Leaf volatile and nonvolatile metabolites show different levels of specificity in response to herbivory
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37255847
PubMed Central
PMC10225982
DOI
10.1002/ece3.10123
PII: ECE310123
Knihovny.cz E-zdroje
- Klíčová slova
- Salix, chemical diversity, defense specificity, herbivory, induction, specialized metabolites, volatile organic compounds,
- Publikační typ
- časopisecké články MeSH
Plants produce diverse chemical defenses with contrasting effects on different insect herbivores. Deploying herbivore-specific responses can help plants increase their defensive efficiency. Here, we explore how variation in induced plant responses correlates with herbivore species, order, feeding guild, and level of specialization. In a greenhouse experiment, we exposed 149 plants of Salix fragilis (Linnaeus, 1753) to 22 herbivore species naturally associated with this host. The insects belonged to four orders (Coleoptera, Lepidoptera, Hemiptera, and Hymenoptera), three feeding guilds (external leaf-chewers, leaf-tying chewers, and sap-sucking), and included both dietary specialists and generalists. Following herbivory, we quantified induced changes in volatiles and nonvolatile leaf metabolites. We performed multivariate analyses to assess the correlation between herbivore order, feeding guild, dietary specialization, chewing damage by herbivores, and induced responses. The volatile composition was best explained by chewing damage and insect order, with Coleoptera and Lepidoptera eliciting significantly different responses. Furthermore, we recorded significant differences in elicited volatiles among some species within the two orders. Variation in nonvolatile leaf metabolites was mainly explained by the presence of insects, as plants exposed to herbivores showed significantly different metabolites from controls. Herbivore order also played a role to some extent, with beetles eliciting different responses than other herbivores. The induction of volatile and nonvolatile leaf metabolites shows different levels of specificity. The specificity in volatiles could potentially serve as an important cue to specialized predators or parasitoids, increasing the efficacy of volatiles as indirect defenses. By contrast, the induction of nonvolatile leaf metabolites was largely unaffected by herbivore identity. Most nonvolatile metabolites were downregulated, possibly indicating that plants redirected their resources from leaves in response to herbivory. Our results demonstrate how diverse responses to herbivores can contribute to the diversity of plant defensive strategies.
Biology Centre CAS Institute of Entomology Ceske Budejovice Czech Republic
Biology Centre CAS Institute of Parasitology Ceske Budejovice Czech Republic
Centre Algatech CAS Institute of Microbiology Třeboň Czech Republic
Department of Chemistry University of Turku Turku Finland
Department of Integrative Biology University of Texas at Austin Austin Texas USA
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Institute of Biodiversity University of Jena Jena Germany
Smithsonian Tropical Research Institute Balboa Ancón Republic of Panama
Zobrazit více v PubMed
Abramoff, M. , Magalhães, P. , & Ram, S. (2004). Image processing with ImageJ. Biophotonics International, 11(7), 36–42.
Ali, J. G. , & Agrawal, A. A. (2012). Specialist versus generalist insect herbivores and plant defence. Trends in Plant Science, 17(5), 293–302. 10.1016/j.tplants.2012.02.006 PubMed DOI
Boeckler, G. A. , Gershenzon, J. , & Unsicker, S. B. (2011). Phenolic glycosides of the Salicaceae and their role as anti‐herbivore defences. Phytochemistry, 72(13), 1497–1509. 10.1016/j.phytochem.2011.01.038 PubMed DOI
Chen, M. S. (2008). Inducible direct plant defence against insect herbivores: A review. Insect Science, 15, 101–114. 10.1111/j.1744-7917.2008.00190.x PubMed DOI
