• This record comes from PubMed

Superparamagnetic ZnFe2O4 Nanoparticles-Reduced Graphene Oxide-Polyurethane Resin Based Nanocomposites for Electromagnetic Interference Shielding Application

. 2021 Apr 25 ; 11 (5) : . [epub] 20210425

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
GA19-23647S Czech Science Foundation
the internal grant no. IGA/CPS/2020/003 Tomas Bata University in Zlín

Superparamagnetic ZnFe2O4 spinel ferrite nanoparticles were prepared by the sonochemical synthesis method at different ultra-sonication times of 25 min (ZS25), 50 min (ZS50), and 100 min (ZS100). The structural properties of ZnFe2O4 spinel ferrite nanoparticles were controlled via sonochemical synthesis time. The average crystallite size increases from 3.0 nm to 4.0 nm with a rise of sonication time from 25 min to 100 min. The change of physical properties of ZnFe2O4 nanoparticles with the increase of sonication time was observed. The prepared ZnFe2O4 nanoparticles show superparamagnetic behavior. The prepared ZnFe2O4 nanoparticles (ZS25, ZS50, and ZS100) and reduced graphene oxide (RGO) were embedded in a polyurethane resin (PUR) matrix as a shield against electromagnetic pollution. The ultra-sonication method has been used for the preparation of nanocomposites. The total shielding effectiveness (SET) value for the prepared nanocomposites was studied at a thickness of 1 mm in the range of 8.2-12.4 GHz. The high attenuation constant (α) value of the prepared ZS100-RGO-PUR nanocomposite as compared with other samples recommended high absorption of electromagnetic waves. The existence of electric-magnetic nanofillers in the resin matrix delivered the inclusive acts of magnetic loss, dielectric loss, appropriate attenuation constant, and effective impedance matching. The synergistic effect of ZnFe2O4 and RGO in the PUR matrix led to high interfacial polarization and, consequently, significant absorption of the electromagnetic waves. The outcomes and methods also assure an inventive and competent approach to develop lightweight and flexible polyurethane resin matrix-based nanocomposites, consisting of superparamagnetic zinc ferrite nanoparticles and reduced graphene oxide as a shield against electromagnetic pollution.

See more in PubMed

Abbasi H., Antunes M., Velasco J.I. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 2019;103:319–373. doi: 10.1016/j.pmatsci.2019.02.003. DOI

Gupta S., Tai N.-H. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon. 2019;152:159–187. doi: 10.1016/j.carbon.2019.06.002. DOI

Wang C., Murugadoss V., Kong J., He Z., Mai X., Shao Q., Chen Y., Guo L., Liu C., Angaiah S., et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon. 2018;140:696–733. doi: 10.1016/j.carbon.2018.09.006. DOI

Sankaran S., Deshmukh K., Ahamed M.B., Pasha S.K.K. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review. Compos. Part A. 2018;114:49–71. doi: 10.1016/j.compositesa.2018.08.006. DOI

Sushmita K., Madras G., Bose S. Polymer Nanocomposites Containing Semiconductors as Advanced Materials for EMI Shielding. ACS Omega. 2020;5:4705–4718. doi: 10.1021/acsomega.9b03641. PubMed DOI PMC

Li S., Li J., Ma N., Liu D., Sui G. Super-Compression-Resistant Multiwalled Carbon Nanotube/Nickel Coated Carbonized Loofah Fiber/Polyether Ether Ketone Composite with Excellent Electromagnetic Shielding Performance. ACS Sustain. Chem. Eng. 2019;7:13970–13980. doi: 10.1021/acssuschemeng.9b02447. DOI

Kumaran R., Kumar S.D., Balasubramanian N., Alagar M., Subramanian V., Dinakaran K. Enhanced Electromagnetic Interference Shielding in a Au-MWCNT Composite Nanostructure Dispersed PVDF Thin Films. J. Phys. Chem. C. 2016;120:13771–13778. doi: 10.1021/acs.jpcc.6b01333. DOI

