Effects of individual traits vs. trait syndromes on assemblages of various herbivore guilds associated with central European Salix
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
GACR 23-06855L
Biologické Centrum, Akademie Věd České Republiky
DFG FZT 118
Deutsche Forschungsgemeinschaft
202548816
Deutsche Forschungsgemeinschaft
DEB Award 2240430
National Science Foundation
PubMed
38829402
DOI
10.1007/s00442-024-05569-0
PII: 10.1007/s00442-024-05569-0
Knihovny.cz E-zdroje
- Klíčová slova
- Gallers, Leaf-chewers, Plant–herbivore interactions, Salicinoids, Specialized metabolites,
- MeSH
- býložravci * MeSH
- fylogeneze MeSH
- listy rostlin MeSH
- Salix * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Plants employ diverse anti-herbivore defences that can covary to form syndromes consisting of multiple traits. Such syndromes are hypothesized to impact herbivores more than individual defences. We studied 16 species of lowland willows occurring in central Europe and explored if their chemical and physical traits form detectable syndromes. We tested for phylogenetic trends in the syndromes and explored whether three herbivore guilds (i.e., generalist leaf-chewers, specialist leaf-chewers, and gallers) are affected more by the detected syndromes or individual traits. The recovered syndromes showed low phylogenetic signal and were mainly defined by investment in concentration, richness, or uniqueness of structurally related phenolic metabolites. Resource acquisition traits or inducible volatile organic compounds exhibited a limited correlation with the syndromes. Individual traits composing the syndromes showed various correlations to the assemblages of herbivores from the three studied guilds. In turn, we found some support for the hypothesis that defence syndromes are composed of traits that provide defence against various herbivores. However, individual traits rather than trait syndromes explained more variation for all studied herbivore assemblages. The detected negative correlations between various phenolics suggest that investment trade-offs may occur primarily among plant metabolites with shared metabolic pathways that may compete for their precursors. Moreover, several traits characterizing the recovered syndromes play additional roles in willows other than defence from herbivory. Taken together, our findings suggest that the detected syndromes did not solely evolve as an anti-herbivore defence.
Agriculture and Environment Department Harper Adams University Newport United Kingdom
Bioanalytical Laboratory Institute of Biomedicine University of Turku Turku Finland
Biology Centre of the Czech Academy of Sciences Ceske Budejovice Czech Republic
Department of Biology Aarhus University Aarhus Denmark
Department of Integrative Biology University of Texas at Austin Austin TX United States of America
Faculty of Science Department of Zoology University of South Bohemia Ceske Budejovice Czech Republic
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Institute of Biodiversity Friedrich Schiller University Jena Jena Germany
Institute of Microbiology Centre Algatech Czech Academy of Sciences Trebon Czech Republic
Natural Chemistry Research Group Department of Chemistry University of Turku Turku Finland
Zobrazit více v PubMed
Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87:S132–S149 PubMed DOI
Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17:293–302 PubMed DOI
Becerra JX, Venable DL (1999) Macroevolution of insect-plant associations: The relevance of host biogeography to host affiliation. Proc Natl Acad Sci 96:12626–12631 PubMed DOI PMC
Boeckler GA, Gershenzon J, Unsicker SB (2011) Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry 72:1497–1509 PubMed DOI
Borges R, Machado JP, Gomes C, Rocha AP, Antunes A (2019) Measuring phylogenetic signal between categorical traits and phylogenies. Bioinformatics 35:1862–1869 PubMed DOI
Defossez E, Pellissier L, Rasmann S (2018) The unfolding of plant growth form-defence syndromes along elevation gradients. Ecol Lett 21:609–618 PubMed DOI
Dührkop K, Shen H, Meusel M, Rousu J, Böcker S (2015) Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc Natl Acad Sci 112:12580–12585 PubMed DOI PMC
Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, Dorrestein PC, Rousu J, Böcker S (2019) SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods 16:299–302 PubMed DOI
Dührkop K, Nothias LF, Fleischauer M, Reher R, Ludwig M, Hoffmann MA, Petras D, Gerwick WH, Rousu J, Dorrestein PC, Böcker S (2021) Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat Biotechnol 39:462–471 PubMed DOI