Clavijo McCormick, A. , Boeckler, G. A. , Köllner, T. G. , Gershenzon, J. , & Unsicker, S. B. (2014). The timing of herbivore‐induced volatile emission in black poplar (Populus nigra) and the influence of herbivore age and identity affect the value of individual volatiles as cues for herbivore enemies. BMC Plant Biology, 14, 304. 10.1186/s12870-014-0304-5 PubMed DOI PMC
Clavijo McCormick, A. , Unsicker, S. B. , & Gershenzon, J. (2012). The specificity of herbivore‐induced plant volatiles in attracting herbivore enemies. Trends in Plant Science, 17(5), 303–310. 10.1016/j.tplants.2012.03.012 PubMed DOI
Danner, H. , Desurmont, G. A. , Cristescu, S. M. , & van Dam, N. M. (2018). Herbivore‐induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores. New Phytologist, 220, 726–738. 10.1111/nph.14428 PubMed DOI
De Moraes, C. M. , Mescher, M. C. , & Tumlinson, J. H. (2001). Caterpillar‐induced nocturnal plant volatiles repel conspecific females. Nature, 410, 577–580. 10.1038/35069058 PubMed DOI
Delphia, C. M. , Mescher, M. C. , & De Moraes, C. M. (2007). Induction of plant volatiles by herbivores with different feeding habits and the effects of induced defenses on host‐plant selection by thrips. Journal of Chemical Ecology, 33, 997–1012. 10.1007/s10886-007-9273-6 PubMed DOI
Dicke, M. , van Loon, J. J. A. , & Soler, R. (2009). Chemical complexity of volatiles from plants induced by multiple attack. Nature Chemical Biology, 5, 317–324. 10.1038/nchembio.169 PubMed DOI
Djoumbou Feunang, Y. , Eisner, R. , Knox, C. , Chepelev, L. , Hastings, J. , Owen, G. , Fahy, E. , Steinbeck, C. , Subramanian, S. , Bolton, E. , Greiner, R. , & Wishart, D. S. (2016). ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy. Journal of Cheminformatics, 4, 8–61. 10.1186/s13321-016-0174-y PubMed DOI PMC
Dührkop, K. , Fleischauer, M. , Ludwig, M. , Aksenov, A. A. , Melnik, A. V. , Meusel, M. , Dorrestein, P. C. , Rousu, J. , & Böcker, S. (2019). SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nature Methods, 16, 299–302. 10.1038/s41592-019-0344-8 PubMed DOI
Dührkop, K. , Nothias, L. F. , Fleischauer, M. , Reher, R. , Ludwig, M. , Hoffmann, M. A. , Petras, D. , Gerwick, W. H. , Rousu, J. , Dorrestein, P. C. , & Böcker, S. (2021). Systematic classification of unknown metabolites using high‐resolution fragmentation mass spectra. Nature Biotechnology, 39, 462–471. 10.1038/s41587-020-0740-8 PubMed DOI
Dührkop, K. , Shen, H. , Meusel, M. , Rousu, J. , & Böcker, S. (2015). Searching molecular structure databases with tandem mass spectra using CSI: FingerID. PNAS, 112, 12580–12585. 10.1073/pnas.1509788112 PubMed DOI PMC
Engström, M. T. , Pälijärvi, M. , Fryganas, C. , Grabber, J. H. , Mueller‐Harvey, I. , & Salminen, J.‐P. (2014). Rapid qualitative and quantitative analyses of proanthocyanidin oligomers and polymers by UPLC–MS/MS. Journal of Agricultural Food Chemistry, 62, 3390–3399. 10.1021/jf500745y PubMed DOI
Engström, M. T. , Pälijärvi, M. , & Salminen, J.‐P. (2015). Rapid fingerprint analysis of plant extracts for ellagitannins, gallic acid, and quinic acid derivatives and quercetin, kaempferol, and myricetin‐based flavonol glycosides by UPLC‐QqQ‐MS/MS. Journal of Agricultural Food Chemistry, 63, 4068–4079. 10.1021/acs.jafc.5b00595 PubMed DOI
Erb, M. , Meldau, S. , & Howe, G. A. (2012). Role of phytohormones in insect‐specific plant reactions. Trends in Plant Science, 17, 250–259. 10.1016/j.tplants.2012.01.003 PubMed DOI PMC
Fabisch, T. , Gershenzon, J. , & Unsicker, S. B. (2019). Specificity of herbivore defense responses in a woody plant, black poplar (Populus nigra). Journal of Chemical Ecology, 45, 162–177. 10.1007/s10886-019-01050-y PubMed DOI PMC
Fields, M. J. , & Orians, C. M. (2006). Specificity of phenolic glycoside induction in willow seedlings (Salix sericea) in response to herbivory. Journal of Chemical Ecology, 32, 2647–2656. 10.1007/s10886-006-9188-7 PubMed DOI
Gols, R. (2014). Direct and indirect chemical defences against insects in a multitrophic framework. Plant, Cell and Environment, 37, 1741–1752. 10.1111/pce.12318 PubMed DOI
Herrera, C. M. , & Pellmyr, O. (2002). Plant‐animal interactions: An evolutionary approach (p. 313). Blackwell Publishing.
