Zinc Ferrite Nanoparticle Coatings on Austenitic Alloy Steel
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
38399109
PubMed Central
PMC10890098
DOI
10.3390/ma17040857
PII: ma17040857
Knihovny.cz E-resources
- Keywords
- annealing, austenitic alloy steel, covering layer, nanoparticles, zinc ferrite,
- Publication type
- Journal Article MeSH
The phase transition of austenitic stainless steel of commercial label CL20ES and zinc ferrite nanoparticles was studied in an oxidative atmosphere of dry air to develop a low-cost, effective technique for covering-layer fabrication. CL20ES powder and zinc ferrite powder were mechanically mixed. This mixture was studied in an atmosphere of dry air at different annealing temperatures from room temperature to 900 °C. The employed characterization techniques are X-ray powder diffraction, Mössbauer spectroscopy in the transmission geometry, and scanning electron microscopy with elemental mapping. The fabricated layers were also characterized by surface-specific techniques such as conversion electron Mössbauer spectroscopy and grazing incidence X-ray powder diffraction. The analyzed powder mixture shows resistance against oxidation in dry air and high temperatures. These results were employed to produce zinc ferrite covering layers on 3D-printed cylinders of CL20ES. The results show a predisposition of zinc ferrite to be recrystallized at temperatures above 350 °C without the production of corrosive substances on steel. The zinc ferrite layers were analyzed by an ultrasonic hardness tester as well, which proved the hardness enhancement.
See more in PubMed
Hasegawa S., Kim S.-Y., Ebina T., Tokuda H., Ito T., Nagano N., Hitomi K., Ishii K. Effect of Nitrate on Corrosion of Austenitic Stainless Steel in Boiling Nitric Acid Solution Containing Chromium Ions. J. Nucl. Sci. Technol. 2016;53:1332–1341. doi: 10.1080/00223131.2015.1107514. DOI
Samusawa I., Shiotani K. Influence and Role of Ethanol Minor Constituents of Fuel Grade Ethanol on Corrosion Behavior of Carbon Steel. Corros. Sci. 2015;90:266–275. doi: 10.1016/j.corsci.2014.10.020. DOI
Bystrov S.G., Reshetnikov S.M., Kolotov A.A., Drozdov A.Y., Bayankin V.Y. Effect of Oxygen Ion Implantation on Physicochemical Structure and Corrosion-Electrochemical Behavior of High-Chromium Steel. Inorg. Mater. Appl. Res. 2021;12:625–632. doi: 10.1134/S2075113321030060. DOI
Santambrogio M., Perrucci G., Trueba M., Trasatti S.P., Casaletto M.P. Effect of Major Degradation Products of Ethylene Glycol Aqueous Solutions on Steel Corrosion. Electrochim. Acta. 2016;203:439–450. doi: 10.1016/j.electacta.2016.03.144. DOI
Shi Y., Yang B., Liaw P. Corrosion-Resistant High-Entropy Alloys: A Review. J. Met. 2017;7:43. doi: 10.3390/met7020043. DOI
Wei L., Pang X., Gao K. Corrosion of Low Alloy Steel and Stainless Steel in Supercritical CO2/H2O/H2S Systems. Corros. Sci. 2016;111:637–648. doi: 10.1016/j.corsci.2016.06.003. DOI
Zhang W., Xu J. Advanced Lightweight Materials for Automobiles: A Review. Mater. Des. 2022;221:110994. doi: 10.1016/j.matdes.2022.110994. DOI
Liu Y., Li H., Huang S., An H., Santagata R., Ulgiati S. Environmental and Economic-Related Impact Assessment of Iron and Steel Production. A Call for Shared Responsibility in Global Trade. J. Clean. Prod. 2020;269:122239. doi: 10.1016/j.jclepro.2020.122239. DOI
Dennis J.K., Such T.E. Nickel and Chromium Plating. Elsevier; Amsterdam, The Netherlands: 1993. Control and Purification of Nickel Electroplating Solutions; pp. 132–161.