Engström MT, Pälijärvi M, Fryganas C, Grabber JH, Mueller-Harvey I, Salminen JP (2014) Rapid qualitative and quantitative analyses of proanthocyanidin oligomers and polymers by UPLC-MS/MS. J Agr Food Chem 62:3390–3399 DOI
Engström MT, Pälijärvi M, Salminen JP (2015) Rapid fingerprint analysis of plant extracts for ellagitannins, gallic acid, and quinic acid derivatives and quercetin-, kaempferol- and myricetin-based flavonol glycosides by UPLC-QqQ-MS/MS. J Agr Food Chem 63:4068–4079 DOI
Hagerman E, Butler LG (1978) Protein precipitation method for the quantitative determination of tannins. J Agr Food Chem 26:809–812 DOI
Harding SA (2019) Condensed tannins: arbiters of abiotic stress tolerance? Tree Physiol 39:341–344 PubMed DOI
Hervé MR, Nicolè F, Lê Cao K-A (2018) Multivariate analysis of multiple datasets: a practical guide for chemical ecology. J Chem Ecol 44(3):215–234 PubMed DOI
Keck F, Rimet F, Bouchez A, Franc A (2016) Phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol Evol 6:2774–2780 PubMed DOI PMC
Kim KW (2019) Plant trichomes as microbial habitats and infection sites. Eur J Plant Pathol 154:157–169 DOI
Kolehmainen J, Julkunen-Tiitto R, Roininen H, Tahvanainen J (1995) Phenolic glucosides as feeding cues for willow-feeding leaf beetles. Entomol Exp Appl 74:235–243 DOI
Koricheva J (2002) Meta-analysis of sources of variation in fitness costs of plant antiherbivore defenses. Ecology 83:176–190 DOI
Kursar TA, Coley PD (2003) Convergence in defense syndromes of young leaves in tropical rainforests. Biochem Syst Ecol 31:929–949 DOI
Lindroth RL, Hwang SY (1996) Diversity, redundancy, and multiplicity in chemical defense systems of aspen. In: Romeo JT, Saunders JA, Barbosa P (eds) Phytochemical diversity and redundancy in ecological interactions. Springer, Boston, MA, US, pp 25–56 DOI
Malisch CS, Salminen JP, Kölliker R, Engström MT, Suter D, Studer B, Lüscher A (2016) Drought effects on proanthocyanidins in sainfoin (Onobrychis viciifolia Scop.) are dependent on the plant’s ontogenetic stage. J Agr Food Chem 64:9307–9316 DOI
Maron JL, Agrawal AA, Schemske DW (2019) Plant–herbivore coevolution and plant speciation. Ecology 100(7):e02704 PubMed DOI
Mertens D, Boege K, Kessler A, Koricheva J, Thaler JS, Whiteman NK, Poelman EH (2021) Predictability of biotic stress structures plant defence evolution. Trends Ecol Evol 36(5):444–456 PubMed DOI
Mezzomo P, Weinhold A, Aurova K, Jorge LR, Kozel P, Michalek J, Novakova N, Seifert CL, Volfova T, Engstrom M, Salminen J-P, Sedio BE, Volf M (2023) Leaf volatile and nonvolatile metabolites show different levels of specificity in response to herbivory. Ecol Evol 13:e10123 PubMed DOI PMC
Moreira X, Sampedro L, Zas R, Pearse IS (2014) Defensive traits in young pine trees cluster into two divergent syndromes related to early growth rate. PLoS ONE 11(3):e0152537 DOI
Ning D, Yuan M, Wu L, Zhang Y, Guo X, Zhou X, Yang Y, Arkin AP, Firestone MK, Zhou J (2020) A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat Commun 11:4717 PubMed DOI PMC
Nothias L-F, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A, Protsyuk I, Ernst M, Tsugawa H, Fleischauer M, Aicheler F, Aksenov AA, Alka O, Allard P-M, Barsch A, Cachet X, Caraballo-Rodriguez AM, Da Silva RR, Dang T, Dorrestein PC (2020) Feature-based molecular networking in the GNPS analysis environment. Nat Methods 17(9):9 DOI
Nyman T, Farrell BD, Zinovjev AG, Vikberg V (2006) Larval habits, host-plant associations, and speciation in Nematine sawflies (Hymenoptera: Tenthredinidae). Evolution 60:1622–1637 PubMed
Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884 PubMed DOI
Pasteels JM, Rowell-Rahier M, Braekman JC, Daloze D (1984) Chemical defenses in leaf beetles and their larvae: the ecological, evolutionary and taxonomic significance. Biochem Syst Ecol 12:395–406 DOI
Pennell M, Eastman J, Slater G, Brown J, Uyeda J, Fitzjohn R, Alfaro M, Harmon L (2014) eiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30:2216–2218 PubMed DOI
Pinheiro J, Bates D, R Core Team (2022) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–159, https://CRAN.R-project.org/package=nlme
Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) Mzmine2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:1–11 DOI
R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07–0, URL http://www.R-project.org/
Ratnasingham S, Hebert PDN (2013) A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS ONE 8:7 DOI
Revell LJ, Harmon LJ, Langerhans RB, Kolbe JJ (2007) A phylogenetic approach to determining the importance of constraint on phenotypic evolution in the neotropical lizard, Anolis cristatellus. Evol Ecol Res 9:261–282
