Effect of Preheating on the Residual Stress and Material Properties of Inconel 939 Processed by Laser Powder Bed Fusion
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
FSI-S-20-6296
Brno University of Technology
FSI-S-20-6290
Brno University of Technology
PubMed
36143668
PubMed Central
PMC9500822
DOI
10.3390/ma15186360
PII: ma15186360
Knihovny.cz E-resources
- Keywords
- Inconel 939, laser powder bed fusion, preheating, residual stress, selective laser melting,
- Publication type
- Journal Article MeSH
One of the main limitations of laser powder bed fusion technology is the residual stress (RS) introduced into the material by the local heating of the laser beam. RS restricts the processability of some materials and causes shape distortions in the process. Powder bed preheating is a commonly used technique for RS mitigation. Therefore, the objective of this study was to investigate the effect of powder bed preheating in the range of room temperature to 400 °C on RS, macrostructure, microstructure, mechanical properties, and properties of the unfused powder of the nickel-based superalloy Inconel 939. The effect of base plate preheating on RS was determined by an indirect method using deformation of the bridge-shaped specimens. Inconel 939 behaved differently than titanium and aluminum alloys when preheated at high temperatures. Preheating at high temperatures resulted in higher RS, higher 0.2% proof stress and ultimate strength, lower elongation at brake, and higher material hardness. The increased RSs and the change in mechanical properties are attributed to changes in the microstructure. Preheating resulted in a larger melt pool, increased the width of columnar grains, and led to evolution of the carbide phase. The most significant microstructure change was in the increase of the size and occurrence of the carbide phase when higher preheating was applied. Furthermore, it was detected that the evolution of the carbide phase strongly corresponds to the build time when high-temperature preheating is applied. Rapid oxidation of the unfused powder was not detected by EDX or XRD analyses.
See more in PubMed
Beaman J.J., Deckard C.R. Selective Laser Sintering with Assisted Powder Handling. 4,938,816. U.S. Patent. 1990 July 3;
Kruth J.P., Froyen L., van Vaerenbergh J., Mercelis P., Rombouts M., Lauwers B. Selective Laser Melting of Iron-Based Powder. J. Mater. Process Technol. 2004;149:616–622. doi: 10.1016/j.jmatprotec.2003.11.051. DOI
Gu D.D., Meiners W., Wissenbach K., Poprawe R. Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms. Int. Mater. Rev. 2012;57:133–164. doi: 10.1179/1743280411Y.0000000014. DOI
DebRoy T., Wei H.L., Zuback J.S., Mukherjee T., Elmer J.W., Milewski J.O., Beese A.M., Wilson-Heid A., De A., Zhang W. Additive Manufacturing of Metallic Components—Process, Structure and Properties. Prog. Mater. Sci. 2018;92:112–224. doi: 10.1016/j.pmatsci.2017.10.001. DOI
Zhuang J.-R., Lee Y.-T., Hsieh W.-H., Yang A.-S. Determination of melt pool dimensions using DOE-FEM and RSM with process window during SLM of Ti6Al4V powder. Opt. Laser Technol. 2018;103:59–76. doi: 10.1016/j.optlastec.2018.01.013. DOI
Schleifenbaum J.H., Meiners W., Wissenbach K., Hinke C. Individualized production by means of high power Selective Laser Melting. CIRP J. Manuf. Sci. Technol. 2010;2:161–169. doi: 10.1016/j.cirpj.2010.03.005. DOI
Campbell I., Diegel O., Kowen J., Wohlers T. Wohlers Report 2018: 3D Printing and Additive Manufacturing State of the Industry: Annual Worldwide Progress Report. Wohlers Associates; Collins, CO, USA: 2018.
Bartlett J.L., Li X. An overview of residual stresses in metal powder bed fusion. Addit. Manuf. 2019;27:131–149. doi: 10.1016/j.addma.2019.02.020. DOI
Sanchez S., Smith P., Xu Z., Gaspard G., Hyde C.J., Wits W.W., Ashcroft I.A., Chen H., Clare A.T. Powder Bed Fusion of nickel-based superalloys: A review. Int. J. Mach. Tools Manuf. 2021;165:103729. doi: 10.1016/j.ijmachtools.2021.103729. DOI
Warren J., Wei D.Y. The cyclic fatigue behavior of direct age 718 at 149, 315, 454 and 538 °C. Mater. Sci. Eng. A. 2006;428:106–115. doi: 10.1016/j.msea.2006.04.091. DOI
Kanagarajah P., Brenne F., Niendorf T., Maier H.J. Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading. Mater. Sci. Eng. A. 2013;588:188–195. doi: 10.1016/j.msea.2013.09.025. DOI
Donachie M.J., Donachie S.J. Superalloys: A Technical Guide. 2nd ed. ASM International; Materials Park, OH, USA: 2002.
