• This record comes from PubMed

Zinc Ferrite Nanoparticle Coatings on Austenitic Alloy Steel

. 2024 Feb 12 ; 17 (4) : . [epub] 20240212

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

The phase transition of austenitic stainless steel of commercial label CL20ES and zinc ferrite nanoparticles was studied in an oxidative atmosphere of dry air to develop a low-cost, effective technique for covering-layer fabrication. CL20ES powder and zinc ferrite powder were mechanically mixed. This mixture was studied in an atmosphere of dry air at different annealing temperatures from room temperature to 900 °C. The employed characterization techniques are X-ray powder diffraction, Mössbauer spectroscopy in the transmission geometry, and scanning electron microscopy with elemental mapping. The fabricated layers were also characterized by surface-specific techniques such as conversion electron Mössbauer spectroscopy and grazing incidence X-ray powder diffraction. The analyzed powder mixture shows resistance against oxidation in dry air and high temperatures. These results were employed to produce zinc ferrite covering layers on 3D-printed cylinders of CL20ES. The results show a predisposition of zinc ferrite to be recrystallized at temperatures above 350 °C without the production of corrosive substances on steel. The zinc ferrite layers were analyzed by an ultrasonic hardness tester as well, which proved the hardness enhancement.

See more in PubMed

Hasegawa S., Kim S.-Y., Ebina T., Tokuda H., Ito T., Nagano N., Hitomi K., Ishii K. Effect of Nitrate on Corrosion of Austenitic Stainless Steel in Boiling Nitric Acid Solution Containing Chromium Ions. J. Nucl. Sci. Technol. 2016;53:1332–1341. doi: 10.1080/00223131.2015.1107514. DOI

Samusawa I., Shiotani K. Influence and Role of Ethanol Minor Constituents of Fuel Grade Ethanol on Corrosion Behavior of Carbon Steel. Corros. Sci. 2015;90:266–275. doi: 10.1016/j.corsci.2014.10.020. DOI

Bystrov S.G., Reshetnikov S.M., Kolotov A.A., Drozdov A.Y., Bayankin V.Y. Effect of Oxygen Ion Implantation on Physicochemical Structure and Corrosion-Electrochemical Behavior of High-Chromium Steel. Inorg. Mater. Appl. Res. 2021;12:625–632. doi: 10.1134/S2075113321030060. DOI

Santambrogio M., Perrucci G., Trueba M., Trasatti S.P., Casaletto M.P. Effect of Major Degradation Products of Ethylene Glycol Aqueous Solutions on Steel Corrosion. Electrochim. Acta. 2016;203:439–450. doi: 10.1016/j.electacta.2016.03.144. DOI

Shi Y., Yang B., Liaw P. Corrosion-Resistant High-Entropy Alloys: A Review. J. Met. 2017;7:43. doi: 10.3390/met7020043. DOI

Wei L., Pang X., Gao K. Corrosion of Low Alloy Steel and Stainless Steel in Supercritical CO2/H2O/H2S Systems. Corros. Sci. 2016;111:637–648. doi: 10.1016/j.corsci.2016.06.003. DOI

Zhang W., Xu J. Advanced Lightweight Materials for Automobiles: A Review. Mater. Des. 2022;221:110994. doi: 10.1016/j.matdes.2022.110994. DOI

Liu Y., Li H., Huang S., An H., Santagata R., Ulgiati S. Environmental and Economic-Related Impact Assessment of Iron and Steel Production. A Call for Shared Responsibility in Global Trade. J. Clean. Prod. 2020;269:122239. doi: 10.1016/j.jclepro.2020.122239. DOI

Dennis J.K., Such T.E. Nickel and Chromium Plating. Elsevier; Amsterdam, The Netherlands: 1993. Control and Purification of Nickel Electroplating Solutions; pp. 132–161.

Linderhof F., Mashlan M., Doláková H., Ingr T., Ivanova T. Surface Micromorphology and Structure of Stainless and Maraging Steel Obtained via Selective Laser Melting: A Mössbauer Spectroscopy Study. J. Met. 2021;11:1028. doi: 10.3390/met11071028. DOI

Ivanova T., Kořenek M., Mashlan M., Svačinová V. Mössbauer Study of Thermal Behavior of CL20ES and CL50WS Steel Powders Used in Selective Laser Melting. Chem. Pap. 2023;77:7289–7302. doi: 10.1007/s11696-023-02854-9. DOI

Zhong J.-Y., Sun J.-Y., Liu D.-B., Li X.-G., Liu T.-Q. Effects of Chromium on the Corrosion and Electrochemical Behaviors of Ultra High Strength Steels. Int. J. Miner. Metall. Mater. 2010;17:282–289. doi: 10.1007/s12613-010-0306-8. DOI