Chhetri S., Adak N.C., Samanta P., Murmu N.C., Srivastava S.K., Kuila T. Synergistic effect of Fe3O4 anchored N-doped rGO hybrid on mechanical, thermal and electromagnetic shielding properties of epoxy composites. Compos. Part B. 2019;166:371–381. doi: 10.1016/j.compositesb.2019.02.036. DOI

Song W.-L., Gong C., Li H., Cheng X.-D., Chen M., Yuan X., Chen H., Yang Y., Fang D. Graphene-Based Sandwich Structures for Frequency Selectable Electromagnetic Shielding. ACS Appl. Mater. Interfaces. 2017;9:36119–36129. doi: 10.1021/acsami.7b08229. PubMed DOI

Li M., Yang K., Zhu W., Shen J., Rollinson J., Hella M., Lian J. Copper-Coated Reduced Graphene Oxide Fiber Mesh-Polymer Composite Films for Electromagnetic Interference Shielding. ACS Appl. Nano Mater. 2020;3:5565–5574. doi: 10.1021/acsanm.0c00843. DOI

Jia Z., Zhang M., Liu B., Wang F., Wei G., Su Z. Graphene Foams for Electromagnetic Interference Shielding: A Review. ACS Appl. Nano Mater. 2020;3:6140–6155. doi: 10.1021/acsanm.0c00835. DOI

Prasad J., Singh A.K., Haldar K.K., Tomar M., Gupta V., Singh K. CoFe2O4 nanoparticles decorated MoS2-reduced graphene oxide nanocomposite for improved microwave absorption and shielding performance. RSC Adv. 2019;9:21881. doi: 10.1039/C9RA03465J. PubMed DOI PMC

Liang C., Qiu H., Han Y., Gu H., Song P., Wang L., Kong J., Cao D., Gu J. Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J. Mater. Chem. C. 2019;7:2725. doi: 10.1039/C8TC05955A. DOI

Xiao Y., Du J. Superparamagnetic nanoparticles for biomedical applications. J. Mater. Chem. B. 2020;8:354–367. doi: 10.1039/C9TB01955C. PubMed DOI

Li B., Cao H., Shao J., Qu M., Warner J.H. Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices. J. Mater. Chem. 2011;21:5069. doi: 10.1039/c0jm03717f. DOI

Liu P., Huang Y., Zhang X. Superparamagnetic NiFe2O4 particles on poly(3,4-ethylenedioxythiophene)-graphene: Synthesis, characterization and their excellent microwave absorption properties. Compos. Sci. Technol. 2014;95:107–113. doi: 10.1016/j.compscitech.2014.02.018. DOI

Yuan H., Xu Y., Jia H., Zhou S. Superparamagnetic Fe3O4/MWCNTs heterostructures for high frequency microwave absorption. RSC Adv. 2016;6:67218. doi: 10.1039/C6RA11610H. DOI

Mozaffari M., Arani M.E., Amighian J. The Effect of Cation Distribution on Magnetization of ZnFe2O4 Nanoparticles. J. Magn. Magn. Mater. 2010;322:3240–3244. doi: 10.1016/j.jmmm.2010.05.053. DOI

Ammar S., Jouini N., Fievet F., Stephan O., Marhic C., Richard M., Villain F., Moulin C.C.D., Brice S., Sainctavit P. Influence of the Synthesis Parameters on the Cationic Distribution of ZnFe2O4 Nanoparticles Obtained by Forced Hydrolysis in Polyol Medium. J. Non-Cryst. Solids. 2004;345–346:658–662. doi: 10.1016/j.jnoncrysol.2004.08.162. DOI

Selvarajan S., Suganthi A., Rajarajan M. Fabrication of g-C3N4/NiO heterostructured nanocomposite modified glassy carbon electrode for quercetin biosensor. Ultrason. Sonochem. 2018;41:651–660. doi: 10.1016/j.ultsonch.2017.10.032. PubMed DOI