Hunziker, P. , Lambertz, S. K. , Weber, K. , Crocoll, C. , Halkier, B. A. , & Schulz, A. (2021). Herbivore feeding preference corroborates optimal defense theory for specialized metabolites within plants. PNAS, 118, e2111977118. 10.1073/pnas.2111977118 PubMed DOI PMC
Janz, N. (2011). Ehrlich and raven revisited: Mechanisms underlying co‐diversification of plants and enemies. Annual Review in Ecology and Evolution, 42, 71–89. 10.1146/annurev-ecolsys-102710-145024 DOI
Kallenbach, M. , Oh, Y. , Eilers, E. J. , Veit, D. , Baldwin, I. T. , & Schuman, M. C. (2014). A robust, simple, high‐throughput technique for time‐resolved plant volatile analysis in field experiments. Plant Journal, 78, 1060–1072. 10.1111/tpj.12523 PubMed DOI PMC
Kessler, A. , & Baldwin, I. T. (2001). Defensive function of herbivore‐induced plant volatile emissions in nature. Science, 291, 2141–2144. 10.1126/science.291.5511.2141 PubMed DOI
Kolehmainen, J. , Julkunen‐Tiitto, R. , Roininen, H. , & Tahvanainen, J. (1995). Phenolic glucosides as feeding cues for willow‐feeding leaf beetles. Entomologia Experimentalis et Applicata, 74, 235–243. 10.1111/j.1570-7458.1995.tb01896.x DOI
Leong, J. V. , Jorge, L. R. , Seifert, C. L. , & Volf, M. (2022). Quantity and specialisation matter: Effects of quantitative and qualitative variation in willow chemistry on resource preference in leaf‐chewing insects. Insect Conservation and Diversity, 15(4), 453–460. 10.1111/icad.12559 DOI
Leppä, M. M. , Laitila, J. E. , & Salminen, J.‐P. (2020). Distribution of protein precipitation capacity within variable proanthocyanidin fingerprints. Molecules, 25(21), 5002. 10.3390/molecules25215002 PubMed DOI PMC
Li, T. , Grauer‐Gray, K. , Holopainen, J. K. , & Blande, J. D. (2020). Herbivore gender effects on volatile induction in aspen and on olfactory responses in leaf beetles. Forests, 11(6), 638. 10.3390/f11060638 DOI
Lind, E. , Jones, M. , & Weiss, M. (2001). Ontogenetic changes in leaf shelter construction by larvae of Epargyreus clarus (Hesperiidae), the silver‐spotted skipper. Journal of the Lepidopterists Society, 54, 77–82.
Malisch, C. S. , Salminen, J.‐P. , Kölliker, R. , Engström, M. T. , Suter, D. , Studer, B. , & Lüscher, A. (2016). Drought effects on proanthocyanidins in sainfoin (Onobrychis viciifolia Scop.) are dependent on the plant's ontogenetic stage. Journal of Agricultural Food Chemistry, 64, 9307–9316. 10.1021/acs.jafc.6b02342 PubMed DOI
Mason, C. J. , Villari, C. , Keefover‐Ring, K. , Jagemann, S. , Zhu, J. , Bonello, P. , & Raffa, K. F. (2017). Spatial and temporal components of induced plant responses in the context of herbivore life history and impact on host. Journal of Functional Ecology, 31, 2034–2050. 10.1111/1365-2435.12911 DOI
Mattiacci, L. , Rocca, B. A. , Scascighini, N. , D'Alessandro, M. , Hern, A. , & Dorn, S. (2001). Systemically induced plant volatiles emitted at the time of “danger”. Journal of Chemical Ecology, 27(11), 2233–2252. 10.1023/a:1012278804105 PubMed DOI
Mrazova, A. , & Sam, K. (2018). Application of methyl jasmonate to grey willow (Salix cinerea) attracts insectivorous birds in nature. Arthropod‐Plant Interactions, 12, 1–8. 10.1007/s11829-017-9558-9 DOI
Mumm, R. , & Dicke, M. (2010). Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Canadian Journal of Zoology, 88, 628–666. 10.1139/Z10-032 DOI
Nabity, P. D. , Zavala, J. A. , & DeLucia, E. H. (2009). Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. Annals of Botany, 103(4), 655–663. 10.1093/aob/mcn127 PubMed DOI PMC
Narango, D. L. , Tallamy, D. W. , & Shropshire, K. J. (2020). Few keystone plant genera support the majority of Lepidoptera species. Nature Communications, 11, 1–8. 10.1038/s41467-020-19565-4 PubMed DOI PMC