Kashima K., Sugae K., Kamimura T., Miyuki H., Kudo T. Effect of Chromium Contents on Atmospheric Corrosion of Steel in Chloride Environment. J. Jpn. Inst. Met. 2013;77:107–113. doi: 10.2320/jinstmet.77.107. DOI

Wint N., de Vooys A.C.A., McMurray H.N. The Corrosion of Chromium Based Coatings for Packaging Steel. Electrochim. Acta. 2016;203:326–336. doi: 10.1016/j.electacta.2016.01.100. DOI

Kamimura T., Stratmann M. The Influence of Chromium on the Atmospheric Corrosion of Steel. Corros. Sci. 2001;43:429–447. doi: 10.1016/S0010-938X(00)00098-6. DOI

Rezaee N., Attar M.M., Ramezanzadeh B. Studying Corrosion Performance, Microstructure and Adhesion Properties of a Room Temperature Zinc Phosphate Conversion Coating Containing Mn2+ on Mild Steel. Surf. Coat. Technol. 2013;236:361–367. doi: 10.1016/j.surfcoat.2013.10.014. DOI

Maurice V., Marcus P. Current Developments of Nanoscale Insight into Corrosion Protection by Passive Oxide Films. Curr. Opin. Solid State Mater. Sci. 2018;22:156–167. doi: 10.1016/j.cossms.2018.05.004. DOI

Jiang C., Gao Z., Pan H., Cheng X. The Initiation and Formation of a Double-Layer Phosphate Conversion Coating on Steel. Electrochem. Commun. 2020;114:106676. doi: 10.1016/j.elecom.2020.106676. DOI

Ujiro T., Yoshioka K., Staehle R.W. Differences in Corrosion Behavior of Ferritic and Austenitic Stainless Steels. Corrosion. 1994;50:953–962. doi: 10.5006/1.3293487. DOI

Klapper H.S., Burkert A., Burkert A., Lehmann J., Villalba A.L. Influence of Surface Treatments on the Pitting Corrosion of Type 304 Stainless Steel by Electrochemical Noise Measurements. Corrosion. 2011;67:075004-1–075004-13. doi: 10.5006/1.3613641. DOI

Hoshino K., Furuya S., Buchheit R.G. Effect of Solution Ph on Layered Double Hydroxide Formation on Electrogalvanized Steel Sheets. J. Mater. Eng. Perform. 2019;28:2237–2244. doi: 10.1007/s11665-019-03963-x. DOI

Ramezanzadeh B., Vakili H., Amini R. The Effects of Addition of Poly(Vinyl) Alcohol (PVA) as a Green Corrosion Inhibitor to the Phosphate Conversion Coating on the Anticorrosion and Adhesion Properties of the Epoxy Coating on the Steel Substrate. Appl. Surf. Sci. 2015;327:174–181. doi: 10.1016/j.apsusc.2014.11.167. DOI

Buchheit R.G., Guan H., Mahajanam S., Wong F. Active Corrosion Protection and Corrosion Sensing in Chromate-Free Organic Coatings. Prog. Org. Coat. 2003;47:174–182. doi: 10.1016/j.porgcoat.2003.08.003. DOI

Winn D., Dalton W. Chromium-Free Corrosion Solutions. Met. Finish. 2008;106:70–74. doi: 10.1016/S0026-0576(08)80168-7. DOI

Jing C., Dong B., Raza A., Zhang T., Zhang Y. Corrosion Inhibition of Layered Double Hydroxides for Metal-Based Systems. Nano Mater. Sci. 2021;3:47–67. doi: 10.1016/j.nanoms.2020.12.001. DOI

Li X., Sun W., Zheng Y., Long C., Wang Q. New Strategy for the Design of Anti-Corrosion Coatings in Bipolar Plates Based on Hybrid Organic–Inorganic Layers. Molecules. 2023;28:3279. doi: 10.3390/molecules28073279. PubMed DOI PMC

Nguyen T.D., Tran B.A., Vu K.O., Nguyen A.S., Trinh A.T., Pham G.V., To T.X., Phan M.V., Phan T.T. Corrosion Protection of Carbon Steel Using Hydrotalcite/Graphene Oxide Nanohybrid. J. Coat. Technol. Res. 2018;16:585–595. doi: 10.1007/s11998-018-0139-3. DOI

Boinovich L.B., Gnedenkov S.V., Alpysbaeva D.A., Egorkin V.S., Emelyanenko A.M., Sinebryukhov S.L., Zaretskaya A.K. Corrosion Resistance of Composite Coatings on Low-Carbon Steel Containing Hydrophobic and Superhydrophobic Layers in Combination with Oxide Sublayers. Corros. Sci. 2012;55:238–245. doi: 10.1016/j.corsci.2011.10.023. DOI

