Wu, L., Zhang, Y., Guo, X., Zhou, X. et al. (2020) A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nature Communications, 11, 1-12.

Nothias, L.-F., Petras, D., Schmid, R., Dührkop, K., Rainer, J., Sarvepalli, A. et al. (2020) Feature-based molecular networking in the GNPS analysis environment. Nature Methods, 17, 905-908.

Nyman, T., Farrell, B.D., Zinovjev, A.G. & Vikberg, V. (2006) Larval habits, host-plant associations, and speciation in nematine sawflies (Hymenoptera: Tenthredinidae). Evolution, 60, 1622-1637.

Paradis, E. & Schliep, K. (2019) Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526-528.

Pellissier, L., Descombes, P., Hagen, O., Chalmandrier, L., Glauser, G., Kergunteuil, A. et al. (2018) Growth-competition-herbivore resistance trade-offs and the responses of alpine plant communities to climate change. Functional Ecology, 32, 1693-1703.

Pellissier, L., Fiedler, K., Ndribe, C., Dubuis, A., Pradervand, J.N., Guisan, A. et al. (2012) Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecology and Evolution, 2, 1818-1825.

Pellissier, L., Moreira, X., Danner, H., Serrano, M., Salamin, N., van Dam, N.M. et al. (2016) The simultaneous inducibility of phytochemicals related to plant direct and indirect defences against herbivores is stronger at low elevation. Journal of Ecology, 104, 1116-1125.

Pellissier, L., Roger, A., Bilat, J. & Rasmann, S. (2014) High elevation Plantago lanceolata plants are less resistant to herbivory than their low elevation conspecifics: is it just temperature? Ecography, 37, 950-959.

Philbin, C.S., Dyer, L.A., Jeffrey, C.S., Glassmire, A.E. & Richards, L.A. (2022) Structural and compositional dimensions of phytochemical diversity in the genus piper reflect distinct ecological modes of action. Journal of Ecology, 110, 57-67.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R.D.C. (2019) Nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-140 https://CRAN.R-project.org/package=nlme

Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. (2010) MZmine 2: modular framework for processing, visualizing, and analyzing massspectrometry-based molecular profile data. BMC Bioinformatics, 11, 1-11.

R Core Team. (2022) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org

Revell, L.J. (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217-223.

Salgado, A.L., Suchan, T., Pellissier, L., Rasmann, S., Ducrest, A.-L. & Alvarez, N. (2016) Differential phenotypic and genetic expression of defence compounds in a plant-herbivore interaction along elevation. Royal Society Open Science, 3, 160226.

Salminen, J.P. & Karonen, M. (2011) Chemical ecology of tannins and other phenolics: we need a change in approach. Functional Ecology, 25, 325-338.

Sam, K., Koane, B., Sam, L., Mrazova, A., Segar, S.T., Volf, M. et al. (2019) Insect herbivory and herbivores of Ficus species along a rainforest elevational gradient in Papua New Guinea. Biotropica, 52, 263-276.

Savage, J.A. & Cavender-Bares, J. (2012) Habitat specialization and the role of trait lability in structuring diverse willow (genus Salix) communities. Ecology, 93, S138-S150.

Sedio, B.E., Boya, P.C.A. & Rojas Echeverri, J.C. (2018) A protocol for high-throughput, untargeted forest community metabolomics using mass spectrometry molecular networks. Applications in Plant Sciences, 6, e1033.

Sedio, B.E. & Ostling, A.M. (2013) How specialised must natural enemies be to facilitate coexistence among plants? Ecology Letters, 16, 995-1003.

Sedio, B.E., Parker, J.D., McMahon, S.M. & Wright, S.J. (2018) Comparative foliar metabolomics of a tropical and a temperate forest community. Ecology, 99, 2647-2653.

Sedio, B.E., Rojas Echeverri, J.C., Boya, P., Cristopher, A. & Wright, S.J. (2017) Sources of variation in foliar secondary chemistry in a tropical forest tree community. Ecology, 98, 616-623.

