Microwave-Enhanced Crystalline Properties of Zinc Ferrite Nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008408
Operational Programme Research, Development and Education - European Regional Development Fund
PubMed
36080025
PubMed Central
PMC9457733
DOI
10.3390/nano12172987
PII: nano12172987
Knihovny.cz E-zdroje
- Klíčová slova
- coprecipitation method, crystal growth, inversion factor, microwave synthesis, zinc ferrite,
- Publikační typ
- časopisecké články MeSH
Two series of ZnFe2O4 mixed cubic spinel nanoparticles were prepared by a coprecipitation method, where a solution of Fe3+ and Zn2+ was alkalised by a solution of NaOH. While the first series was prepared by a careful mixing of the two solutions, the microwave radiation was used to enhance the reaction in the other series of samples. The effect of the microwave heating on the properties of the prepared particles is investigated. X-ray powder diffraction (XRD), 57Fe Mössbauer spectroscopy and magnetometry were employed to prove the cubic structure and superparamagnetic behavior of the samples. The particle size in the range of nanometers was investigated by a transmission electron microscopy (TEM), and the N2 adsorption measurements were used to determine the BET area of the samples. The stoichiometry and the chemical purity were proven by energy dispersive spectroscopy (EDS). Additionally, the inversion factor was determined using the low temperature Mössbauer spectra in the external magnetic field. The microwave heating had a significant effect on the mean coherent length. On the other hand, it had a lesser influence on the size and BET surface area of the prepared nanoparticles.
Zobrazit více v PubMed
Imran Din M., Rafique F., Hussain M.S., Arslan Mehmood H., Waseem S. Recent Developments in the Synthesis and Stability of Metal Ferrite Nanoparticles. Sci. Prog. 2019;102:61–72. doi: 10.1177/0036850419826799. PubMed DOI PMC
Vasanthi V., Shanmugavani A., Sanjeeviraja C., Kalai Selvan R. Microwave Assisted Combustion Synthesis of CdFe2O4: Magnetic and Electrical Properties. J. Magn. Magn. Mater. 2012;324:2100–2107. doi: 10.1016/j.jmmm.2012.02.018. DOI
Naz K., Khan J.K., Khalid M., Akhtar M.S., Gilani Z.A., Noor ul Huda Khan Asghar H.M., Mersal G.A.M., Ibrahim M.M., Muhammad A., Ashiq M.G.B. Structural, Dielectric, Impedance and Electric Modulus Analysis of Ni Substituted Copper Spinel Ferrites Nanoparticles for Microwave Device Applications. Mater. Chem. Phys. 2022;285:126091. doi: 10.1016/j.matchemphys.2022.126091. DOI
Faraz A., Ahmad N.M. Electrical and Dielectric Characteristics of Magnetic Ceramics of Mn1-xNixFe2O4 Spinel Nanoferrites. Adv. Appl. Ceram. 2012;111:381–388. doi: 10.1179/1743676112Y.0000000013. DOI
Martinson K.D., Popkov V.I. Two-step combustion synthesis of nanocrystalline Zn1-xMnxFe2O4 (0<=x<=1) spinel ferrites with linear tuning of magnetic parameters. Nanosyst. Phys. Chem. Math. 2021;12:634–640.
Yadav R.S., Anju, Jamatia T., Kuřitka I., Vilčáková J., Škoda D., Urbánek P., Machovský M., Masař M., Urbánek M., et al. Superparamagnetic ZnFe2O4 Nanoparticles-Reduced Graphene Oxide-Polyurethane Resin Based Nanocomposites for Electromagnetic Interference Shielding Application. Nanomaterials. 2021;11:1112. doi: 10.3390/nano11051112. PubMed DOI PMC
Garcia-Muñoz P., Fresno F., de la Peña O’Shea V.A., Keller N. Ferrite Materials for Photoassisted Environmental and Solar Fuels Applications. Top. Curr. Chem. 2019;378:6. doi: 10.1007/s41061-019-0270-3. PubMed DOI
Vinosha P.A., Manikandan A., Ragu R., Dinesh A., Paulraj P., Slimani Y., Almessiere M.A., Baykal A., Madhavan J., Xavier B., et al. Exploring the Influence of Varying Ph on Structural, Electro-Optical, Magnetic and Photo-Fenton Properties of Mesoporous ZnFe2O4 Nanocrystals. Environ. Pollut. 2021;272:115983. doi: 10.1016/j.envpol.2020.115983. PubMed DOI
Borade R.M., Somvanshi S.B., Kale S.B., Pawar R.P., Jadhav K.M. Spinel Zinc Ferrite Nanoparticles: An Active Nanocatalyst for Microwave Irradiated Solvent Free Synthesis of Chalcones. Mater. Res. Express. 2020;7:016116. doi: 10.1088/2053-1591/ab6c9c. DOI
Joe Sherin J.F., Bessy T.C., Asha S., Kumar C.V., Huessien D., Bindhu M.R., Rasheed R.A., Alarjani K.M. Microwave Assisted Hydrothermally Synthesized Cobalt Doped Zinc Ferrites Nanoparticles for the Degradation of Organic Dyes and Antimicrobial Applications. Environ. Res. 2022;208:112687. doi: 10.1016/j.envres.2022.112687. PubMed DOI
Rana G., Dhiman P., Kumar A., Vo D.-V.N., Sharma G., Sharma S., Naushad M. Recent Advances on Nickel Nano-Ferrite: A Review on Processing Techniques, Properties and Diverse Applications. Chem. Eng. Res. Des. 2021;175:182–208. doi: 10.1016/j.cherd.2021.08.040. DOI
Tatarchuk T., Bououdina M., Judith Vijaya J., John Kennedy L. Spinel Ferrite Nanoparticles: Synthesis, Crystal Structure, Properties, and Perspective Applications. Springer Proc. Phys. 2017;195:305–325.