Rani K.K., Karuppiah C., Wang S.-F., Alaswad S.O., Sireesha P., Devasenathipathy R., Jose R., Yang C.-C. Direct pyrolysis and ultrasound assisted preparation of N, S co-doped graphene/Fe3C nanocomposite as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions. Ultrason. Sonochem. 2020;66:105111. doi: 10.1016/j.ultsonch.2020.105111. PubMed DOI

Zhang R., Wang Y., Ma D., Ahmed S., Qin W., Liu Y. Effects of ultrasonication duration and graphene oxide and nano-zinc oxide contents on the properties of polyvinyl alcohol nanocomposites. Ultrason. Sonochem. 2019;59:104731. doi: 10.1016/j.ultsonch.2019.104731. PubMed DOI

Mirzajani R., Pourreza N., Burromandpiroze J. Fabrication of magnetic Fe3O4@nSiO2@mSiO2-NH2 core—Shell mesoporous nanocomposite and its application for highly efficient ultrasound assisted dispersive μSPE-spectrofluorimetric detection of ofloxacin in urine and plasma samples. Ultrason. Sonochem. 2018;40:101–112. doi: 10.1016/j.ultsonch.2017.06.027. PubMed DOI

Bhanvase B.A., Veer A., Shirsath S.R., Sonawane S.H. Ultrasound assisted preparation, characterization and adsorption study of ternary chitosan-ZnO-TiO2 nanocomposite: Advantage over conventional method. Ultrason. Sonochem. 2019;52:120–130. doi: 10.1016/j.ultsonch.2018.11.003. PubMed DOI

Cullity B.D., Stock S.R. Elements of X-ray Diffraction. 3rd ed. Prentice-Hall; New York, NY, USA: 2001.

Yadav R.S., Mishra P., Pandey A.C. Growth mechanism and optical property of ZnOnanoparticles synthesized by sonochemical method. Ultrason. Sonochem. 2008;15:863–868. doi: 10.1016/j.ultsonch.2007.11.003. PubMed DOI

Yadav R.S., Kuřitka I., Vilcakova J., Havlica J., Masilko J., Kalina L., Tkacz J., Švec J., Enev V., Hajdúchová M. Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe2O4 nanoparticles synthesized by honey mediated sol-gel combustion method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017;8:045002. doi: 10.1088/2043-6254/aa853a. DOI

Yadav R.S., Havlica J., Masilko J., Kalina L., Wasserbauer J., Hajdúchová M., Enev V., Kuřitka I., Kožáková Z. Effects of annealing temperature variation on the evolution of structural and magnetic properties of NiFe2O4 nanoparticles synthesized by starch-assisted sol-gel auto-combustion method. J. Magn. Magn. Mater. 2015;394:439–447. doi: 10.1016/j.jmmm.2015.07.012. DOI

Sinha A., Dutta A. Structural, optical, and electrical transport properties of some rare-earth-doped nickel ferrites: A study on effect of ionic radii of dopants. J. Phys. Chem. Solids. 2020;145:109534. doi: 10.1016/j.jpcs.2020.109534. DOI

Gul S., Yousuf M.A., Anwar A., Warsi M.F., Agboola P.O., Shakir I., Shahid M. Al-substituted zinc spinel ferrite nanoparticles: Preparation and evaluation of structural, electrical, magnetic and photocatalytic properties. Ceram. Int. 2020;46:14195–14205. doi: 10.1016/j.ceramint.2020.02.228. DOI

Patange S.M., Shirsath S.E., Jangam G.S., Lohar K.S., Jadhav S.S., Jadhav K.M. Rietveld structure refinement, cation distribution and magnetic properties of Al3+ substituted NiFe2O4 nanoparticles. J. Appl. Phys. 2011;109:053909. doi: 10.1063/1.3559266. DOI

Zhou X., Li X., Sun H., Sun P., Liang X., Liu F., Hu X., Lu G. Nanosheet-Assembled ZnFe2O4 Hollow Microspheres for High-Sensitive Acetone Sensor. ACS Appl. Mater. Interfaces. 2015;7:15414–15421. doi: 10.1021/acsami.5b03537. PubMed DOI

Mallik A.K., Habib M.L., Robel F.N., Shahruzzaman M., Haque P., Rahman M.M., Devanath V., Martin D.J., Nanjundan A.K., Yamauchi Y., et al. Reduced Graphene Oxide (rGO) Prepared by Metal-Induced Reduction of Graphite Oxide: Improved Conductive Behavior of a Poly(methyl methacrylate) (PMMA)/rGO Composite. ChemistrySelect. 2019;4:7954–7958. doi: 10.1002/slct.201901281. DOI

Genorio B., Harrison K.L., Connell J.G., Dražić G., Zavadil K.R., Markovic N.M., Strmcnik D. Tuning the Selectivity and Activity of Electrochemical Interfaces with Defective Graphene Oxide and Reduced Graphene Oxide. ACS Appl. Mater. Interfaces. 2019;11:34517–34525. doi: 10.1021/acsami.9b13391. PubMed DOI PMC

Ossonon B.D., Belanger D. Synthesis and characterization of sulfophenyl functionalized reduced graphene oxide sheets. RSC Adv. 2017;7:27224. doi: 10.1039/C6RA28311J. DOI

Liu H., Dong M., Huang W., Gao J., Dai K., Guo J., Zheng G., Liu C., Shen C., Guo Z. Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J. Mater. Chem. C. 2017;5:73. doi: 10.1039/C6TC03713E. DOI

Dolcet P., Kirchberg K., Antonello A., Suchomski C., Marschall R., Diodati S., Muñoz-Espí R.M., Landfester K., Gross S. Exploring wet chemistry approaches to ZnFe2O4 spinel ferrite nanoparticles with different inversion degrees: A comparative study. Inorg. Chem. Front. 2019;6:1527. doi: 10.1039/C9QI00241C. DOI

Sun Q., Wu K., Zhang J., Sheng J. Construction of ZnFe2O4/rGO composites as selective magnetically recyclable photocatalysts under visible light irradiation. Nanotechnology. 2019;30:315706. doi: 10.1088/1361-6528/ab116a. PubMed DOI

Gavgani J.N., Adelnia H., Zaarei D., Gudarzi M.M. Lightweight flexible polyurethane/reduced ultralarge graphene oxide composite foams for electromagnetic interference shielding. RSC Adv. 2016;6:27517–27527. doi: 10.1039/C5RA25374H. DOI

Barman S., Parasar B., Kundu P., Roy S. A copper based catalyst for poly-urethane synthesis from discarded motherboard. RSC Adv. 2016;6:75749. doi: 10.1039/C6RA14506J. DOI

Xiao Y., Huang H., Peng X. Synthesis of self-healing waterborne polyurethanes containing sulphonate groups. RSC Adv. 2017;7:20093. doi: 10.1039/C6RA28416G. DOI

Zhang W., Wang M., Zhao W., Wang B. Magnetic composite photocatalyst ZnFe2O4/BiVO4: Synthesis, characterization, and visible-light photocatalytic activity. Dalton Trans. 2013;42:15464–15474. doi: 10.1039/c3dt52068d. PubMed DOI

Xuan S., Wang F., Wang Y.-X.J., Yu J.C., Leung K.C.-F. Facile synthesis of size-controllable monodispersed ferrite nanospheres. J. Mater. Chem. 2010;20:5086–5094. doi: 10.1039/c0jm00159g. DOI

Cobos M.A., de la Presa P., Llorente I., Alonso J.M., García-Escorial A., Marín P., Hernando A., Jiménez J.A. Magnetic Phase Diagram of Nanostructured Zinc Ferrite as a Function of Inversion Degree δ. J. Phys. Chem. C. 2019;123:17472–17482. doi: 10.1021/acs.jpcc.9b02180. DOI