Zhang B., Li Y., Bai Q. Defect Formation Mechanisms in Selective Laser Melting: A Review. Chin. J. Mech. Eng. Engl. Ed. 2017;30:515–527. doi: 10.1007/s10033-017-0121-5. DOI
Withers P.J., Bhadeshia H.K.D.H. Residual Stress. Part 1—Measurement Techniques. Mater. Sci. Technol. 2001;17:355–365. doi: 10.1179/026708301101509980. DOI
Malý M., Höller C., Skalon M., Meier B., Koutný D., Pichler R., Sommitsch C., Paloušek D. Effect of Process Parameters and High-Temperature Preheating on Residual Stress and Relative Density of Ti6Al4V Processed by Selective Laser Melting. Materials. 2019;12:930. doi: 10.3390/ma12060930. PubMed DOI PMC
Benedetti M., Torresani E., Leoni M., Fontanari V., Bandini M., Pederzolli C., Potrich C. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting. J. Mech. Behav. Biomed. Mater. 2017;71:295–306. doi: 10.1016/j.jmbbm.2017.03.024. PubMed DOI
Li C., Liu Z.Y., Fang X.Y., Guo Y.B. Residual Stress in Metal Additive Manufacturing. Procedia CIRP. 2018;71:348–353. doi: 10.1016/j.procir.2018.05.039. DOI
Sochalski-Kolbus L.M., Payzant E.A., Cornwell P.A., Watkins T.R., Babu S.S., Dehoff R.R., Lorenz M., Ovchinnikova O., Duty C. Comparison of Residual Stresses in Inconel 718 Simple Parts Made by Electron Beam Melting and Direct Laser Metal Sintering. Met. Mater. Trans. A. 2015;46:1419–1432. doi: 10.1007/s11661-014-2722-2. DOI
Ali H., Ghadbeigi H., Mumtaz K. Residual Stress Development in Selective Laser-Melted Ti6Al4V: A Parametric Thermal Modelling Approach. Int. J. Adv. Manuf. Technol. 2018;97:2621–2633. doi: 10.1007/s00170-018-2104-9. DOI
Vrancken B., Wauthle R., Kruth J.-P., van Humbeeck J. Study of the Influence of Material Properties on Residual Stress in Selective Laser Melting; Proceedings of the 24th International Solid Freeform Fabrication Symposium; Austin, TX, USA. 12–14 August 2013; pp. 393–407. DOI
Denlinger E.R., Heigel J.C., Michaleris P., Palmer T.A. Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys. J. Mater. Process. Technol. 2015;215:123–131. doi: 10.1016/j.jmatprotec.2014.07.030. DOI
Ali H., Ma L., Ghadbeigi H., Mumtaz K. In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V. Mater. Sci. Eng. A. 2017;695:211–220. doi: 10.1016/j.msea.2017.04.033. DOI
Mirkoohi E., Liang S.Y., Tran H.C., Lo Y.L., Chang Y.C., Lin H.Y. Mechanics Modeling of Residual Stress Considering Effect of Preheating in Laser Powder Bed Fusion. J. Manuf. Mater. Processing. 2021;5:46. doi: 10.3390/jmmp5020046. DOI
Malý M., Koutný D., Pantělejev L., Pambaguian L., Paloušek D. Effect of high-temperature preheating on pure copper thick-walled samples processed by laser powder bed fusion. J. Manuf. Process. 2022;73:924–938. doi: 10.1016/j.jmapro.2021.11.035. DOI
Körperich J.P., Merkel M. Thermographic Analysis of the Building Height Impact on the Properties of Tool Steel in Selective Laser Beam Melting. Materwiss Werksttech. 2018;49:689–695. doi: 10.1002/mawe.201800010. DOI
Kruth J.P., Deckers J., Yasa E., Wauthle R. Assessing and Comparing Influencing Factors of Residual Stresses in Selective Laser Melting Using a Novel Analysis Method. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2012;226:980–991. doi: 10.1177/0954405412437085. DOI
Le Roux S., Salem M., Hor A. Improvement of the bridge curvature method to assess residual stresses in selective laser melting. Addit. Manuf. 2018;22:320–329. doi: 10.1016/j.addma.2018.05.025. DOI
