Long Non-Coding RNA PANTR1 is Associated with Poor Prognosis and Influences Angiogenesis and Apoptosis in Clear-Cell Renal Cell Cancer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
T 1112
Austrian Science Fund FWF - Austria
NV18-03-00554
Czech Ministry of Health
grant agreement No 824036
Marie Skłodowska-Curie
T 1112-B
Austrian Science Fund
Richard-Uebelhoer-Grant
Austrian Society of Urology and Andrology
N/A
Horizon 2020
PubMed
32397610
PubMed Central
PMC7281347
DOI
10.3390/cancers12051200
PII: cancers12051200
Knihovny.cz E-zdroje
- Klíčová slova
- Linc-POU3F3, Linc01158, PANTR1, clear-cell renal cell carcinoma, long intergenic non-coding RNA, oncogene, renal cell cancer, siRNA,
- Publikační typ
- časopisecké články MeSH
POU3F3 adjacent non-coding transcript 1 (PANTR1) is an oncogenic long non-coding RNA with significant influence on numerous cellular features in different types of cancer. No characterization of its role in renal cell carcinoma (RCC) is yet available. In this study, PANTR1 expression was confined to human brain and kidney tissue and was found significantly up-regulated in clear-cell renal cell carcinoma tissue (ccRCC) compared to non-cancerous kidney tissue in two independent cohorts (p < 0.001 for both cohorts). In uni- and multivariate Cox regression analysis, ccRCC patients with higher levels of PANTR1 showed significantly poorer disease-free survival in our own respective cohort (n = 175, hazard ratio: 4.3, 95% confidence interval: 1.45-12.75, p = 0.008) in accordance with significantly poorer overall survival in a large The Cancer Genome Atlas database (TCGA) cohort (n = 530, hazard ratio: 2.19, 95% confidence interval: 1.59-3.03, p ≤ 0.001). To study the underlying cellular mechanisms mediated by varying levels of PANTR1 in kidney cancer cells, we applied siRNA-mediated knock-down experiments in three independent ccRCC cell lines (RCC-FG, RCC-MF, 769-P). A decrease in PANTR1 levels led to significantly reduced cellular growth through activation of apoptosis in all tested cell lines. Moreover, as angiogenesis is a critical driver in ccRCC pathogenesis, we identified that PANTR1 expression is critical for in vitro tube formation and endothelial cell migration (p < 0.05). On the molecular level, knock-down of PANTR1 led to a decrease in Vascular Endothelial growth factor A (VEGF-A) and cell adhesion molecule laminin subunit gamma-2 (LAMC2) expression, corroborated by a positive correlation in RCC tissue (for VEGF-A R = 0.19, p < 0.0001, for LAMC2 R = 0.13, p = 0.0028). In conclusion, this study provides first evidence that PANTR1 has a relevant role in human RCC by influencing apoptosis and angiogenesis.
Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
Department of Biology Faculty of Medicine Masaryk University 62500 Brno Czech Republic
Department of Urology Medical University of Graz 8036 Graz Austria
Department of Urology Medical University of Innsbruck 6020 Innsbruck Austria
Division of Oncology Department of Internal Medicine Medical University of Graz 8036 Graz Austria
Zobrazit více v PubMed
Ljungberg B., Albiges L., Abu-ghanem Y., