Effect of Process Parameters and High-Temperature Preheating on Residual Stress and Relative Density of Ti6Al4V Processed by Selective Laser Melting
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007304
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
30897828
PubMed Central
PMC6472056
DOI
10.3390/ma12060930
PII: ma12060930
Knihovny.cz E-zdroje
- Klíčová slova
- Selective Laser Melting, Ti6Al4V, deformation, powder degradation, preheating, relative density, residual stress,
- Publikační typ
- časopisecké články MeSH
The aim of this study is to observe the effect of process parameters on residual stresses and relative density of Ti6Al4V samples produced by Selective Laser Melting. The investigated parameters were hatch laser power, hatch laser velocity, border laser velocity, high-temperature preheating and time delay. Residual stresses were evaluated by the bridge curvature method and relative density by the optical method. The effect of the observed process parameters was estimated by the design of experiment and surface response methods. It was found that for an effective residual stress reduction, the high preheating temperature was the most significant parameter. High preheating temperature also increased the relative density but caused changes in the chemical composition of Ti6Al4V unmelted powder. Chemical analysis proved that after one build job with high preheating temperature, oxygen and hydrogen content exceeded the ASTM B348 limits for Grade 5 titanium.
Graz University of Technology Institute of Production Engineering Inffeldgasse 25F 8010 Graz Austria
Zobrazit více v PubMed
Kruth J.P., Froyen L., Van Vaerenbergh J., Mercelis P., Rombouts M., Lauwers B. Selective laser melting of iron-based powder. J. Mater. Process. Technol. 2004;149:616–622. doi: 10.1016/j.jmatprotec.2003.11.051. DOI
Schleifenbaum H., Meiners W., Wissenbach K., Hinke C. Individualized production by means of high power Selective Laser Melting. CIRP J. Manuf. Sci. Technol. 2010;2:161–169. doi: 10.1016/j.cirpj.2010.03.005. DOI
Gu D.D., Meiners W., Wissenbach K., Poprawe R. Laser additive manufacturing of metallic components: Materials, processes, and mechanisms. Laser Addit. Manuf. Mater. Des. Technol. Appl. 2012;6608:163–180. doi: 10.1179/1743280411Y.0000000014. DOI
Withers P.J., Bhadeshia H.K.D.H. Residual stress. Part 1—Measurement techniques. Mater. Sci. Technol. 2001;17:355–365. doi: 10.1179/026708301101509980. DOI
Kruth J.P., Deckers J., Yasa E., Wauthle R. Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proc. Inst. Mech. Eng. Part B-Journal Eng. Manuf. 2012;226:980–991. doi: 10.1177/0954405412437085. DOI
Le Roux S., Salem M., Hor A. Improvement of the bridge curvature method to assess residual stresses in selective laser melting. Addit. Manuf. 2018;22:320–329. doi: 10.1016/j.addma.2018.05.025. DOI
Mishurova T., Cabeza S., Artzt K., Haubrich J., Klaus M., Genzel C., Requena G., Bruno G. An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V. Materials. 2017;10 doi: 10.3390/ma10040348. PubMed DOI PMC
Sillars S.A., Sutcliffe C.J., Philo A.M., Brown S.G.R., Sienz J., Lavery N.P. The three-prong method: A novel assessment of residual stress in laser powder bed fusion. Virtual Phys. Prototyp. 2018;13:20–25. doi: 10.1080/17452759.2017.1392682. DOI
Ali H., Ghadbeigi H., Mumtaz K. Processing Parameter effects on residual stress and mechanical properties of selective laser melted Ti6Al4V. J. Mater. Eng. Perform. 2018;27:4059–4068. doi: 10.1007/s11665-018-3477-5. PubMed DOI PMC
Mugwagwa L., Dimitrov D., Matope S., Yadroitsev I. Influence of process parameters on residual stress related distortions in selective laser melting. Procedia Manuf. 2018;21:92–99. doi: 10.1016/j.promfg.2018.02.099. DOI
Ali H., Ghadbeigi H., Mumtaz K. Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V. Mater. Sci. Eng. A. 2018;712:175–187. doi: 10.1016/j.msea.2017.11.103. PubMed DOI PMC
Robinson J., Ashton I., Fox P., Jones E., Sutcliffe C. Determination of the effect of scan strategy on residual stress in laser powder bed fusion additive manufacturing. Addit. Manuf. 2018;23:13–24. doi: 10.1016/j.addma.2018.07.001. DOI
Buchbinder D., Meiners W., Pirch N., Wissenbach K., Schrage J. Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting. J. Laser Appl. 2014;26 doi: 10.2351/1.4828755. DOI
Vora P., Mumtaz K., Todd I., Hopkinson N. AlSi12 in-situ alloy formation and residual stress reduction using anchorless selective laser melting. Addit. Manuf. 2015;7:12–19. doi: 10.1016/j.addma.2015.06.003. DOI
Ali H., Ma L., Ghadbeigi H., Mumtaz K. In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective laser melted Ti6Al4V. Mater. Sci. Eng. A. 2017;695:211–220. doi: 10.1016/j.msea.2017.04.033. DOI
Mertens R., Vrancken B., Holmstock N., Kinds Y., Kruth J.P., Van Humbeeck J. Influence of Powder Bed Preheating on Microstructure and Mechanical Properties of H13 tool steel SLM parts. In: Schmidt M., Vollertsen F., Arnold C.B., editors. Laser Assisted Net Shape Engineering 9 International Conference on Photonic Technologies Proceedings of the Lane, Fürth, Germany, 19–22 September 2016. Volume 83. Elsevier; Amsterdam, The Netherlands: 2016. pp. 882–890.
