Effect of Process Parameters and High-Temperature Preheating on Residual Stress and Relative Density of Ti6Al4V Processed by Selective Laser Melting

. 2019 Mar 20 ; 12 (6) : . [epub] 20190320

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30897828

Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007304 Ministerstvo Školství, Mládeže a Tělovýchovy

The aim of this study is to observe the effect of process parameters on residual stresses and relative density of Ti6Al4V samples produced by Selective Laser Melting. The investigated parameters were hatch laser power, hatch laser velocity, border laser velocity, high-temperature preheating and time delay. Residual stresses were evaluated by the bridge curvature method and relative density by the optical method. The effect of the observed process parameters was estimated by the design of experiment and surface response methods. It was found that for an effective residual stress reduction, the high preheating temperature was the most significant parameter. High preheating temperature also increased the relative density but caused changes in the chemical composition of Ti6Al4V unmelted powder. Chemical analysis proved that after one build job with high preheating temperature, oxygen and hydrogen content exceeded the ASTM B348 limits for Grade 5 titanium.

Zobrazit více v PubMed

Kruth J.P., Froyen L., Van Vaerenbergh J., Mercelis P., Rombouts M., Lauwers B. Selective laser melting of iron-based powder. J. Mater. Process. Technol. 2004;149:616–622. doi: 10.1016/j.jmatprotec.2003.11.051. DOI

Schleifenbaum H., Meiners W., Wissenbach K., Hinke C. Individualized production by means of high power Selective Laser Melting. CIRP J. Manuf. Sci. Technol. 2010;2:161–169. doi: 10.1016/j.cirpj.2010.03.005. DOI

Gu D.D., Meiners W., Wissenbach K., Poprawe R. Laser additive manufacturing of metallic components: Materials, processes, and mechanisms. Laser Addit. Manuf. Mater. Des. Technol. Appl. 2012;6608:163–180. doi: 10.1179/1743280411Y.0000000014. DOI

Withers P.J., Bhadeshia H.K.D.H. Residual stress. Part 1—Measurement techniques. Mater. Sci. Technol. 2001;17:355–365. doi: 10.1179/026708301101509980. DOI

Kruth J.P., Deckers J., Yasa E., Wauthle R. Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proc. Inst. Mech. Eng. Part B-Journal Eng. Manuf. 2012;226:980–991. doi: 10.1177/0954405412437085. DOI

Le Roux S., Salem M., Hor A. Improvement of the bridge curvature method to assess residual stresses in selective laser melting. Addit. Manuf. 2018;22:320–329. doi: 10.1016/j.addma.2018.05.025. DOI

Mishurova T., Cabeza S., Artzt K., Haubrich J., Klaus M., Genzel C., Requena G., Bruno G. An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V. Materials. 2017;10 doi: 10.3390/ma10040348. PubMed DOI PMC

Sillars S.A., Sutcliffe C.J., Philo A.M., Brown S.G.R., Sienz J., Lavery N.P. The three-prong method: A novel assessment of residual stress in laser powder bed fusion. Virtual Phys. Prototyp. 2018;13:20–25. doi: 10.1080/17452759.2017.1392682. DOI

Ali H., Ghadbeigi H., Mumtaz K. Processing Parameter effects on residual stress and mechanical properties of selective laser melted Ti6Al4V. J. Mater. Eng. Perform. 2018;27:4059–4068. doi: 10.1007/s11665-018-3477-5. PubMed DOI PMC

Mugwagwa L., Dimitrov D., Matope S., Yadroitsev I. Influence of process parameters on residual stress related distortions in selective laser melting. Procedia Manuf. 2018;21:92–99. doi: 10.1016/j.promfg.2018.02.099. DOI

Ali H., Ghadbeigi H., Mumtaz K. Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V. Mater. Sci. Eng. A. 2018;712:175–187. doi: 10.1016/j.msea.2017.11.103. PubMed DOI PMC

Robinson J., Ashton I., Fox P., Jones E., Sutcliffe C. Determination of the effect of scan strategy on residual stress in laser powder bed fusion additive manufacturing. Addit. Manuf. 2018;23:13–24. doi: 10.1016/j.addma.2018.07.001. DOI

