Effects of individual traits vs. trait syndromes on assemblages of various herbivore guilds associated with central European Salix

. 2024 Aug ; 205 (3-4) : 725-737. [epub] 20240603

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38829402

Grantová podpora
GACR 23-06855L Biologické Centrum, Akademie Věd České Republiky
DFG FZT 118 Deutsche Forschungsgemeinschaft
202548816 Deutsche Forschungsgemeinschaft
DEB Award 2240430 National Science Foundation

Odkazy

PubMed 38829402
DOI 10.1007/s00442-024-05569-0
PII: 10.1007/s00442-024-05569-0
Knihovny.cz E-zdroje

Plants employ diverse anti-herbivore defences that can covary to form syndromes consisting of multiple traits. Such syndromes are hypothesized to impact herbivores more than individual defences. We studied 16 species of lowland willows occurring in central Europe and explored if their chemical and physical traits form detectable syndromes. We tested for phylogenetic trends in the syndromes and explored whether three herbivore guilds (i.e., generalist leaf-chewers, specialist leaf-chewers, and gallers) are affected more by the detected syndromes or individual traits. The recovered syndromes showed low phylogenetic signal and were mainly defined by investment in concentration, richness, or uniqueness of structurally related phenolic metabolites. Resource acquisition traits or inducible volatile organic compounds exhibited a limited correlation with the syndromes. Individual traits composing the syndromes showed various correlations to the assemblages of herbivores from the three studied guilds. In turn, we found some support for the hypothesis that defence syndromes are composed of traits that provide defence against various herbivores. However, individual traits rather than trait syndromes explained more variation for all studied herbivore assemblages. The detected negative correlations between various phenolics suggest that investment trade-offs may occur primarily among plant metabolites with shared metabolic pathways that may compete for their precursors. Moreover, several traits characterizing the recovered syndromes play additional roles in willows other than defence from herbivory. Taken together, our findings suggest that the detected syndromes did not solely evolve as an anti-herbivore defence.

Erratum v

PubMed

Zobrazit více v PubMed

Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87:S132–S149 PubMed DOI

Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17:293–302 PubMed DOI

Becerra JX, Venable DL (1999) Macroevolution of insect-plant associations: The relevance of host biogeography to host affiliation. Proc Natl Acad Sci 96:12626–12631 PubMed DOI PMC

Boeckler GA, Gershenzon J, Unsicker SB (2011) Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry 72:1497–1509 PubMed DOI

Borges R, Machado JP, Gomes C, Rocha AP, Antunes A (2019) Measuring phylogenetic signal between categorical traits and phylogenies. Bioinformatics 35:1862–1869 PubMed DOI

Defossez E, Pellissier L, Rasmann S (2018) The unfolding of plant growth form-defence syndromes along elevation gradients. Ecol Lett 21:609–618 PubMed DOI

Dührkop K, Shen H, Meusel M, Rousu J, Böcker S (2015) Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc Natl Acad Sci 112:12580–12585 PubMed DOI PMC

Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, Dorrestein PC, Rousu J, Böcker S (2019) SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods 16:299–302 PubMed DOI

Dührkop K, Nothias LF, Fleischauer M, Reher R, Ludwig M, Hoffmann MA, Petras D, Gerwick WH, Rousu J, Dorrestein PC, Böcker S (2021) Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat Biotechnol 39:462–471 PubMed DOI

Engström MT, Pälijärvi M, Fryganas C, Grabber JH, Mueller-Harvey I, Salminen JP (2014) Rapid qualitative and quantitative analyses of proanthocyanidin oligomers and polymers by UPLC-MS/MS. J Agr Food Chem 62:3390–3399 DOI

Engström MT, Pälijärvi M, Salminen JP (2015) Rapid fingerprint analysis of plant extracts for ellagitannins, gallic acid, and quinic acid derivatives and quercetin-, kaempferol- and myricetin-based flavonol glycosides by UPLC-QqQ-MS/MS. J Agr Food Chem 63:4068–4079 DOI

Hagerman E, Butler LG (1978) Protein precipitation method for the quantitative determination of tannins. J Agr Food Chem 26:809–812 DOI

Harding SA (2019) Condensed tannins: arbiters of abiotic stress tolerance? Tree Physiol 39:341–344 PubMed DOI

Hervé MR, Nicolè F, Lê Cao K-A (2018) Multivariate analysis of multiple datasets: a practical guide for chemical ecology. J Chem Ecol 44(3):215–234 PubMed DOI

Keck F, Rimet F, Bouchez A, Franc A (2016) Phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol Evol 6:2774–2780 PubMed DOI PMC

Kim KW (2019) Plant trichomes as microbial habitats and infection sites. Eur J Plant Pathol 154:157–169 DOI