Sedio, B.E., Spasojevic, M.J., Myers, J.A., Wright, S.J., Person, M.D., Chandrasekaran, H. et al. (2021) Chemical similarity of co-occurring trees decreases with precipitation and temperature in North American forests. Frontiers in Ecology and Evolution, 9, 679638.

Sedio, B.E., Wright, S.J. & Dick, C.W. (2012) Trait evolution and the coexistence of a species swarm in the tropical forest understorey. Journal of Ecology, 100, 1183-1193.

Tegelberg, R. & Julkunen-Tiitto, R. (2001) Quantitative changes in secondary metabolites of dark-leaved willow (Salix myrsinifolia) exposed to enhanced ultraviolet-B radiation. Physiologia Plantarum, 113, 541-547.

ter Braak, C.J. & Smilauer, P. (2012) Canoco Reference Manual and User's Guide: Software for Ordination (version 5.0). Microcomputer power, Ithaca.

Treutter, D. (2006) Significance of flavonoids in plant resistance: a review. Environmental Chemistry Letters, 4, 147-157.

Tripathi, A., Vázquez-Baeza, Y., Gauglitz, J.M., Wang, M., Dührkop, K., Nothias-Esposito, M. et al. (2021) Chemically informed analyses of metabolomics mass spectrometry data with Qemistree. Nature Chemical Biology, 17, 146-151.

Volf, M., Hrcek, J., Julkunen-Tiitto, R. & Novotny, V. (2015) To each its own: differential response of specialist and generalist herbivores to plant defence in willows. Journal of Animal Ecology, 84, 1123-1132.

Volf, M., Laitila, J.E., Kim, J., Sam, L., Sam, K., Isua, B. et al. (2020) Compound specific trends of chemical Defences in Ficus along an elevational gradient reflect a complex selective landscape. Journal of Chemical Ecology, 46, 442-454.

Volf, M., Salminen, J.-P. & Segar, S.T. (2019) Evolution of defences in large tropical plant genera: perspectives for exploring insect diversity in a tri-trophic context. Current Opinion in Insect Science, 32, 91-97.

Volf, M., Segar, S.T., Miller, S.E., Isua, B., Sisol, M., Aubona, G. et al. (2018) Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in Ficus. Ecology Letters, 21, 83-92.

Volf, M., Volfová, T., Hörandl, E., Wagner, N.D., Luntamo, N., Salminen, J.P. et al. (2022) Abiotic stress rather than biotic interactions drives contrasting trends in chemical richness and variation in alpine willows. Functional Ecology, 36, 2701-2712.

Wagner, N.D., He, L. & Hörandl, E. (2020) Phylogenomic relationships and evolution of polyploid Salix species revealed by RAD sequencing data. Frontiers in Plant Science, 11, 1077.

Wagner, N.D., He, L. & Hörandl, E. (2021) The evolutionary history, diversity, and ecology of willows (Salix L.) in the European Alps. Diversity, 13, 146.

Wallace, A.R. (1878) Tropical nature, and other essays. London: Macmillan and Company.

Wang, M., Carver, J.J., Phelan, V.V., Sanchez, L.M., Garg, N., Peng, Y. et al. (2016) Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nature Biotechnology, 34, 828.

Webb, C.O., Ackerly, D.D., McPeek, M.A. & Donoghue, M.J. (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505.

Wetzel, W.C. & Whitehead, S.R. (2020) The many dimensions of phytochemical diversity: linking theory to practice. Ecology Letters, 23, 16-32.

Whitehead, S.R., Bass, E., Corrigan, A., Kessler, A. & Poveda, K. (2021) Interaction diversity explains the maintenance of phytochemical diversity. Ecology Letters, 24, 1205-1214.

Zhou, R., Macaya-Sanz, D., Carlson, C.H., Schmutz, J., Jenkins, J.W., Kudrna, D. et al. (2020) A willow sex chromosome reveals convergent evolution of complex palindromic repeats. Genome Biology, 21, 1-19.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...