Asymmetry and integration of cellular morphology in Micrasterias compereana
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
28049419
PubMed Central
PMC5209845
DOI
10.1186/s12862-016-0855-1
PII: 10.1186/s12862-016-0855-1
Knihovny.cz E-zdroje
- Klíčová slova
- Desmidiales, Geometric morphometrics, Green algae, Micrasterias, Morphological asymmetry, Morphological integration,
- MeSH
- biologická evoluce MeSH
- Micrasterias anatomie a histologie MeSH
- morfogeneze MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Unicellular green algae of the genus Micrasterias (Desmidiales) have complex cells with multiple lobes and indentations, and therefore, they are considered model organisms for research on plant cell morphogenesis and variation. Micrasterias cells have a typical biradial symmetric arrangement and multiple terminal lobules. They are composed of two semicells that can be further differentiated into three structural components: the polar lobe and two lateral lobes. Experimental studies suggested that these cellular parts have specific evolutionary patterns and develop independently. In this study, different geometric morphometric methods were used to address whether the semicells of Micrasterias compereana are truly not integrated with regard to the covariation of their shape data. In addition, morphological integration within the semicells was studied to ascertain whether individual lobes constitute distinct units that may be considered as separate modules. In parallel, I sought to determine whether the main components of morphological asymmetry could highlight underlying cytomorphogenetic processes that could indicate preferred directions of variation, canalizing evolutionary changes in cellular morphology. RESULTS: Differentiation between opposite semicells constituted the most prominent subset of cellular asymmetry. The second important asymmetric pattern, recovered by the Procrustes ANOVA models, described differentiation between the adjacent lobules within the quadrants. Other asymmetric components proved to be relatively unimportant. Opposite semicells were shown to be completely independent of each other on the basis of the partial least squares analysis analyses. In addition, polar lobes were weakly integrated with adjacent lateral lobes. Conversely, higher covariance levels between the two lateral lobes of the same semicell indicated mutual interconnection and significant integration between these parts. CONCLUSIONS: Micrasterias cells are composed of several successively disintegrated parts. These integration patterns concurred with presumed scenarios of morphological evolution within the lineage. In addition, asymmetric differentiation in the shape of the lobules involves two major patterns: asymmetry across the isthmus axis and among the adjacent lobules. Notably, asymmetry among the adjacent lobules may be related to evolutionary differentiation among species, but it may also point out developmental instability related to environmental factors.
Zobrazit více v PubMed
Klingenberg CP. Analyzing fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications. Symmetry. 2015;7:843–934. doi: 10.3390/sym7020843. DOI
Diggle PK. Modularity and intra-floral integration in metameric organisms: plants are more than the sum of their parts. Phil Trans R Soc B. 2014;369:20130253. doi: 10.1098/rstb.2013.0253. PubMed DOI PMC
Klingenberg CP. Morphological integration and developmental modularity. Ann Rev Ecol Evol Syst. 2008;39:115–132. doi: 10.1146/annurev.ecolsys.37.091305.110054. DOI
Viscosi V, Cardini A. Leaf morphology, taxonomy and geometric morphometrics: a simplified protocol for beginners. PLoS ONE. 2011;6:e25630. doi: 10.1371/journal.pone.0025630. PubMed DOI PMC
Klingenberg CP, Duttke S, Whelan S, Kim M. Developmental plasticity, morphological variation and evolvability: a multilevel analysis of morphometric integration in the shape of compound leaves. J Evol Biol. 2012;25:115–129. doi: 10.1111/j.1420-9101.2011.02410.x. PubMed DOI
Savriama Y, Vitulo M, Gerber S, Debat V, Fusco G. Modularity and developmental stability in segmented animals: variation in translational asymmetry in geophilomorph centipedes. Dev Genes Evol. 2016;226:187–196. doi: 10.1007/s00427-016-0538-3. PubMed DOI
Paz-García DA, Aldana-Moreno A, Cabral-Tena RA, García-De León FJ, Hellberg ME, Balart EF. Morphological variation and different branch modularity across contrasting flow conditions in dominant Pocillopora reef-building corals. Oecologia. 2015;178:207–218. doi: 10.1007/s00442-014-3199-9. PubMed DOI
Graham JH, Whitesell MJ, Fleming M, II, Hel-Or H, Nevo E, Raz S. Fluctuating asymmetry of plant leaves: batch processing with LAMINA and continuous symmetry measures. Symmetry. 2015;7:255–268. doi: 10.3390/sym7010255. DOI
Graham JH, Raz S, Hel-Or H, Nevo E. Fluctuating asymmetry: methods, theory and applications. Symmetry. 2010;2:466–540. doi: 10.3390/sym2020466. DOI
Medarde N, Muñoz-Muñoz F, López-Fuster MJ, Ventura J. Variational modularity at the cell level: insights from the sperm head of the house mouse. BMC Evol Biol. 2013;13:179. doi: 10.1186/1471-2148-13-179. PubMed DOI PMC
Savriama Y, Neustupa J, Klingenberg CP. Geometric morphometrics of symmetry and allometry in Micrasterias rotata (Zygnemophyceae, Viridiplantae) Nova Hedwigia Beih. 2010;136:43–54.