Sreeja V., Vijayanand S., Deka S., Joy P.A. Magnetic and Mössbauer Spectroscopic Studies of Nizn Ferrite Nanoparticles Synthesized by a Combustion Method. Hyperfine Interact. 2008;183:99–107. doi: 10.1007/s10751-008-9736-3. DOI
Siddique M., Butt N.M. Effect of Particle Size on Degree of Inversion in Ferrites Investigated by Mössbauer Spectroscopy. Phys. B Condens. Matter. 2010;405:4211–4215. doi: 10.1016/j.physb.2010.07.012. DOI
Ashok A., Ratnaji T., John Kennedy L., Judith Vijaya J., Gnana Pragash R. Magnetically Recoverable Mg Substituted Zinc Ferrite Nanocatalyst for Biodiesel Production: Process Optimization, Kinetic and Thermodynamic Analysis. Renew. Energy. 2021;163:480–494. doi: 10.1016/j.renene.2020.08.081. DOI
Choi Y.H., Ra E.C., Kim E.H., Kim K.Y., Jang Y.J., Kang K.-N., Choi S.H., Jang J.-H., Lee J.S. Sodium-Containing Spinel Zinc Ferrite as a Catalyst Precursor for the Selective Synthesis of Liquid Hydrocarbon Fuels. ChemSusChem. 2017;10:4764–4770. doi: 10.1002/cssc.201701437. PubMed DOI
Diodati S., Walton R.I., Mascotto S., Gross S. Low-Temperature Wet Chemistry Synthetic Approaches towards Ferrites. Inorg. Chem. Front. 2020;7:3282–3314. doi: 10.1039/D0QI00294A. DOI
Ochmann M., Linderhof F.M., Machala L. Spinel Ferrites Nanoparticles for Alloy Steel Protective Layers; Proceedings of the 12th International Conference on Nanomaterials—Research & Application (NANOCON); Brno, Czech Republic. 21–23 October 2020.
