Mechanical and Microstructural Anisotropy of Laser Powder Bed Fusion 316L Stainless Steel

. 2022 Jan 12 ; 15 (2) : . [epub] 20220112

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35057266

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000826 ESIF, EU Operational Programme Research, Development and Education, the Center of Advanced Aerospace Technology

This paper aims at an in-depth and comprehensive analysis of mechanical and microstructural properties of AISI 316L austenitic stainless steel (W. Nr. 1.4404, CL20ES) produced by laser powder bed fusion (LPBF) additive manufacturing (AM) technology. The experiment in its first part includes an extensive study of the anisotropy of mechanical and microstructural properties in relation to the built orientation and the direction of loading, which showed significant differences in tensile properties among samples. The second part of the experiment is devoted to the influence of the process parameter focus level (FL) on mechanical properties, where a 48% increase in notched toughness was recorded when the level of laser focus was identical to the level of melting. The FL parameter is not normally considered a process parameter; however, it can be intentionally changed in the service settings of the machine or by incorrect machine repair and maintenance. Evaluation of mechanical and microstructural properties was performed using the tensile test, Charpy impact test, Brinell hardness measurement, microhardness matrix measurement, porosity analysis, scanning electron microscopy (SEM), and optical microscopy. Across the whole spectrum of samples, performed analysis confirmed the high quality of LPBF additive manufactured material, which can be compared with conventionally produced material. A very low level of porosity in the range of 0.036 to 0.103% was found. Microstructural investigation of solution annealed (1070 °C) tensile test samples showed an outstanding tendency to recrystallization, grain polygonization, annealing twins formation, and even distribution of carbides in solid solution.

Zobrazit více v PubMed

Kruth J.-P., Leu M.C., Nakagawa T. Progress in Additive Manufacturing and Rapid Prototyping. CIRP Ann. 1998;47:525–540. doi: 10.1016/S0007-8506(07)63240-5. DOI

Guo N., Leu M.C. Additive manufacturing: Technology, applications and research needs. Front. Mech. Eng. 2013;8:215–243. doi: 10.1007/s11465-013-0248-8. DOI

Additive Manufacturing—General Principles—Terminology Technical Report. International Organization for Standardization; Geneva, Switzerland: 2015.

Yang Y., Zhu Y., Khonsari M.M., Yang H. Wear anisotropy of selective laser melted 316L stainless steel. Wear. 2019;428:376–386. doi: 10.1016/j.wear.2019.04.001. DOI

Suryawanshi J., Prashanth K.G., Ramamurty U. Mechanical behavior of selective laser melted 316L stainless steel. Mater. Sci. Eng. A. 2017;696:113–121. doi: 10.1016/j.msea.2017.04.058. DOI

Simson T., Emmel A., Dwars A., Böhm J. Residual stress measurements on AISI 316L samples manufactured by selective laser melting. Addit. Manuf. 2017;17:183–189. doi: 10.1016/j.addma.2017.07.007. DOI

Bartolomeu F., Buciumeanu M., Pinto E., Alves N., Carvalho O., Silva F.S., Miranda G. 316L stainless steel mechanical and tribological behavior—A comparison between selective laser melting, hot pressing and conventional casting. Addit. Manuf. 2017;16:81–89. doi: 10.1016/j.addma.2017.05.007. DOI

Parry L., Ashcroft I.A., Wildman R.D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Addit. Manuf. 2016;12:1–15. doi: 10.1016/j.addma.2016.05.014. DOI

Krakhmalev P., Yadroitsava I., Fredriksson G., Yadroitsev I. In situ heat treatment in selective laser melted martensitic AISI 420 stainless steels. Addit. Manuf. 2015;87:380–385. doi: 10.1016/j.matdes.2015.08.045. DOI

Meier H., Haberland C., Fredriksson G., Yadroitsev I. Experimental studies on selective laser melting of metallic parts. Mater. Und Werkst. 2008;39:665–670. doi: 10.1002/mawe.200800327. DOI