Buchbinder D., Meiners W., Pirch N., Wissenbach K., Schrage J. Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting. J. Laser Appl. 2014;26:012004. doi: 10.2351/1.4828755. DOI
Lee J., Terner M., Jun S., Hong H.-U., Copin E., Lours P. Heat treatments design for superior high-temperature tensile properties of Alloy 625 produced by selective laser melting. Mater. Sci. Eng. A. 2020;790:139720. doi: 10.1016/j.msea.2020.139720. DOI
Park J.-H., Bang G.B., Lee K.-A., Son Y., Song Y.H., Lee B.-S., Kim W.R., Kim H.G. Effect of Preheating Temperature on Microstructural and Mechanical Properties of Inconel 718 Fabricated by Selective Laser Melting. Met. Mater. Int. 2022:1–13. doi: 10.1007/s12540-022-01169-w. DOI
Liu F., Lin X., Huang C., Song M., Yang G., Chen J., Huang W. The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718. J. Alloy. Compd. 2011;509:4505–4509. doi: 10.1016/j.jallcom.2010.11.176. DOI
Vilaro T., Colin C., Bartout J.D., Nazé L., Sennour M. Microstructural and Mechanical Approaches of the Selective Laser Melting Process Applied to a Nickel-Base Superalloy. Mater. Sci. Eng. A. 2012;534:446–451. doi: 10.1016/j.msea.2011.11.092. DOI
Xu J., Lin X., Guo P., Hu Y., Wen X., Xue L., Liu J., Huang W. The Effect of Preheating on Microstructure and Mechanical Properties of Laser Solid Forming IN-738LC Alloy. Mater. Sci. Eng. A. 2017;691:71–80. doi: 10.1016/j.msea.2017.03.046. DOI
Yadroitsev I., Krakhmalev P., Yadroitsava I., Johansson S., Smurov I. Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder. J. Mater. Process. Technol. 2013;213:606–613. doi: 10.1016/j.jmatprotec.2012.11.014. DOI
Kunze K., Etter T., Grässlin J., Shklover V. Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM) Mater. Sci. Eng. A. 2015;620:213–222. doi: 10.1016/j.msea.2014.10.003. DOI
Popovich A.A., Sufiiarov V.S., Polozov I.A., Borisov E.V. Proceedings of the Key Engineering Materials. Volume 651–653. Trans Tech Publications Ltd.; Stafa-Zurich, Switzerland: 2015. Microstructure and Mechanical Properties of Inconel 718 Produced by SLM and Subsequent Heat Treatment; pp. 665–670.
Huber N., Heerens J. On the effect of a general residual stress state on indentation and hardness testing. Acta Mater. 2008;56:6205–6213. doi: 10.1016/j.actamat.2008.08.029. DOI
Simson T., Emmel A., Dwars A., Böhm J. Residual stress measurements on AISI 316L samples manufactured by selective laser melting. Addit. Manuf. 2017;17:183–189. doi: 10.1016/j.addma.2017.07.007. DOI
Zhou X., Liu X., Zhang D., Shen Z., Liu W. Balling phenomena in selective laser melted tungsten. J. Mater. Process. Technol. 2015;222:33–42. doi: 10.1016/j.jmatprotec.2015.02.032. DOI
Li Y., Liang X., Yu Y., Li H., Kan W., Lin F. Microstructures and mechanical properties evolution of IN939 alloy during electron beam selective melting process. J. Alloy. Compd. 2021;883:160934. doi: 10.1016/j.jallcom.2021.160934. DOI
Philpott W., Jepson M.A.E., Thomson R.C. Advances in Materials Technology for Fossil Power Plants—Proceedings from the 8th International Conference. ASM International; Materials Park, OH, USA: 2016. Comparison of the Effects of a Conventional Heat Treatment between Cast and Selective Laser Melted IN939 Alloy; pp. 735–746.
Hagedorn Y.C., Risse J., Meiners W., Pirch N., Wissenbach K., Poprawe R. High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping. CRC Press; Boca Raton, FL, USA: 2014. Processing of Nickel Based Superalloy MAR M-247 by Means of High Temperature - Selective Laser Melting (HT-SLM) pp. 291–295.