Zhao J., Yang L., Chen T., Li F. Magnetic Co1-xZnxFe2O4 Granular Films Fabricated via Layered Double Hydroxide Precursors. J. Phys. Chem. Solids. 2012;73:1500–1504. doi: 10.1016/j.jpcs.2011.10.040. DOI
Koleva K., Velinov N., Tsoncheva T., Mitov I. Mössbauer Study of Cu1-xZnxFe2O4 Catalytic Materials. Hyperfine Interact. 2013;226:89–97. doi: 10.1007/s10751-013-0966-7. DOI
Sorescu M., Diamandescu L., Ramesh P.D., Roy R., Daly A., Bruno Z. Evidence for Microwave-Induced Recrystallization in Nizn Ferrites. Mater. Chem. Phys. 2007;101:410–414. doi: 10.1016/j.matchemphys.2006.07.006. DOI
Rahim D.A., Fang W., Zhu G., Wibowo H., Hantoko D., Hu Q., Susanto H., Gao Z., Yan M. Microwave-Assisted Synthesis of Zn-Fe Adsorbent Supported on Alumina: Effect of Zn to Fe Ratio on Syngas Desulfurization Performance. Chem. Eng. Process. Process Intensif. 2021;168:108565. doi: 10.1016/j.cep.2021.108565. DOI
Alcalá O., Briceño S., Brämer-Escamilla W., Silva P. Toroidal Cores of Mnx Co1−xFe2 O4/PAA Nanocomposites with Potential Applications in Antennas. Mater. Chem. Phys. 2017;192:17–21. doi: 10.1016/j.matchemphys.2017.01.035. DOI
Kombaiah K., Vijaya J.J., Kennedy L.J., Bououdina M. Optical, Magnetic and Structural Properties of ZnFe2O4 Nanoparticles Synthesized by Conventional and Microwave Assisted Combustion Method: A Comparative Investigation. Optik. 2017;129:57–68. doi: 10.1016/j.ijleo.2016.10.058. DOI
Manikandan A., Vijaya J.J., Mary J.A., Kennedy L.J., Dinesh A. Structural, Optical and Magnetic Properties of Fe3O4 Nanoparticles Prepared by a Facile Microwave Combustion Method. J. Ind. Eng. Chem. 2014;20:2077–2085. doi: 10.1016/j.jiec.2013.09.035. DOI
Sutka A., Mezinskis G. Sol-Gel Auto-Combustion Synthesis of Spinel-Type Ferrite Nanomaterials. Front. Mater. Sci. 2012;6:128–141. doi: 10.1007/s11706-012-0167-3. DOI
Wani T.A., Suresh G. Plant-Mediated Green Synthesis of Magnetic Spinel Ferrite Nanoparticles: A Sustainable Trend in Nanotechnology. Adv. Sustain. Syst. 2022;6:2200035. doi: 10.1002/adsu.202200035. DOI
Shin S.-Y., Yun H.-S., Kim S.-Y., Shim J.-H., Park K.-J., You C.-Y., Cho N.-H. Effects of Microwave Irradiation on the Synthesis of Znfe2O4 Nanopowders with Hydrated Compounds. Sci. Adv. Mater. 2021;13:1125–1135. doi: 10.1166/sam.2021.3982. DOI
Kore E.K., Shahane G.S., Mulik R.N. Effect of ‘Zn’ Substitution on Structural, Morphological, Magnetic and Optical Properties of Co–Zn Ferrite Nanoparticles for Ferrofluid Application. J. Mater. Sci. Mater. Electron. 2022;33:9815–9829. doi: 10.1007/s10854-022-07949-9. DOI
Ochmann M., Machala L., Kašlík J. Microwave Synthesis of Magnetite Nanoparticles and Mg-Doped Magnetite Nanoparticles by Precipitation of Fe2+ Ions. J. Nanosci. Nanotechnol. 2021;21:5165–5173. doi: 10.1166/jnn.2021.19357. PubMed DOI
MAUD: Material Analysis Using Diffraction. [(accessed on 24 June 2022)]. Available online: http://maud.radiographema.eu/
Palacky University Mössbauer. [(accessed on 24 June 2022)]. Available online: https://mossbauer.vtpup.cz/
Klencsár Z. Mössbauer Spectrum Analysis by Evolution Algorithm. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 1997;129:527–533. doi: 10.1016/S0168-583X(97)00314-5. DOI
Lowell S., Shields J.E., Thomas M.A., Thommes M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Springer; Dordrecht, The Netherlands: 2012.
Krishna K.R., Ravinder D., Kumar K.V., Lincon C.A. Synthesis, XRD and SEM Studies of Zinc Substitution in Nickel Ferrites by Citrate Gel Technique. World J. Condens. Matter Phys. 2012;2:153–159. doi: 10.4236/wjcmp.2012.23025. DOI
Grasset F., Labhsetwar N., Li D., Park D.C., Saito N., Haneda H., Cador O., Roisnel T., Mornet S., Duguet E., et al. Synthesis and Magnetic Characterization of Zinc Ferrite Nanoparticles with Different Environments: Powder, Colloidal Solution, and Zinc Ferrite-Silica Core-Shell Nanoparticles. Langmuir. 2002;18:8209–8216. doi: 10.1021/la020322b. DOI
Mokhosi S.R., Mdlalose W., Nhlapo A., Singh M. Advances in the Synthesis and Application of Magnetic Ferrite Nanoparticles for Cancer Therapy. Pharmaceutics. 2022;14:937. doi: 10.3390/pharmaceutics14050937. PubMed DOI PMC
Kmječ T., Kohout J., Dopita M., Veverka M., Kuriplach J. Mössbauer Spectroscopy of Triphylite (LiFePO4) at Low Temperatures. Condens. Matter. 2019;4:86. doi: 10.3390/condmat4040086. DOI
Zinc Ferrite Nanoparticle Coatings on Austenitic Alloy Steel