Feenstra D.R., Cruz V., Gao X., Molotnikov A., Birbilis N. Effect of build height on the properties of large format stainless steel 316L fabricated via directed energy deposition. Addit. Manuf. 2020;34:101205. doi: 10.1016/j.addma.2020.101205. DOI

Durand-Hill M., Henckel J., Di Laura A., Hart A.J., Birbilis N. Can custom 3D printed implants successfully reconstruct massive acetabular defects? A 3D-CT assessment. J. Orthop. Res. 2020;38:2640–2648. doi: 10.1002/jor.24752. PubMed DOI

Anssari Moin D., Derksen W., Waars H., Hassan B., Wismeijer D. Computer-assisted template-guided custom-designed 3D-printed implant placement with custom-designed 3D-printed surgical tooling. Clin. Oral Implant. Res. 2017;28:582–585. doi: 10.1111/clr.12838. PubMed DOI

Shah F.A., Jergéus E., Chiba A., Palmquist A. Osseointegration of 3D printed microalloyed CoCr implants-Addition of 0.04% Zr to CoCr does not alter bone material properties. J. Biomed. Mater. Res. Part A. 2018;106:1655–1663. doi: 10.1002/jbm.a.36366. PubMed DOI

Mangano C., Bianchi A., Mangano F.G., Dana J., Colombo M., Solop I., Admakin O. Custom-made 3D printed subperiosteal titanium implants for the prosthetic restoration of the atrophic posterior mandible of elderly patients. 3D Print. Med. 2020;6:1–14. doi: 10.1186/s41205-019-0055-x. PubMed DOI PMC

Vance A., Bari K., Arjunan A. Compressive performance of an arbitrary stiffness matched anatomical Ti64 implant manufactured using Direct Metal Laser Sintering. Mater. Des. 2018;160:1281–1294. doi: 10.1016/j.matdes.2018.11.005. DOI

Jardini A.L., Larosa M.A., Filho R.M., de Zavaglia C.A.C., Bernardes L.F., Lambert C.S., Calderoni D.R., Kharmandayan P. Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. J. Cranio-Maxillofac. Surg. 2014;42:1877–1884. doi: 10.1016/j.jcms.2014.07.006. PubMed DOI

Tepylo N., Huang X., Patnaik P.C. Laser-Based Additive Manufacturing Technologies for Aerospace Applications. Adv. Eng. Mater. 2019;21:1900617. doi: 10.1002/adem.201900617. DOI

Balyakin A.V., Vdovin R.A., Ispravnikova S.S. Application of additive technologies for manufacturing turbine stator parts in aircraft engines. J. Phys. Conf. Ser. 2020;1515:042108. doi: 10.1088/1742-6596/1515/4/042108. DOI

Igashira K., Nomura Y. Application of Additive Manufacturing to Parts and Components for Industrial Gas Turbine. J. Smart Process. 2019;8:74–77. doi: 10.7791/jspmee.8.74. DOI

Praniewicz M., Ameta G., Fox J., Saldana C. Data registration for multi-method qualification of additive manufactured components. Addit. Manuf. 2020;35:101292. doi: 10.1016/j.addma.2020.101292. PubMed DOI PMC

Russell R., Wells D., Waller J., Poorganji B., Ott E., Nakagawa T., Sandoval H., Shamsaei N., Seifi M. Qualification and certification of metal additive manufactured hardware for aerospace applications. Addit. Manuf. Aerosp. Ind. 2019:33–66.

Heiden M.J., Deibler L.A., Rodelas J.M., Koepke J.R., Tung D.J., Saiz D.J., Jared B.H. Evolution of 316L stainless steel feedstock due to laser powder bed fusion process. Addit. Manuf. 2019;25:84–103. doi: 10.1016/j.addma.2018.10.019. DOI

Gibson D., Rosen B. Stucker. Additive Manufacturing Technologies. 2nd ed. Springer; New York, NY, USA: 2014.