Oksanen, J. , Simpson, G. , Blanchet, F. , Kindt, R. , Legendre, P. , Minchin, P. , O'Hara, R. , Solymos, P. , Stevens, M. , Szoecs, E. , Wagner, H. , Barbour, M. , Bedward, M. , Bolker, B. , Borcard, D. , Carvalho, G. , Chirico, M. , De Caceres, M. , Durand, S. , … Weedon, J. (2022). vegan: Community Ecology Package. R package version 2.6‐4 . https://CRAN.R‐project.org/package=vegan
Pasteels, J. M. , Rowell‐Rahier, M. , Braekman, J. C. , & Dupont, A. (1983). Salicin from host plant as a precursor of salicylaldehyde in defensive secretion of Chrysomeline larvae. Physiological Entomology, 8, 307–314. 10.1111/j.1365-3032.1983.tb00362.x DOI
Peacock, L. , Lewis, M. , & Powers, S. (2001). Volatile compounds from Salix spp. varieties differing in susceptibility to three willow beetle species. Journal of Chemical Ecology, 27, 1943–1951. 10.1023/A:1012278417424 PubMed DOI
Pluskal, R. , Castillo, T. S. , Villar‐Briones, A. , & Orešič, M. (2010). Mzmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry‐based molecular profile data. BMC Bioinformatics, 11, 395. 10.1186/1471-2105-11-395 PubMed DOI PMC
R Core Team . (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/
Rank, N. E. , Kopf, A. , Julkunen‐Tiitto, R. , & Tahvanainen, J. (1998). Host preference and larval performance of the salicylate‐using leaf beetle Phratora vitellinae . Ecology, 79, 618–631. 10.2307/176958 DOI
Rowen, E. , & Kaplan, I. (2016). Eco‐evolutionary factors drive induced plant volatiles: A meta‐analysis. New Phytologist, 210, 284–294. 10.1111/nph.13804 PubMed DOI
Schmelz, E. A. , Engelberth, J. , Alborn, H. T. , O'Donnell, P. , Sammons, M. , Toshima, H. , & Tumlinson, J. H. (2003). Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. PNAS, 100(18), 10552–10557. 10.1073/pnas.1633615100 PubMed DOI PMC
Sedio, B. E. , Boya P, C. A. , & Rojas Echeverri, J. C. (2018). A protocol for high‐throughput, untargeted forest community metabolomics using mass spectrometry molecular networks. Applications in Plant Sciences, 6(3), 1033. 10.1002/aps3.1033 PubMed DOI PMC
Sedio, B. E. , Spasojevic, M. J. , Myers, J. A. , Wright, S. J. , Person, M. D. , Chandrasekaran, H. , Dwenger, J. H. , Prechi, M. L. , López, C. A. , Allen, D. N. , Anderson‐Teixeira, K. J. , Baltzer, J. L. , Bourg, N. A. , Castillo, B. T. , Day, N. J. , Dewald‐Wang, E. , Dick, C. W. , James, T. Y. , Kueneman, J. G. , … Vandermeer, J. H. (2021). Chemical similarity of co‐occurring trees decreases with precipitation and temperature in north American forests. Frontiers in Ecology and Evolution, 9, 679638. 10.3389/fevo.2021.679638 DOI
Shinya, T. , Hojo, Y. , Desaki, Y. , Christeller, J. T. , Okada, K. , Shibuya, N. , & Galis, I. (2016). Modulation of plant defense responses to herbivores by simultaneous recognition of different herbivore‐associated elicitors in rice. Scientific Reports, 6, 32537. 10.1038/srep32537 PubMed DOI PMC
Silva, D. B. , Urbaneja, A. , & Perez‐Hedo, M. (2020). Response of mirid predators to synthetic herbivore‐induced plant volatiles. Entomologia Experimentalis et Applicata, 169, 125–132. 10.1111/eea.12970 DOI
Sobhy, I. S. , Miyake, A. , Shinya, T. , & Galis, I. (2017). Oral secretions affect HIPVs induced by generalist (Mythimna loreyi) and specialist (Parnara guttata) herbivores in rice. Journal of Chemical Ecology, 43, 929–943. 10.1007/s10886-017-0882-4 PubMed DOI
Stam, J. M. , Kroes, A. , Li, Y. , Gols, R. , van Loon, J. J. A. , Poelman, E. H. , & Dicke, M. (2014). Plant interactions with multiple insect herbivores: From community to genes. Annual Reviews in Plant Biology, 65, 689–713. 10.1146/annurev-arplant-050213-035937 PubMed DOI
Swanson, L. , Li, T. , & Rinnan, R. (2021). Contrasting responses of major and minor volatile compounds to warming and gall‐infestation in the Arctic willow Salix myrsinites . Science of the Total Environment, 793, 148516. 10.1016/j.scitotenv.2021.148516 PubMed DOI
ter Braak, C. J. F. , & Smilauer, P. (2012). Canoco reference manual and user's guide: Software for ordination, version 5.0. Microcomputer Power.