Neustupa J. Patterns of symmetric and asymmetric morphological variation in unicellular green microalgae of the genus Micrasterias (Desmidiales, Viridiplantae) Fottea. 2013;13:53–63. doi: 10.5507/fot.2013.005. DOI
Kiermayer O. Cytoplasmic basis of morphogenesis in Micrasterias. In: Kiermayer O, editor. Cytomorphogenesis in plants. Vienna: Springer Verlag; 1981. pp. 147–189.
Meindl U. Micrasterias cells as a model system for research on morphogenesis. Microb Rev. 1993;57:415–433. PubMed PMC
Vannerum K, Huysman MJJ, De Rycke R, Vuylsteke M, Leliaert F, Pollier J, Lütz-Meindl U, Gillard J, De Veylder L, Goossens A, Inzé D, Vyverman W. Transcriptional analysis of cell growth and morphogenesis in the unicellular green alga Micrasterias (Streptophyta), with emphasis on the role of expansin. BMC Plant Biol. 2011;11:128. doi: 10.1186/1471-2229-11-128. PubMed DOI PMC
Lütz-Meindl U. Micrasterias as a model system in plant cell biology. Front Pl Sci. 2016;7:999. PubMed PMC
Holloway DM, Harrison LG. Algal morphogenesis: modelling interspecific variation in Micrasterias with reaction–diffusion patterned catalysis of cell surface growth. Phil Trans R Soc B. 1999;354:417–433. doi: 10.1098/rstb.1999.0395. DOI
Holloway DM, Harrison LG. Pattern selection in plants: coupling chemical dynamics to surface growth in three dimensions. Ann Bot. 2008;101:361–374. doi: 10.1093/aob/mcm295. PubMed DOI PMC
Harrison LG. The shaping of life: the generation of biological pattern. Cambridge: Cambridge University Press; 2011.
Krieger W. Die Desmidiaceen. Kryptogamen Flora Bd. 13. Teil 2. Leipzig: Akademisches Verlag; 1939.
Brook AJ. The biology of desmids. Oxford: Blackwell Science; 1981.
Neustupa J. Static allometry of unicellular green algae: scaling of cellular surface area and volume in the genus Micrasterias (Desmidiales) J Evol Biol. 2016;29:292–305. doi: 10.1111/jeb.12781. PubMed DOI
Škaloud P, Nemjová K, Veselá J, Černá K, Neustupa J. A multilocus phylogeny of the desmid genus Micrasterias (Streptophyta): evidence for the accelerated rate of morphological evolution in protists. Mol Phyl Evol. 2011;61:933–943. doi: 10.1016/j.ympev.2011.08.018. PubMed DOI
Savriama Y, Klingenberg CP. Beyond bilateral symmetry: geometric morphometric methods for any type of symmetry. BMC Evol Biol. 2011;11:280. doi: 10.1186/1471-2148-11-280. PubMed DOI PMC
Meindl U. Effects of temperature on cytomorphogenesis and ultrastructure of Micrasterias. Protoplasma. 1990;157:3–18. doi: 10.1007/BF01322635. DOI
Weiss D, Lütz C, Lütz-Meindl U. Photosynthesis and heat response of the green alga Micrasterias denticulata (Desmidiaceae) Z Naturforsch. 1999;54:508–516.
Neustupa J, Šťastný J, Hodač L. Temperature–related phenotypic plasticity in the green microalga Micrasterias rotata. Aquat Microb Ecol. 2008;51:77–86. doi: 10.3354/ame01184. DOI
Waris H, Kallio P. Morphogenesis in Micrasterias. Adv Morphog. 1964;4:45–80. doi: 10.1016/B978-1-4831-9951-1.50005-X. PubMed DOI
Kallio P, Lehtonen J. On the plasmatic template system in Micrasterias morphogenesis. Ann Acad Sci Fenn A Biol. 1973;199:1–6. PubMed
Kallio P, Lehtonen J. Nuclear control of morphogenesis in Micrasterias. In: Kiermayer O, editor. Cytomorphogenesis in plants. Vienna: Springer Verlag; 1981. pp. 191–213.