Lopez-Maldonado K.L., de la Presa P., Betancourt I., Farias Mancilla J.R., Matutes Aquino J.A., Hernando A., Elizalde Galindo J.T. Superparamagnetic response of zinc ferrite incrusted nanoparticles. J. Alloys Compd. 2015;637:443–448. doi: 10.1016/j.jallcom.2015.03.023. DOI

Zhang J., Zhang Y., Wu X., Ma Y., Chien S.-Y., Guan R., Zhang D., Yang B., Yan B., Yang J. Correlation between Structural Changes and Electrical Transport Properties of Spinel ZnFe2O4 Nanoparticles under High Pressure. ACS Appl. Mater. Interfaces. 2018;10:42856–42864. doi: 10.1021/acsami.8b15259. PubMed DOI

Ivashchenko O., Peplińska B., Gapiński J., Flak D., Jarek M., Załęski K., Nowaczyk G., Pietralik Z., Jurga S. Silver and ultrasmall iron oxides nanoparticles in hydrocolloids: Effect of magnetic field and temperature on self-organization. Sci. Rep. 2018;8:4041. doi: 10.1038/s41598-018-22426-2. PubMed DOI PMC

Singh S., Tovstolytkin A., Lotey G.S. Magnetic properties of superparamagnetic β-NaFeO2 nanoparticles. J. Magn. Magn. Mater. 2018;458:62–65. doi: 10.1016/j.jmmm.2018.03.004. DOI

Stoner E.C., Wohlfarth E.P. A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. A. 1948;240:599–642. doi: 10.1109/TMAG.1991.1183750. DOI

Presa P.D.L., Luengo Y., Multigner M., Costo R., Morales M.P., Rivero G., Hernando A. Study of Heating Efficiency as a Function of Concentration, Size, and Applied Field in γ-Fe2O3 Nanoparticles. J. Phys. Chem. C. 2012;116:25602–25610. doi: 10.1021/jp310771p. DOI

Zeleňáková A., Kováč J., Zeleňák V. Magnetic properties of Fe2O3 nanoparticles embedded in hollows of periodic nanoporous silica. J. Appl. Phys. 2010;108:034323. doi: 10.1063/1.3466748. DOI

Chen Q., Zhang Z.J. Size-dependent superparamagnetic properties of MgFe2O4 spinel ferrite nanocrystallites. Appl. Phys. Lett. 1998;73:3156. doi: 10.1063/1.122704. DOI

Liu C., Zhang Z.J. Size-Dependent Superparamagnetic Properties of Mn Spinel Ferrite Nanoparticles Synthesized from Reverse Micelles. Chem. Mater. 2001;13:2092–2096. doi: 10.1021/cm0009470. DOI

Zhu X., Qiu H., Chen P., Chen G., Min W. Anemone-shaped ZIF-67@CNTs as effective electromagnetic absorbent covered the whole X-band. Carbon. 2021;173:1–10. doi: 10.1016/j.carbon.2020.10.055. DOI

Wang C., Han X., Xu P., Wang J., Du Y., Wang X., Qin W., Zhang T. Controlled Synthesis of Hierarchical Nickel and Morphology-Dependent Electromagnetic Properties. J. Phys. Chem. C. 2010;114:3196–3203. doi: 10.1021/jp908839r. DOI

Zhang W., Zhang X., Zheng Y., Guo C., Yang M., Li Z., Wu H., Qiu H., Yan H., Qi S. Preparation of Polyaniline@MoS2@Fe3O4 Nanowires with a Wide Band and Small Thickness toward Enhancement in Microwave Absorption. ACS Appl. Nano Mater. 2018;1:5865–5875. doi: 10.1021/acsanm.8b01452. DOI

Wei H., Zhang Z., Hussain G., Zhou L., Li Q., Ostrikov K.K. Techniques to enhance magnetic permeability in microwave absorbing materials. Appl. Mater. Today. 2020;19:100596. doi: 10.1016/j.apmt.2020.100596. DOI