Kolehmainen J, Julkunen-Tiitto R, Roininen H, Tahvanainen J (1995) Phenolic glucosides as feeding cues for willow-feeding leaf beetles. Entomol Exp Appl 74:235–243 DOI

Koricheva J (2002) Meta-analysis of sources of variation in fitness costs of plant antiherbivore defenses. Ecology 83:176–190 DOI

Kursar TA, Coley PD (2003) Convergence in defense syndromes of young leaves in tropical rainforests. Biochem Syst Ecol 31:929–949 DOI

Lindroth RL, Hwang SY (1996) Diversity, redundancy, and multiplicity in chemical defense systems of aspen. In: Romeo JT, Saunders JA, Barbosa P (eds) Phytochemical diversity and redundancy in ecological interactions. Springer, Boston, MA, US, pp 25–56 DOI

Malisch CS, Salminen JP, Kölliker R, Engström MT, Suter D, Studer B, Lüscher A (2016) Drought effects on proanthocyanidins in sainfoin (Onobrychis viciifolia Scop.) are dependent on the plant’s ontogenetic stage. J Agr Food Chem 64:9307–9316 DOI

Maron JL, Agrawal AA, Schemske DW (2019) Plant–herbivore coevolution and plant speciation. Ecology 100(7):e02704 PubMed DOI

Mertens D, Boege K, Kessler A, Koricheva J, Thaler JS, Whiteman NK, Poelman EH (2021) Predictability of biotic stress structures plant defence evolution. Trends Ecol Evol 36(5):444–456 PubMed DOI

Mezzomo P, Weinhold A, Aurova K, Jorge LR, Kozel P, Michalek J, Novakova N, Seifert CL, Volfova T, Engstrom M, Salminen J-P, Sedio BE, Volf M (2023) Leaf volatile and nonvolatile metabolites show different levels of specificity in response to herbivory. Ecol Evol 13:e10123 PubMed DOI PMC

Moreira X, Sampedro L, Zas R, Pearse IS (2014) Defensive traits in young pine trees cluster into two divergent syndromes related to early growth rate. PLoS ONE 11(3):e0152537 DOI

Ning D, Yuan M, Wu L, Zhang Y, Guo X, Zhou X, Yang Y, Arkin AP, Firestone MK, Zhou J (2020) A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat Commun 11:4717 PubMed DOI PMC

Nothias L-F, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A, Protsyuk I, Ernst M, Tsugawa H, Fleischauer M, Aicheler F, Aksenov AA, Alka O, Allard P-M, Barsch A, Cachet X, Caraballo-Rodriguez AM, Da Silva RR, Dang T, Dorrestein PC (2020) Feature-based molecular networking in the GNPS analysis environment. Nat Methods 17(9):9 DOI

Nyman T, Farrell BD, Zinovjev AG, Vikberg V (2006) Larval habits, host-plant associations, and speciation in Nematine sawflies (Hymenoptera: Tenthredinidae). Evolution 60:1622–1637 PubMed

Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884 PubMed DOI

Pasteels JM, Rowell-Rahier M, Braekman JC, Daloze D (1984) Chemical defenses in leaf beetles and their larvae: the ecological, evolutionary and taxonomic significance. Biochem Syst Ecol 12:395–406 DOI

Pennell M, Eastman J, Slater G, Brown J, Uyeda J, Fitzjohn R, Alfaro M, Harmon L (2014) eiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30:2216–2218 PubMed DOI

Pinheiro J, Bates D, R Core Team (2022) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–159,  https://CRAN.R-project.org/package=nlme

Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) Mzmine2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:1–11 DOI

R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07–0, URL  http://www.R-project.org/

Ratnasingham S, Hebert PDN (2013) A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS ONE 8:7 DOI

Revell LJ, Harmon LJ, Langerhans RB, Kolbe JJ (2007) A phylogenetic approach to determining the importance of constraint on phenotypic evolution in the neotropical lizard, Anolis cristatellus. Evol Ecol Res 9:261–282

Rowell-Rahier M, Pasteels JM (1986) Economics of chemical defense in Chrysomelinae. J Chem Ecol 12:1189–1203 PubMed DOI

Salazar D, Lokvam J, Mesones I, Vásquez Pilco M, Ayarza Zuñiga JM, de Valpine P, Fine PVA (2018) Origin and maintenance of chemical diversity in a species-rich tropical tree lineage. Nat Ecol Evol 2:983–990 PubMed DOI

Salminen JP, Karonen M (2011) Chemical ecology of tannins and other phenolics: we need a change in approach. Funct Ecol 25:325–338 DOI

Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675 PubMed DOI PMC

Sedio BE, Rojas Echeverri JC, Boya PCA, Wright SJ (2017) Sources of variation in foliar secondary chemistry in a tropical forest tree community. Ecology 98:616–623 PubMed DOI