Thaler, J. S. , Stout, M. J. , Karban, R. , & Duffey, S. S. (2001). Jasmonate‐mediated induced plant resistance affects a community of herbivores. Ecological Entomology, 26, 312–324. 10.1046/j.1365-2311.2001.00324.x DOI
Thaler, J. S. , Stout, R. , Karban, M. J. , & Duffey, S. S. (1996). Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. Journal of Chemical Ecology, 22, 1767–1781. 10.1007/BF02028503 PubMed DOI
Tvardikova, K. , & Novotny, V. (2012). Predation on exposed and leaf‐rolling artificial caterpillars in tropical forests of Papua New Guinea. Journal of Tropical Ecology, 28, 331–341. 10.1017/S0266467412000235 DOI
Unsicker, S. B. , Gershenzon, J. , & Kollner, T. G. (2015). Beetle feeding induces a different volatile emission pattern from black poplar foliage than caterpillar herbivory. Plant Signaling & Behavior, 10, 987522. 10.4161/15592324.2014.987522 PubMed DOI PMC
Volf, M. , Hrcek, J. , Julkunen‐Tiitto, R. , & Novotny, V. (2015). To each its own: Differential response of specialist and generalist herbivores to plant defence in willows. Journal of Animal Ecology, 84, 1123–1132. 10.1111/1365-2656.12349 PubMed DOI
Volf, M. , Julkunen‐Tiitto, R. , Hrcek, J. , & Novotny, V. (2015). Insect herbivores drive the loss of unique chemical defence in willows. Entomologia Experimentalis et Applicata, 156, 88–98. 10.1111/eea.12312 DOI
Volf, M. , Segar, S. T. , Miller, S. E. , Isua, B. , Sisol, M. , Aubona, G. , Šimek, P. , Moos, M. , Laitila, J. , Kim, J. , Zima, J., Jr. , Rota, J. , Weiblen, G. D. , Wossa, S. , Salminen, J.‐P. , Basset, Y. , & Novotny, V. (2018). Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in Ficus . Ecology Letters, 21, 83–92. 10.1111/ele.12875 PubMed DOI
Volf, M. , Weinhold, A. , Seifert, C. L. , Holicová, T. , Uthe, H. , Alander, E. , Richter, R. , Salminen, J.‐P. , Wirth, C. , & van Dam, N. M. (2021). Branch‐localized induction promotes efficacy of volatile defences and herbivore predation in trees. Journal of Chemical Ecology, 47, 99–111. 10.1007/s10886-020-01232-z PubMed DOI
Walling, L. L. (2000). The myriad plant responses to herbivores. Journal of Plant Growth Regulation, 19, 195–216. 10.1007/s003440000026 PubMed DOI
Wei, J. , van Loon, J. J. , Gols, R. , Menzel, T. R. , Li, N. , Kang, L. , & Dicke, M. (2014). Reciprocal crosstalk between jasmonate and salicylate defence‐signalling pathways modulates plant volatile emission and herbivore host‐selection behaviour. Journal of Experimental Botany, 65, 3289–3298. 10.1093/jxb/eru181 PubMed DOI PMC
Zu, P. , Boege, K. , Schuman, M. C. , Stevenson, P. C. , Zaldivar‐Riverón, A. , & Saavedra, S. (2020). Information arms race explains plant‐herbivore chemical communication in ecological communities. Science, 368(6497), 1377–1381. 10.1126/science.aba2965 PubMed DOI