Cheng K., Li H., Zhu M., Qiu H., Yang J. In situ polymerization of graphenepolyaniline@polyimide composite films with high EMI shielding and electrical properties. RSC Adv. 2020;10:2368. doi: 10.1039/C9RA08026K. PubMed DOI PMC

Huang X., Qin Y., Ma Y., Chen Y. Preparation and electromagnetic properties of nanosized ZnFe2O4 with various shapes. Ceram. Int. 2019;45:18389–18397. doi: 10.1016/j.ceramint.2019.06.054. DOI

Sun C., Cheng C., Sun M., Zhang Z. Facile synthesis and microwave absorbing properties of LiFeO2/ZnFe2O4 composite. J. Magn. Magn. Mater. 2019;482:79–83. doi: 10.1016/j.jmmm.2019.03.034. DOI

Shu R., Li W., Zhou X., Tian D., Zhang G., Gan Y., Shi J., He J. Facile preparation and microwave absorption properties of RGO/ MWCNTs/ZnFe2O4 hybrid nanocomposites. J. Alloys Compd. 2018;743:163–174. doi: 10.1016/j.jallcom.2018.02.016. DOI

Xue J., Zhang H., Zhao J., Ou X., Ling Y. Characterization and microwave absorption of spinel MFe2O4 (M=Mg, Mn, Zn) nanoparticles prepared by a facile oxidation-precipitation process. J. Magn. Magn. Mater. 2020;514:167168. doi: 10.1016/j.jmmm.2020.167168. DOI

Ma W., Yang R., Yang Z., Duan C., Wang T. Synthesis of reduced graphene oxide/zinc ferrite/nickel nanohybrids: As a lightweight and high-performance microwave absorber in the low frequency. J. Mater. Sci. Mater. Electron. 2019;30:18496–18505. doi: 10.1007/s10854-019-02203-1. DOI

Ge Y., Li C., Waterhouse G.I.N., Zhang Z., Yu L. ZnFe2O4@SiO2@Polypyrrole nanocomposites with efficient electromagnetic wave absorption properties in the K and Ka band regions. Ceram. Int. 2021;47:1728–1739. doi: 10.1016/j.ceramint.2020.08.290. DOI

Di X., Wang Y., Fu Y., Wu X., Wang P. Wheat flour-derived nanoporous carbon@ZnFe2O4 hierarchical composite as an outstanding microwave absorber. Carbon. 2021;173:174–184. doi: 10.1016/j.carbon.2020.11.006. DOI

Chai L., Wang Y., Zhou N., Du Y., Zeng X., Zhou S., He Q., Wu G. In-situ growth of core-shell ZnFe2O4 @ porous hollow carbon microspheres as an efficient microwave absorber. J. Colloid Interface Sci. 2021;581:475–484. doi: 10.1016/j.jcis.2020.07.102. PubMed DOI

Arjmand M., Moud A.A., Li Y., Sundararaj U. Outstanding electromagnetic interference shielding of silver nanowires: Comparison with carbon nanotubes. RSC Adv. 2015;5:56590. doi: 10.1039/C5RA08118A. DOI

Chen N., Jiang J.-T., Xu C.-Y., Yan S.-J., Zhen L. Rational Construction of Uniform CoNi-Based Core-Shell Microspheres with Tunable Electromagnetic Wave Absorption Properties. Sci. Rep. 2018;8:3196. doi: 10.1038/s41598-018-21047-z. PubMed DOI PMC

Singh A.K., Kumar A., Srivastava A., Yadav A.N., Haldar K., Gupta V., Singh K. Lightweight reduced graphene oxide-ZnO nanocomposite for enhanced dielectric loss and excellent electromagnetic interference shielding. Compos. Part B. 2019;172:234–242. doi: 10.1016/j.compositesb.2019.05.062. DOI

Liu W., Liu L., Ji G., Li D., Zhang Y., Ma J., Du Y. Composition Design and Structural Characterization of MOF-Derived Composites with Controllable Electromagnetic Properties. ACS Sustain. Chem. Eng. 2017;5:7961–7971. doi: 10.1021/acssuschemeng.7b01514. DOI