Sedio BE, Parker JD, McMahon SM, Wright SJ (2018) Comparative foliar metabolomics of a tropical and a temperate forest community. Ecology 99:2647–2653 PubMed DOI

Sedio BE, Spasojevic MJ, Myers JA, Wright SJ, Person MD, Chandrasekaran H, Dwenger JH, Prechi ML, López CA, Allen DN, Anderson-Teixeira KJ, Baltzer JL, Bourg NA, Castillo BT, Day NJ, Dewald-Wang E, Dick CW, James TY, Kueneman JG, Vandermeer JH (2021) Chemical similarity of co-occurring trees decreases with precipitation and temperature in North American forests. Front Ecol Evol 9:679638 DOI

Sinnott-Armstrong MA, Deanna R, Pretz C, Liu S, Harris JC, Dunbar-Wallis A, Smith SD, Wheeler LC (2022) How to approach the study of syndromes in macroevolution and ecology. Ecol Evol 12:e8583 PubMed DOI PMC

Skvortsov AK (1999) Willows of Russia and adjacent countries. University of Joensuu, Joensuu, Finland, p 307

Suzuki R, Shimodaira H (2006) Pvclust: An R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22:1540–1542 PubMed DOI

ter Braak CJ, Šmilauer P (2012) Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power

Therneau T, Atkinson B, Ripley B (2017) rpart: Recursive Partitioning and Regression Trees. R package version 4.1–11. Available at: https://CRAN.R-project.org/package=rpart

Topp W, Kulfan J, Zach P, Nicolini F (2002) Beetle assemblages on willow trees: do phenolic glycosides matter?: Beetle assemblages on willow trees. Divers Distribut 8(2):2 DOI

Travers-Martin N, Müller C (2008) Matching plant defence syndromes with performance and preference of a specialist herbivore. Funct Ecol 22(6):1033–1043 DOI

Tripathi A, Vázquez-Baeza Y, Gauglitz JM, Wang M, Dührkop K, Nothias-Esposito M, Acharya DD, Ernst M, van der Hooft JJJ, Zhu Q, McDonald D, Brejnrod AD, Gonzalez A, Handelsman J, Fleischauer M, Ludwig M, Böcker S, Nothias L-F, Knight R, Dorrestein PC (2021) Chemically informed analyses of metabolomics mass spectrometry data with Qemistree. Nat Chem Biol 17(2):146–151 PubMed DOI

Volf M, Hrcek J, Julkunen-Tiitto R, Novotny V (2015a) To each its own: Differential response of specialist and generalist herbivores to plant defence in willows. J Anim Ecol 84:1123–1132 PubMed DOI

Volf M, Julkunen-Tiitto R, Hrcek J, Novotny V (2015b) Insect herbivores drive the loss of unique chemical defense in willows. Entomol Exp Appl 156:88–98 DOI

Volf M, Segar ST, Miller SE, Isua B, Sisol M, Aubona G, Šimek P, Moos M, Laitila J, Kim J, Zima J Jr, Rota J, Weiblen GD, Wossa S, Salminen J-P, Basset Y, Novotny V (2018) Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in Ficus. Ecol Lett 21(1):83–92 PubMed DOI

Volf M, Volfová T, Hörandl E, Wagner ND, Luntamo N, Salminen JP, Sedio BE (2022a) Abiotic stress rather than biotic interactions drives contrasting trends in chemical richness and variation in alpine willows. Funct Ecol 36:2701–2712 DOI

Volf M, Volfova T, Seifert CL, Ludwig A, Engelmann RA, Jorge LR, Richter R, Schedl A, Weinhold A, Wirth C, van Dam NM (2022b) A mosaic of induced and non-induced branches promotes variation in leaf traits, predation and insect herbivore assemblages in canopy trees. Ecol Lett 25:729–739 PubMed DOI

Volf M, Leong JV, de Lima FP, Volfová T, Kozel P, Matos-Maraví P, Hörandl E, Wagner ND, Luntamo N, Salminen J-P, Segar ST, Sedio BE (2023) Contrasting levels of β-diversity and underlying phylogenetic trends indicate different paths to chemical diversity in highland and lowland willow species. Ecol Lett 26:1559–1571 PubMed DOI

Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu W-T, Crüsemann M, Boudreau PD, Esquenazi E, Sandoval-Calderón M, Bandeira N (2016) Sharing and community curation of mass spectrometry data with GNPS. Nat Biotechnol 34(8):828–837 PubMed DOI PMC

Zhao J, Segar ST, McKey D, Chen J (2021) Macroevolution of defense syndromes in Ficus (Moraceae). Ecol Monogr 91:e01428 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...