Imran Din M., Rafique F., Hussain M.S., Arslan Mehmood H., Waseem S. Recent Developments in the Synthesis and Stability of Metal Ferrite Nanoparticles. Sci. Prog. 2019;102:61–72. doi: 10.1177/0036850419826799. PubMed DOI PMC

Hasirci C., Karaagac O., Köçkar H. Superparamagnetic Zinc Ferrite: A Correlation between High Magnetizations and Nanoparticle Sizes as a Function of Reaction Time via Hydrothermal Process. J. Magn. Magn. Mater. 2019;474:282–286. doi: 10.1016/j.jmmm.2018.11.037. DOI

Ochmann M., Vrba V., Kopp J., Ingr T., Malina O., Machala L. Microwave-Enhanced Crystalline Properties of Zinc Ferrite Nanoparticles. J. Nanomater. 2022;12:2987. doi: 10.3390/nano12172987. PubMed DOI PMC

Ochmann M., Linderhof F.M., Machala L. Spinel Ferrites Nanoparticles for Alloy Steel Protective Layers; Proceedings of the 12th International Conference on Nanomaterials-Research & Application; Brno, Czech Republic. 21–23 October 2020.

Pitrmuc Z., Šimota J., Beránek L., Mikeš P., Andronov V., Sommer J., Holešovský F. Mechanical and Microstructural Anisotropy of Laser Powder Bed Fusion 316L Stainless Steel. Materials. 2022;15:551. doi: 10.3390/ma15020551. PubMed DOI PMC

Gao Z., Zhang D., Li X., Jiang S., Zhang Q. Current Status, Opportunities and Challenges in Chemical Conversion Coatings for Zinc. Colloids Surf. 2018;546:221–236. doi: 10.1016/j.colsurfa.2018.03.018. DOI

Saei E., Ramezanzadeh B., Amini R., Kalajahi M.S. Effects of Combined Organic and Inorganic Corrosion Inhibitors on the Nanostructure Cerium Based Conversion Coating Performance on az31 Magnesium Alloy: Morphological and Corrosion Studies. Corros. Sci. 2017;127:186–200. doi: 10.1016/j.corsci.2017.08.017. DOI

Holzner T., Luckeneder G., Strauss B., Valtiner M. Environmentally Friendly Layered Double Hydroxide Conversion Layers: Formation Kinetics on Zn-Al-Mg-Coated Steel. ACS Appl. Mater. Interfaces. 2022;14:6109–6119. doi: 10.1021/acsami.1c19573. PubMed DOI PMC

Gražulis S., Chateigner D., Downs R.T., Yokochi A.F., Quirós M., Lutterotti L., Manakova E., Butkus J., Moeck P., Le Bail A. Crystallography Open Database—An Open-Access Collection of Crystal Structures. J. Appl. Crystallogr. 2009;42:726–729. doi: 10.1107/S0021889809016690. PubMed DOI PMC

Lutterotti L. Total Pattern Fitting for the Combined Size–Strain–Stress–Texture Determination in Thin Film Diffraction. Nucl. Instrum. Methods Phys. Res. B. 2010;268:334–340. doi: 10.1016/j.nimb.2009.09.053. DOI

Stejskal A., Procházka V., Dudka M., Vrba V., Kočiščák J., Šretrová P., Novák P. A Dual Mössbauer Spectrometer for Material Research, Coincidence Experiments and Nuclear Quantum Optics. Measurement. 2023;215:112850. doi: 10.1016/j.measurement.2023.112850. DOI

Pechoušek J., Jančík D., Frydrych J., Navařík J., Novák P. Setup of Mössbauer Spectrometers at RCPTM. AIP Conf. Proc. 2012;1489:186–193.

Klencsár Z. Mössbauer Spectrum Analysis by Evolution Algorithm. Nucl. Instrum. Methods Phys. Res. B. 1997;129:527–533. doi: 10.1016/S0168-583X(97)00314-5. DOI

Standard Test Method for Portable Hardness Testing by the Ultrasonic Contact Impedance Method. [(accessed on 9 February 2024)]. Available online: https://www.astm.org/a1038-19.html.

Metallic Materials—Hardness Testing with the UCI Method—Part 1: Test Method. European Standards; Brussels, Belgium: 2022. [(accessed on 9 February 2024)]. Available online: https://www.en-standard.eu/din-50159-1-metallic-materials-hardness-testing-with-the-uci-method-part-1-test-method/

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...