Gärtner M, Meindl U. Untersuchungen zur Kultivierung und Formvariabilität von Micrasterias thomasiana f. uniradiata. Phyton. 1991;31:157–169.
Rosenberg M. On the variability of the desmid Xanthidium subhastiferum West. New Phytol. 1944;43:15–22. doi: 10.1111/j.1469-8137.1944.tb04999.x. DOI
Kiermayer O. Causal aspects of cytomorphogenesis in Micrasterias. Ann New York Acad Sci. 1970;175:686–701. doi: 10.1111/j.1749-6632.1970.tb45185.x. DOI
Pflügl-Haill M, Vidali L, Vos JW, Hepler PK, Lütz-Meindl U. Changes of the actin filament system in the green alga Micrasterias denticulata induced by different cytoskeleton inhibitors. Protoplasma. 2000;212:206–216. doi: 10.1007/BF01282921. DOI
Holzinger A, Lütz-Meindl U. Chondramides, novel cyclodepsipeptides from myxobacteria, influence cell development and induce actin filament polymerization in the green alga Micrasterias. Cell Mot Cytoskel. 2001;48:87–95. doi: 10.1002/1097-0169(200102)48:2<87::AID-CM1000>3.0.CO;2-C. PubMed DOI
Holzinger A, Monajembashi S, Greulich KO, Lütz-Meindl U. Impairment of cytoskeleton-dependent vesicle and organelle translocation in green algae: combined use of a microfocused infrared laser as microbeam and optical tweezers. J Micr. 2002;208:77–83. doi: 10.1046/j.1365-2818.2002.01069.x. PubMed DOI
Vannerum K, De Rycke R, Pollier J, Goossens A, Inzé D, Vyverman W. Characterization of a RABE (Ras gene from rat brain E) GTPase expressed during morphogenesis in the unicellular green alga Micrasterias denticulata (Zygnematophyceae, Streptophyta) J Phycol. 2012;48:682–692. doi: 10.1111/j.1529-8817.2012.01170.x. PubMed DOI
Eder M, Lütz-Meindl U. Pectin-like carbohydrates in the green alga Micrasterias characterized by cytochemical analysis and energy filtering TEM. J Microsc. 2008;231:201–214. doi: 10.1111/j.1365-2818.2008.02036.x. PubMed DOI
Lacalli TC. Morphogenesis in Micrasterias. II patterns of morphogenesis. J Embryol Exp Morph. 1975;33:117–126. PubMed
Lacalli TC. Morphogenesis in Micrasterias. III. The morphogenetic template. Protoplasma. 1976;88:133–146. doi: 10.1007/BF01283242. DOI
Harrison LG, Kolář M. Coupling between reaction–diffusion prepattern and expressed morphogenesis, applied to desmids and dasyclads. J Theor Biol. 1988;130:493–515. doi: 10.1016/S0022-5193(88)80213-3. DOI
Holloway DM. The chemical kinetics of shape determination in plants. In: Patel V, editor. Chemical kinetics. Rijeka: InTech Press; 2012. pp. 203–226.
Růžička J. Die Desmidiaceen Mitteleuropas, Band 1, 2. Lieferung. Stuttgart: E. Schweizerbartsche Verlagsbuchhandlung; 1981.
Klingenberg CP, Barluenga M, Meyer A. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution. 2002;56:1909–1920. doi: 10.1111/j.0014-3820.2002.tb00117.x. PubMed DOI
Klingenberg CP. Studying morphological integration and modularity at multiple levels: concepts and analysis. Phil Trans R Soc B. 2014;369:20130249. doi: 10.1098/rstb.2013.0249. PubMed DOI PMC
Neustupa J, Šťastný J, Škaloud P. Splitting of Micrasterias fimbriata (Desmidiales, Viridiplantae) into two monophyletic species and description of Micrasterias compereana sp. nov. Pl Ecol Evol. 2014;147:405–411. doi: 10.5091/plecevo.2014.991. DOI
Rohlf FJ. The tps series of software. Hystrix It J Mammal. 2015;26:9–12.
Dryden IL. Package shapes. R Foundation for Statistical Computing. Contributed package. Version 1.1-13. 2016. https://cran.r-project.org/web/packages/shapes/index.html. Accessed 09 July 2016.
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. 2013. https://www.r-project.org/. Accessed 09 July 2016.
Hammer Ø, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeont Electron. 2001;4:1–9.