Linderhof F., Mashlan M., Doláková H., Ingr T., Ivanova T. Surface Micromorphology and Structure of Stainless and Maraging Steel Obtained via Selective Laser Melting: A Mössbauer Spectroscopy Study. J. Met. 2021;11:1028. doi: 10.3390/met11071028. DOI
Ivanova T., Kořenek M., Mashlan M., Svačinová V. Mössbauer Study of Thermal Behavior of CL20ES and CL50WS Steel Powders Used in Selective Laser Melting. Chem. Pap. 2023;77:7289–7302. doi: 10.1007/s11696-023-02854-9. DOI
Zhong J.-Y., Sun J.-Y., Liu D.-B., Li X.-G., Liu T.-Q. Effects of Chromium on the Corrosion and Electrochemical Behaviors of Ultra High Strength Steels. Int. J. Miner. Metall. Mater. 2010;17:282–289. doi: 10.1007/s12613-010-0306-8. DOI
Kashima K., Sugae K., Kamimura T., Miyuki H., Kudo T. Effect of Chromium Contents on Atmospheric Corrosion of Steel in Chloride Environment. J. Jpn. Inst. Met. 2013;77:107–113. doi: 10.2320/jinstmet.77.107. DOI
Wint N., de Vooys A.C.A., McMurray H.N. The Corrosion of Chromium Based Coatings for Packaging Steel. Electrochim. Acta. 2016;203:326–336. doi: 10.1016/j.electacta.2016.01.100. DOI
Kamimura T., Stratmann M. The Influence of Chromium on the Atmospheric Corrosion of Steel. Corros. Sci. 2001;43:429–447. doi: 10.1016/S0010-938X(00)00098-6. DOI
Rezaee N., Attar M.M., Ramezanzadeh B. Studying Corrosion Performance, Microstructure and Adhesion Properties of a Room Temperature Zinc Phosphate Conversion Coating Containing Mn2+ on Mild Steel. Surf. Coat. Technol. 2013;236:361–367. doi: 10.1016/j.surfcoat.2013.10.014. DOI
Maurice V., Marcus P. Current Developments of Nanoscale Insight into Corrosion Protection by Passive Oxide Films. Curr. Opin. Solid State Mater. Sci. 2018;22:156–167. doi: 10.1016/j.cossms.2018.05.004. DOI
Jiang C., Gao Z., Pan H., Cheng X. The Initiation and Formation of a Double-Layer Phosphate Conversion Coating on Steel. Electrochem. Commun. 2020;114:106676. doi: 10.1016/j.elecom.2020.106676. DOI
Ujiro T., Yoshioka K., Staehle R.W. Differences in Corrosion Behavior of Ferritic and Austenitic Stainless Steels. Corrosion. 1994;50:953–962. doi: 10.5006/1.3293487. DOI
Klapper H.S., Burkert A., Burkert A., Lehmann J., Villalba A.L. Influence of Surface Treatments on the Pitting Corrosion of Type 304 Stainless Steel by Electrochemical Noise Measurements. Corrosion. 2011;67:075004-1–075004-13. doi: 10.5006/1.3613641. DOI
Hoshino K., Furuya S., Buchheit R.G. Effect of Solution Ph on Layered Double Hydroxide Formation on Electrogalvanized Steel Sheets. J. Mater. Eng. Perform. 2019;28:2237–2244. doi: 10.1007/s11665-019-03963-x. DOI
Ramezanzadeh B., Vakili H., Amini R. The Effects of Addition of Poly(Vinyl) Alcohol (PVA) as a Green Corrosion Inhibitor to the Phosphate Conversion Coating on the Anticorrosion and Adhesion Properties of the Epoxy Coating on the Steel Substrate. Appl. Surf. Sci. 2015;327:174–181. doi: 10.1016/j.apsusc.2014.11.167. DOI
Buchheit R.G., Guan H., Mahajanam S., Wong F. Active Corrosion Protection and Corrosion Sensing in Chromate-Free Organic Coatings. Prog. Org. Coat. 2003;47:174–182. doi: 10.1016/j.porgcoat.2003.08.003. DOI
Winn D., Dalton W. Chromium-Free Corrosion Solutions. Met. Finish. 2008;106:70–74. doi: 10.1016/S0026-0576(08)80168-7. DOI
Jing C., Dong B., Raza A., Zhang T., Zhang Y. Corrosion Inhibition of Layered Double Hydroxides for Metal-Based Systems. Nano Mater. Sci. 2021;3:47–67. doi: 10.1016/j.nanoms.2020.12.001. DOI
Li X., Sun W., Zheng Y., Long C., Wang Q. New Strategy for the Design of Anti-Corrosion Coatings in Bipolar Plates Based on Hybrid Organic–Inorganic Layers. Molecules. 2023;28:3279. doi: 10.3390/molecules28073279. PubMed DOI PMC
Nguyen T.D., Tran B.A., Vu K.O., Nguyen A.S., Trinh A.T., Pham G.V., To T.X., Phan M.V., Phan T.T. Corrosion Protection of Carbon Steel Using Hydrotalcite/Graphene Oxide Nanohybrid. J. Coat. Technol. Res. 2018;16:585–595. doi: 10.1007/s11998-018-0139-3. DOI