Koutny D., Palousek D., Pantelejev L., Hoeller C., Pichler R., Tesicky L., Kaiser J. Influence of scanning strategies on processing of aluminum alloy EN AW 2618 using selective laser melting. Materials. 2018;11:298. doi: 10.3390/ma11020298. PubMed DOI PMC
Mertens R., Dadbakhsh S., Van Humbeeck J., Kruth J.-P. Application of base plate preheating during selective laser melting. Procedia CIRP. 2018;74:5–11. doi: 10.1016/j.procir.2018.08.002. DOI
Kempen K., Vrancken B., Buls S., Thijs L., Van Humbeeck J., Kruth J.P. Selective Laser melting of crack-free high density M2 High speed steel parts by baseplate preheating. J. Manuf. Sci. Eng. ASME. 2014;136 doi: 10.1115/1.4028513. DOI
Palousek D., Omasta M., Koutny D., Bednar J., Koutecky T., Dokoupil F. Effect of matte coating on 3D optical measurement accuracy. Opt. Mater. AMST. 2015;40:1–9. doi: 10.1016/j.optmat.2014.11.020. DOI
Ali H., Ghadbeigi H., Mumtaz K. Residual stress development in selective laser-melted Ti6Al4V: A parametric thermal modelling approach. Int. J. Adv. Manuf. Technol. 2018;97:2621–2633. doi: 10.1007/s00170-018-2104-9. DOI
Xu W., Lui E.W., Pateras A., Qian M., Brandt M. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance. Acta Mater. 2017;125:390–400. doi: 10.1016/j.actamat.2016.12.027. DOI
Lutjering G., Williams J.C. Titanium. 2nd ed. Springer; Berlin, Germany: 2007.
Tang H.P., Qian M., Liu N., Zhang X.Z., Yang G.Y., Wang J. Effect of powder reuse times on additive manufacturing of Ti-6Al-4V by Selective electron beam melting. JOM. 2015;67:555–563. doi: 10.1007/s11837-015-1300-4. DOI
Yan M., Xu W., Dargusch M.S., Tang H.P., Brandt M., Qian M. Review of effect of oxygen on room temperature ductility of titanium and titanium alloys. Powder Metall. 2014;57:251–257. doi: 10.1179/1743290114Y.0000000108. DOI
Yan M., Dargusch M.S., Ebel T., Qian M. A transmission electron microscopy and three-dimensional atom probe study of the oxygen-induced fine microstructural features in as-sintered Ti-6Al-4V and their impacts on ductility. Acta Mater. 2014;68:196–206. doi: 10.1016/j.actamat.2014.01.015. DOI
Silverstein R., Eliezer D. Hydrogen trapping in 3D-printed (additive manufactured) Ti-6Al-4V. Mater. Charact. 2018;144:297–304. doi: 10.1016/j.matchar.2018.07.029. DOI
Tal-Gutelmacher E., Eliezer D. High fugacity hydrogen effects at room temperature in titanium based alloys. J. Alloys Compd. 2005;404–406:613–616. doi: 10.1016/j.jallcom.2004.12.172. DOI