National Institute of Standards and Technology Energetics Incorporated, Measurement Science Roadmap for Metal-Based Additive Manufacturing. [(accessed on 7 October 2021)];2013 Available online: https://www.nist.gov/system/files/documents/el/isd/NISTAdd_Mfg_Report_FINAL-2.pdf.

Roach A.M., White B.C., Garland A., Jared B.H., Carroll J.D., Boyce B.L. Size-dependent stochastic tensile properties in additively manufactured 316L stainless steel. Addit. Manuf. 2020;32:101090. doi: 10.1016/j.addma.2020.101090. DOI

Casati R., Lemke J., Vedani M. Microstructure and Fracture Behavior of 316L Austenitic Stainless Steel Produced by Selective Laser Melting. J. Mater. Sci. Technol. 2016;32:738–744. doi: 10.1016/j.jmst.2016.06.016. DOI

Ahuja B., Schaub A., Junker D., Karg M., Tenner F., Plettke R., Merklein M., Schmidt M. A round robin study for laser beam melting in metal powder bed. S. Afr. J. Ind. Eng. 2016;27:30–42. doi: 10.7166/27-2-1201. DOI

A Review on Properties of Aerospace Materials through Additive Manufacturing. Int. J. Mod. Trends Eng. Res. 2017;4:120–137. doi: 10.21884/IJMTER.2017.4288.H0FCA. DOI

Bartolomeu F., Faria S., Carvalho O., Pinto E., Alves N., Silva F.S., Miranda G. Predictive models for physical and mechanical properties of Ti6Al4V produced by Selective Laser Melting. Mater. Sci. Eng. A. 2016;663:181–192. doi: 10.1016/j.msea.2016.03.113. DOI

Röttger A., Geenen K., Windmann M., Binner F., Theisen W. Comparison of microstructure and mechanical properties of 316 L austenitic steel processed by selective laser melting with hot-isostatic pressed and cast material. Mater. Sci. Eng. A. 2016;678:365–376. doi: 10.1016/j.msea.2016.10.012. DOI

Margerit P., Weisz-Patrault D., Ravi-Chandar K., Constantinescu A. Tensile and ductile fracture properties of as-printed 316L stainless steel thin walls obtained by directed energy deposition. Addit. Manuf. 2021;37:101664. doi: 10.1016/j.addma.2020.101664. DOI

Tolosa I., Garciandía F., Zubiri F., Zapirain F., Esnaola A. Study of mechanical properties of AISI 316 stainless steel processed by “selective laser melting”, following different manufacturing strategies. Int. J. Adv. Manuf. Technol. 2010;51:639–647. doi: 10.1007/s00170-010-2631-5. DOI

Buford A., Goswami T. Review of wear mechanisms in hip implants: Paper I—General. Mater. Des. 2004;25:385–393. doi: 10.1016/j.matdes.2003.11.010. DOI

Kong D., Dong C., Ni X., Zhang L., Yao J., Man C., Cheng X., Xiao K., Li X. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes. J. Mater. Sci. Technol. 2019;35:1499–1507. doi: 10.1016/j.jmst.2019.03.003. DOI

CL20ES Stainless Steel Material Data Sheet: Material Data Sheet. 2011. [(accessed on 8 October 2021)]. Concept Laser: Metal Powder Materials. Germany. Available online: https://www.laserproto.com/wp-content/uploads/2017/10/Stainless-Steel-111123_CL-20ES.pdf.

AK Steel Austenitic Stainless Steels—Stainless Grades. 2021. [(accessed on 8 October 2021)]. Cleveland, USA. Available online: https://www.aksteel.com/our-products/stainless/austenitic-stainless-steels.