Klingenberg CP, McIntyre GS. Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution. 1998;52:1363–1375. doi: 10.2307/2411306. PubMed DOI
Adams DC, Otárola-Castillo E. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Meth Ecol Evol. 2013;4:393–399. doi: 10.1111/2041-210X.12035. DOI
Collyer ML, Sekora DJ, Adams DC. A method for analysis of phenotypic change for phenotypes described by high-dimensional data. Heredity. 2014;115:357–365. doi: 10.1038/hdy.2014.75. PubMed DOI PMC
Adams DC, Collyer ML, Sherratt E. Package geomorph. R Foundation for Statistical Computing. Contributed package. Version 3.0.0. 2016. https://cran.r-project.org/web/packages/geomorph/. Accessed 09 July 2016.
Bookstein FL, Gunz P, Mitteröcker P, Prossinger H, Schäfer K, Seidler H. Cranial integration in Homo: singular warps analysis of the midsagittal plane in ontogeny and evolution. J Hum Evol. 2003;44:167–187. doi: 10.1016/S0047-2484(02)00201-4. PubMed DOI
Zelditch ML, Swiderski DL, Sheets DH. Geometric morphometrics for biologists: a primer. 2. London: Academic; 2012.
Kane EA, Higham TE. Complex systems are more than the sum of their parts: using integration to understand performance, biomechanics, and diversity. Integr Compar Biol. 2015;55:146–165. doi: 10.1093/icb/icv033. PubMed DOI
Klingenberg CP. Morphometric integration and modularity in configurations of landmarsk: tools for evaluating a priori hypotheses. Evol Dev. 2009;11:405–421. doi: 10.1111/j.1525-142X.2009.00347.x. PubMed DOI PMC
Klingenberg CP. Evolution and development of shape: integrating quantitative approaches. Nat Rev Genet. 2010;11:623–635. PubMed
Hall JD, Karol KG, McCourt RM, Delwiche CF. Phylogeny of the conjugating green algae based on chloroplast and mitochondrial nucleotide sequence data. J Phycol. 2008;44:467–477. doi: 10.1111/j.1529-8817.2008.00485.x. PubMed DOI
Hallgrímsson B, Jamniczky H, Young NM, Rolian C, Parsons TE, Boughner JC, Marcucio RS. Deciphering the palimpsest: studying the relationship between morphological integration and phenotypic covariation. Evol Biol. 2009;36:355–376. doi: 10.1007/s11692-009-9076-5. PubMed DOI PMC
Coesel PFM, Meesters J. Desmids of the lowlands. Zeist: KNNV Publishing; 2007.
Kiermayer O, Meindl U. Cellular morphogenesis: the desmid (Chlorophyceae) system. In: Stein-Taylor JR, editor. Algae as experimental systems. Plant cell biology. New York: Alan R Liss Inc; 1989. pp. 149–167.
Lezcano AH, Quiroga MLR, Liberoff AL, Van der Molen S. Marine pollution effects on the southern surf crab Ovalipes trimaculatus (Crustacea: Brachyura: Polybiidae) in Patagonia Argentina. Mar Pollut Bull. 2015;91:524–529. doi: 10.1016/j.marpolbul.2014.09.038. PubMed DOI
Trono DJV, Dacar R, Quinones L, Tabugo SRM. Fluctuating asymmetry and developmental instability in Protoreaster nodosus (Chocolate Chip Sea Star) as a biomarker for environmental stress. Comp Ecol Softw. 2015;5:119–129.
Savriama Y, Stige LC, Gerber S, Pérez T, Alibert P, David B. Impact of sewage pollution on two species of sea urchins in the Mediterranean Sea (Cortiou, France): Radial asymmetry as a bioindicator of stress. Ecol Indic. 2015;54:39–47. doi: 10.1016/j.ecolind.2015.02.004. DOI
Volland S, Andosch A, Milla M, Stöger B, Lütz C, Lütz-Meindl U. Intracellular metal compartmentalization in the green algal model system Micrasterias denticulata (Streptophyta) measured by transmission electron microscopy-coupled electron energy loss spectroscopy. J Phycol. 2011;47:565–579. doi: 10.1111/j.1529-8817.2011.00988.x. PubMed DOI
Volland S, Lütz C, Michalke B, Lütz-Meindl U. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias. Aquat Toxicol. 2012;109:59–69. doi: 10.1016/j.aquatox.2011.11.013. PubMed DOI PMC
Andosch A, Affenzeller MJ, Lütz C, Lütz-Meindl U. A freshwater green alga under cadmium stress: ameliorating calcium effects on ultrastructure and photosynthesis in the unicellular model Micrasterias. J Pl Physiol. 2012;169:1489–1500. doi: 10.1016/j.jplph.2012.06.002. PubMed DOI