Buchbinder D., Meiners W., Pirch N., Wissenbach K., Schrage J. Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting. J. Laser Appl. 2014;26 doi: 10.2351/1.4828755. DOI

Vora P., Mumtaz K., Todd I., Hopkinson N. AlSi12 in-situ alloy formation and residual stress reduction using anchorless selective laser melting. Addit. Manuf. 2015;7:12–19. doi: 10.1016/j.addma.2015.06.003. DOI

Ali H., Ma L., Ghadbeigi H., Mumtaz K. In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective laser melted Ti6Al4V. Mater. Sci. Eng. A. 2017;695:211–220. doi: 10.1016/j.msea.2017.04.033. DOI

Mertens R., Vrancken B., Holmstock N., Kinds Y., Kruth J.P., Van Humbeeck J. Influence of Powder Bed Preheating on Microstructure and Mechanical Properties of H13 tool steel SLM parts. In: Schmidt M., Vollertsen F., Arnold C.B., editors. Laser Assisted Net Shape Engineering 9 International Conference on Photonic Technologies Proceedings of the Lane, Fürth, Germany, 19–22 September 2016. Volume 83. Elsevier; Amsterdam, The Netherlands: 2016. pp. 882–890.

Koutny D., Palousek D., Pantelejev L., Hoeller C., Pichler R., Tesicky L., Kaiser J. Influence of scanning strategies on processing of aluminum alloy EN AW 2618 using selective laser melting. Materials. 2018;11:298. doi: 10.3390/ma11020298. PubMed DOI PMC

Mertens R., Dadbakhsh S., Van Humbeeck J., Kruth J.-P. Application of base plate preheating during selective laser melting. Procedia CIRP. 2018;74:5–11. doi: 10.1016/j.procir.2018.08.002. DOI

Kempen K., Vrancken B., Buls S., Thijs L., Van Humbeeck J., Kruth J.P. Selective Laser melting of crack-free high density M2 High speed steel parts by baseplate preheating. J. Manuf. Sci. Eng. ASME. 2014;136 doi: 10.1115/1.4028513. DOI

Palousek D., Omasta M., Koutny D., Bednar J., Koutecky T., Dokoupil F. Effect of matte coating on 3D optical measurement accuracy. Opt. Mater. AMST. 2015;40:1–9. doi: 10.1016/j.optmat.2014.11.020. DOI

Ali H., Ghadbeigi H., Mumtaz K. Residual stress development in selective laser-melted Ti6Al4V: A parametric thermal modelling approach. Int. J. Adv. Manuf. Technol. 2018;97:2621–2633. doi: 10.1007/s00170-018-2104-9. DOI

Xu W., Lui E.W., Pateras A., Qian M., Brandt M. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance. Acta Mater. 2017;125:390–400. doi: 10.1016/j.actamat.2016.12.027. DOI

Lutjering G., Williams J.C. Titanium. 2nd ed. Springer; Berlin, Germany: 2007.

Tang H.P., Qian M., Liu N., Zhang X.Z., Yang G.Y., Wang J. Effect of powder reuse times on additive manufacturing of Ti-6Al-4V by Selective electron beam melting. JOM. 2015;67:555–563. doi: 10.1007/s11837-015-1300-4. DOI

Yan M., Xu W., Dargusch M.S., Tang H.P., Brandt M., Qian M. Review of effect of oxygen on room temperature ductility of titanium and titanium alloys. Powder Metall. 2014;57:251–257. doi: 10.1179/1743290114Y.0000000108. DOI

Yan M., Dargusch M.S., Ebel T., Qian M. A transmission electron microscopy and three-dimensional atom probe study of the oxygen-induced fine microstructural features in as-sintered Ti-6Al-4V and their impacts on ductility. Acta Mater. 2014;68:196–206. doi: 10.1016/j.actamat.2014.01.015. DOI

Silverstein R., Eliezer D. Hydrogen trapping in 3D-printed (additive manufactured) Ti-6Al-4V. Mater. Charact. 2018;144:297–304. doi: 10.1016/j.matchar.2018.07.029. DOI

Tal-Gutelmacher E., Eliezer D. High fugacity hydrogen effects at room temperature in titanium based alloys. J. Alloys Compd. 2005;404–406:613–616. doi: 10.1016/j.jallcom.2004.12.172. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...