Zhao Y., Wang W., Wang J., Zhai J., Lei X., Zhao W., Li J., Yang H., Tian J., Yan J. Constructing multiple heterogeneous interfaces in the composite of bimetallic MOF-derivatives and rGO for excellent microwave absorption performance. Carbon. 2021;173:1059–1072. doi: 10.1016/j.carbon.2020.11.090. DOI

Cui Y., Yang K., Wang J., Shah T., Zhang Q., Zhang B. Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave. Carbon. 2021;172:1–14. doi: 10.1016/j.carbon.2020.09.093. DOI

Hou Y., Cheng L., Zhang Y., Du X., Zhao Y., Yang Z. High temperature electromagnetic interference shielding of lightweight and flexible ZrC/SiC nanofiber mats. Chem. Eng. J. 2021;404:126521. doi: 10.1016/j.cej.2020.126521. DOI

Zhang Y., Qiu M., Yu Y., Wen B., Cheng L. A Novel Polyaniline-Coated Bagasse Fiber Composite with Core-Shell Heterostructure Provides Effective Electromagnetic Shielding Performance. ACS Appl. Mater. Interfaces. 2017;9:809–818. doi: 10.1021/acsami.6b11989. PubMed DOI

Hou Y., Xiao B., Yang G., Sun Z., Yang W., Wu S., Huang X., Wen G. Enhanced electromagnetic wave absorption performance of novel carbon-coated Fe3Si nanoparticles in an amorphous Si CO ceramic matrix. J. Mater. Chem. C. 2018;6:7661. doi: 10.1039/C8TC01769G. DOI

Wu S., Zou M., Li Z., Chen D., Zhang H., Yuan Y., Pei Y., Cao A. Robust and Stable Cu Nanowire@Graphene Core–Shell Aerogels for Ultraeffective Electromagnetic Interference Shielding. Small. 2018;14:1800634. doi: 10.1002/smll.201800634. PubMed DOI

Guo Z., Huang H., Xie D., Xia H. Microwave properties of the single layer periodic structure composites composed of ethylene-vinyl acetate and polycrystalline iron fibers. Sci. Rep. 2017;7:11331. doi: 10.1038/s41598-017-11884-9. PubMed DOI PMC

Sun X., He J., Li G., Tang J., Wang T., Guo Y., Xue H. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J. Mater. Chem. C. 2013;1:765. doi: 10.1039/C2TC00159D. DOI

Yang Z., Li Z., Yang Y., Xu Z.J. Optimization of ZnxFe3-xO4 Hollow Spheres for Enhanced Microwave Attenuation. ACS Appl. Mater. Interfaces. 2014;6:21911–21915. doi: 10.1021/am5075612. PubMed DOI

Yadav R.S., Kuřitka I., Vilcakova J., Skoda D., Urbánek P., Machovsky M., Masař M., Kalina L., Havlica J. Lightweight NiFe2O4-Reduced Graphene Oxide-Elastomer Nanocompositeflexible sheet for electromagnetic interference shielding application. Compos. Part B. 2019;166:95–111. doi: 10.1016/j.compositesb.2018.11.069. DOI

Zheng X., Feng J., Zong Y., Miao H., Hu X., Bai J., Li X. Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers. J. Mater. Chem. C. 2015;3:4452–4463. doi: 10.1039/C5TC00313J. DOI

Wang Y., Guan H., Dong C., Xiao X., Du S., Wang Y. Reduced graphene oxide (RGO)/Mn3O4 nanocomposites for dielectric loss properties and electromagnetic interference shielding effectiveness at high frequency. Ceram. Int. 2016;42:936–942. doi: 10.1016/j.ceramint.2015.09.022. DOI

Wang X., Pan F., Xiang Z., Zeng Q., Pei K., Che R., Lu W. Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon. 2020;157:130–139. doi: 10.1016/j.carbon.2019.10.030. DOI