Boinovich L.B., Gnedenkov S.V., Alpysbaeva D.A., Egorkin V.S., Emelyanenko A.M., Sinebryukhov S.L., Zaretskaya A.K. Corrosion Resistance of Composite Coatings on Low-Carbon Steel Containing Hydrophobic and Superhydrophobic Layers in Combination with Oxide Sublayers. Corros. Sci. 2012;55:238–245. doi: 10.1016/j.corsci.2011.10.023. DOI
Imran Din M., Rafique F., Hussain M.S., Arslan Mehmood H., Waseem S. Recent Developments in the Synthesis and Stability of Metal Ferrite Nanoparticles. Sci. Prog. 2019;102:61–72. doi: 10.1177/0036850419826799. PubMed DOI PMC
Hasirci C., Karaagac O., Köçkar H. Superparamagnetic Zinc Ferrite: A Correlation between High Magnetizations and Nanoparticle Sizes as a Function of Reaction Time via Hydrothermal Process. J. Magn. Magn. Mater. 2019;474:282–286. doi: 10.1016/j.jmmm.2018.11.037. DOI
Ochmann M., Vrba V., Kopp J., Ingr T., Malina O., Machala L. Microwave-Enhanced Crystalline Properties of Zinc Ferrite Nanoparticles. J. Nanomater. 2022;12:2987. doi: 10.3390/nano12172987. PubMed DOI PMC
Ochmann M., Linderhof F.M., Machala L. Spinel Ferrites Nanoparticles for Alloy Steel Protective Layers; Proceedings of the 12th International Conference on Nanomaterials-Research & Application; Brno, Czech Republic. 21–23 October 2020.
Pitrmuc Z., Šimota J., Beránek L., Mikeš P., Andronov V., Sommer J., Holešovský F. Mechanical and Microstructural Anisotropy of Laser Powder Bed Fusion 316L Stainless Steel. Materials. 2022;15:551. doi: 10.3390/ma15020551. PubMed DOI PMC
Gao Z., Zhang D., Li X., Jiang S., Zhang Q. Current Status, Opportunities and Challenges in Chemical Conversion Coatings for Zinc. Colloids Surf. 2018;546:221–236. doi: 10.1016/j.colsurfa.2018.03.018. DOI
Saei E., Ramezanzadeh B., Amini R., Kalajahi M.S. Effects of Combined Organic and Inorganic Corrosion Inhibitors on the Nanostructure Cerium Based Conversion Coating Performance on az31 Magnesium Alloy: Morphological and Corrosion Studies. Corros. Sci. 2017;127:186–200. doi: 10.1016/j.corsci.2017.08.017. DOI
Holzner T., Luckeneder G., Strauss B., Valtiner M. Environmentally Friendly Layered Double Hydroxide Conversion Layers: Formation Kinetics on Zn-Al-Mg-Coated Steel. ACS Appl. Mater. Interfaces. 2022;14:6109–6119. doi: 10.1021/acsami.1c19573. PubMed DOI PMC
Gražulis S., Chateigner D., Downs R.T., Yokochi A.F., Quirós M., Lutterotti L., Manakova E., Butkus J., Moeck P., Le Bail A. Crystallography Open Database—An Open-Access Collection of Crystal Structures. J. Appl. Crystallogr. 2009;42:726–729. doi: 10.1107/S0021889809016690. PubMed DOI PMC
Lutterotti L. Total Pattern Fitting for the Combined Size–Strain–Stress–Texture Determination in Thin Film Diffraction. Nucl. Instrum. Methods Phys. Res. B. 2010;268:334–340. doi: 10.1016/j.nimb.2009.09.053. DOI
Stejskal A., Procházka V., Dudka M., Vrba V., Kočiščák J., Šretrová P., Novák P. A Dual Mössbauer Spectrometer for Material Research, Coincidence Experiments and Nuclear Quantum Optics. Measurement. 2023;215:112850. doi: 10.1016/j.measurement.2023.112850. DOI
Pechoušek J., Jančík D., Frydrych J., Navařík J., Novák P. Setup of Mössbauer Spectrometers at RCPTM. AIP Conf. Proc. 2012;1489:186–193.
Klencsár Z. Mössbauer Spectrum Analysis by Evolution Algorithm. Nucl. Instrum. Methods Phys. Res. B. 1997;129:527–533. doi: 10.1016/S0168-583X(97)00314-5. DOI
Standard Test Method for Portable Hardness Testing by the Ultrasonic Contact Impedance Method. [(accessed on 9 February 2024)]. Available online: https://www.astm.org/a1038-19.html.
Metallic Materials—Hardness Testing with the UCI Method—Part 1: Test Method. European Standards; Brussels, Belgium: 2022. [(accessed on 9 February 2024)]. Available online: https://www.en-standard.eu/din-50159-1-metallic-materials-hardness-testing-with-the-uci-method-part-1-test-method/