Rowell-Rahier M, Pasteels JM (1986) Economics of chemical defense in Chrysomelinae. J Chem Ecol 12:1189–1203 PubMed DOI
Salazar D, Lokvam J, Mesones I, Vásquez Pilco M, Ayarza Zuñiga JM, de Valpine P, Fine PVA (2018) Origin and maintenance of chemical diversity in a species-rich tropical tree lineage. Nat Ecol Evol 2:983–990 PubMed DOI
Salminen JP, Karonen M (2011) Chemical ecology of tannins and other phenolics: we need a change in approach. Funct Ecol 25:325–338 DOI
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675 PubMed DOI PMC
Sedio BE, Rojas Echeverri JC, Boya PCA, Wright SJ (2017) Sources of variation in foliar secondary chemistry in a tropical forest tree community. Ecology 98:616–623 PubMed DOI
Sedio BE, Parker JD, McMahon SM, Wright SJ (2018) Comparative foliar metabolomics of a tropical and a temperate forest community. Ecology 99:2647–2653 PubMed DOI
Sedio BE, Spasojevic MJ, Myers JA, Wright SJ, Person MD, Chandrasekaran H, Dwenger JH, Prechi ML, López CA, Allen DN, Anderson-Teixeira KJ, Baltzer JL, Bourg NA, Castillo BT, Day NJ, Dewald-Wang E, Dick CW, James TY, Kueneman JG, Vandermeer JH (2021) Chemical similarity of co-occurring trees decreases with precipitation and temperature in North American forests. Front Ecol Evol 9:679638 DOI
Sinnott-Armstrong MA, Deanna R, Pretz C, Liu S, Harris JC, Dunbar-Wallis A, Smith SD, Wheeler LC (2022) How to approach the study of syndromes in macroevolution and ecology. Ecol Evol 12:e8583 PubMed DOI PMC
Skvortsov AK (1999) Willows of Russia and adjacent countries. University of Joensuu, Joensuu, Finland, p 307
Suzuki R, Shimodaira H (2006) Pvclust: An R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22:1540–1542 PubMed DOI
ter Braak CJ, Šmilauer P (2012) Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power
Therneau T, Atkinson B, Ripley B (2017) rpart: Recursive Partitioning and Regression Trees. R package version 4.1–11. Available at: https://CRAN.R-project.org/package=rpart
Topp W, Kulfan J, Zach P, Nicolini F (2002) Beetle assemblages on willow trees: do phenolic glycosides matter?: Beetle assemblages on willow trees. Divers Distribut 8(2):2 DOI
Travers-Martin N, Müller C (2008) Matching plant defence syndromes with performance and preference of a specialist herbivore. Funct Ecol 22(6):1033–1043 DOI
Tripathi A, Vázquez-Baeza Y, Gauglitz JM, Wang M, Dührkop K, Nothias-Esposito M, Acharya DD, Ernst M, van der Hooft JJJ, Zhu Q, McDonald D, Brejnrod AD, Gonzalez A, Handelsman J, Fleischauer M, Ludwig M, Böcker S, Nothias L-F, Knight R, Dorrestein PC (2021) Chemically informed analyses of metabolomics mass spectrometry data with Qemistree. Nat Chem Biol 17(2):146–151 PubMed DOI
Volf M, Hrcek J, Julkunen-Tiitto R, Novotny V (2015a) To each its own: Differential response of specialist and generalist herbivores to plant defence in willows. J Anim Ecol 84:1123–1132 PubMed DOI
Volf M, Julkunen-Tiitto R, Hrcek J, Novotny V (2015b) Insect herbivores drive the loss of unique chemical defense in willows. Entomol Exp Appl 156:88–98 DOI
Volf M, Segar ST, Miller SE, Isua B, Sisol M, Aubona G, Šimek P, Moos M, Laitila J, Kim J, Zima J Jr, Rota J, Weiblen GD, Wossa S, Salminen J-P, Basset Y, Novotny V (2018) Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in Ficus. Ecol Lett 21(1):83–92 PubMed DOI
Volf M, Volfová T, Hörandl E, Wagner ND, Luntamo N, Salminen JP, Sedio BE (2022a) Abiotic stress rather than biotic interactions drives contrasting trends in chemical richness and variation in alpine willows. Funct Ecol 36:2701–2712 DOI
Volf M, Volfova T, Seifert CL, Ludwig A, Engelmann RA, Jorge LR, Richter R, Schedl A, Weinhold A, Wirth C, van Dam NM (2022b) A mosaic of induced and non-induced branches promotes variation in leaf traits, predation and insect herbivore assemblages in canopy trees. Ecol Lett 25:729–739 PubMed DOI
Volf M, Leong JV, de Lima FP, Volfová T, Kozel P, Matos-Maraví P, Hörandl E, Wagner ND, Luntamo N, Salminen J-P, Segar ST, Sedio BE (2023) Contrasting levels of β-diversity and underlying phylogenetic trends indicate different paths to chemical diversity in highland and lowland willow species. Ecol Lett 26:1559–1571 PubMed DOI
Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu W-T, Crüsemann M, Boudreau PD, Esquenazi E, Sandoval-Calderón M, Bandeira N (2016) Sharing and community curation of mass spectrometry data with GNPS. Nat Biotechnol 34(8):828–837 PubMed DOI PMC
Zhao J, Segar ST, McKey D, Chen J (2021) Macroevolution of defense syndromes in Ficus (Moraceae). Ecol Monogr 91:e01428 DOI