Wu M., Zhang Y.D., Hui S., Xiao T.D., Ge S., Hines W.A., Budnick J.I., Taylor G.W. Microwave magnetic properties of Co50(SiO2)50 nanoparticles. Appl. Phys. Lett. 2002;80:4404. doi: 10.1063/1.1484248. DOI

Zhang Y., Yang Z., Wen B. An Ingenious Strategy to Construct Helical Structure with Excellent Electromagnetic Shielding Performance. Adv. Mater. Interfaces. 2019;6:1900375. doi: 10.1002/admi.201900375. DOI

Teotia S., Singh B.P., Elizabeth I., Singh V.N., Ravikumar R., Singh A.P., Gopukumar S., Dhawan S.K., Mathur R.B. Multifunctional, Robust, Light Weight, Free Standing MWCNT/Phenolic Composite Paper as Anode for Lithium Ion Batteries and EMI Shielding Material. RSC Adv. 2014;4:33168–33174. doi: 10.1039/C4RA04183F. DOI

He N., He Z., Liu L., Lu Y., Wang F., Wu W., Tong G. Ni2+ guided phase/structure evolution and ultra-wide band width microwave absorption of CoxNi1-x alloy hollow microspheres. Chem. Eng. J. 2020;381:1227432. doi: 10.1016/j.cej.2019.122743. DOI

Ghosh S., Remanan S., Mondal S., Ganguly S., Das P., Singha N., Das N.C. An approach to prepare mechanically robust full IPN strengthened conductive cotton fabric for high strain tolerant electromagnetic interference shielding. Chem. Eng. J. 2018;344:138–154. doi: 10.1016/j.cej.2018.03.039. DOI

Quan B., Liang X., Ji G., Lv J., Dai S.S., Xu G., Du Y. Laminated graphene oxide-supported high-efficiency microwave absorber fabricated by an in situ growth approach. Carbon. 2018;129:310–320. doi: 10.1016/j.carbon.2017.12.026. DOI

Anand S., Pauline S. Electromagnetic Interference Shielding Properties of BaCo2Fe16O27 Nanoplatelets and RGO Reinforced PVDF Polymer Composite Flexible Films. Adv. Mater. Interfaces. 2021;8:2001810. doi: 10.1002/admi.202001810. DOI

Zhang M., Zhang J., Lin H., Wang T., Ding S., Li Z., Wang J., Meng A., Li Q., Lin Y. Designable synthesis of reduced graphene oxide modified using CoFe2O4 nanospheres with tunable enhanced microwave absorption performances between the whole X and Ku bands. Compos. Part B. 2020;190:107902. doi: 10.1016/j.compositesb.2020.107902. DOI

Wang X., Lu Y., Zhu T., Chang S., Wang W. CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chem. Eng. J. 2020;388:124317. doi: 10.1016/j.cej.2020.124317. DOI

Peng J., Peng Z., Zhu Z., Augustine R., Mahmoud M.M., Tang H., Rao M., Zhang Y., Li G., Jiang T. Achieving ultra-high electromagnetic wave absorption by anchoring Co0.33Ni0.33Mn0.33Fe2O4 nanoparticles on graphene sheets using microwave assisted polyol method. Ceram. Int. 2018;44:21015–21026. doi: 10.1016/j.ceramint.2018.08.137. DOI

Xu F., Chen R., Lin Z., Qin Y., Yuan Y., Li Y., Zhao X., Yang M., Sun X., Wang S., et al. Super flexible Interconnected Graphene Network Nanocomposites for High-Performance Electromagnetic Interference Shielding. ACS Omega. 2018;3:3599–3607. doi: 10.1021/acsomega.8b00432. PubMed DOI PMC

Fu P., Huan X., Luo J., Ren S., Jia X., Yang X. Magnetically Aligned Fe3O4 Nanowires-Reduced Graphene Oxide for Gas Barrier, Microwave Absorption, and EMI Shielding. ACS Appl. Nano Mater. 2020;3:9340–9355. doi: 10.1021/acsanm.0c01981. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...