Gor M., Soni H., Wankhede V., Sahlot P., Grzelak K., Szachgluchowicz I., Kluczynski J. A Critical Review on Effect of Process Parameters on Mechanical and Microstructural Properties of Powder-Bed Fusion Additive Manufacturing of SS316L. Materials. 2021;14:6527. doi: 10.3390/ma14216527. PubMed DOI PMC

Yusuf S.M., Chen Y., Boardman R., Yang S., Gao N. Investigation on Porosity and Microhardness of 316L Stainless Steel Fabricated by Selective Laser Melting. Metals. 2017;7:64. doi: 10.3390/met7020064. DOI

Hajnys J., Pagac M., Kotera O., Petru J., Scholz S. Influence of basic process parameters on mechanical and 316L steel in SLM process for renishaw AM400. MM Sci. J. 2019;16:2790–2794. doi: 10.17973/MMSJ.2019_03_2018127. DOI

Hitzler L., Hirsch J., Tomas J., Merkel M., Hall W., Andreas O. In-plane anisotropy of selective laser-melted stainless steel: The importance of the rotation angle increment and the limitation window. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2018;233:1419–1428. doi: 10.1177/1464420718757068. DOI

Standard Test Methods for Tension Testing of Metallic Materials. ASTM International; West Conshohocken, PA, USA: 2011.

Standard Test Methods for Notched Bar Impact Testing of Metallic Materials. ASTM International; West Conshohocken, PA, USA: 2015.

Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. European Committee for Standardization; Brussels, Belgium: 2009.

Metallic Materials—Charpy Pendulum Impact Test—Part 1: Test Method. European Committee for Standardization; Brussels, Belgium: 2016.

Metallic Materials—Brinell Hardness Test—Part 1: Test Method. European Committee for Standardization; Brussels, Belgium: 2014.

Metallic Materials—Vickers Hardness Test—Part 1: Test Method. European Committee for Standardization; Brussels, Belgium: 2018.

Stainless Steels—Part 3: Technical Delivery Conditions for Semi-Finished Products, Bars, Rods, Wire, Sections and Bright Products of Corrosion Resisting Steels for General Purposes. European Committee for Standardization; Brussels, Belgium: 2005.

Andronov V., Simota J., Beranek L., Blazek J., Rusar F.A., Guo S., Raush J. Optimization of Process Parameters for Additively Produced Tool Steel 1.2709 with a Layer Thickness of 100 μm. Materials. 2021;14:2852. doi: 10.3390/ma14112852. PubMed DOI PMC

Chen W., Yin G., Feng Z., Liao X. Effect of Powder Feedstock on Microstructure and Mechanical Properties of the 316L Stainless Steel. Metals. 2018;8:729. doi: 10.3390/met8090729. DOI

Standard Hadness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Supeficial Hardness, Knoop Hardness, Scleroscope Hardness, and Leeb Hardness. ASTM International; West Conshohocken, PA, USA: 2019.

Diaz Vallejo N., Lucas C., Ayers N., Graydon K., Hyer H., Sohn Y. Process Optimization and Microstructure Analysis to Understand Laser Powder Bed Fusion of 316L Stainless Steel. Metals. 2021;11:832. doi: 10.3390/met11050832. DOI

Pauzon C., Hryha E., Foret P., Nyborg L. Effect of argon and nitrogen atmospheres on the properties of stainless steel 316 L parts produced by laser-powder bed fusion. Mater. Des. 2019;179:107873. doi: 10.1016/j.matdes.2019.107873. DOI

Laleh M., Hughes A.E., Yang S., Li J., Xu W., Gibson I., Tan M.Y. Two and three-dimensional characterisation of localised corrosion affected by lack-of-fusion pores in 316L stainless steel produced by selective laser melting. Corros. Sci. 2020;165:108394. doi: 10.1016/j.corsci.2019.108394. DOI

Benarji K., Ravi Kumar Y., Jinoop A.N., Paul C.P., Bindra K.S. Effect of Heat-Treatment on the Microstructure, Mechanical Properties and Corrosion Behaviour of SS 316 Structures Built by Laser Directed Energy Deposition Based Additive Manufacturing. Met. Mater. Int. 2021;27:488–499. doi: 10.1007/s12540-020-00838-y. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Zinc Ferrite Nanoparticle Coatings on Austenitic Alloy Steel

. 2024 Feb 12 ; 17 (4) : . [epub] 20240212

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...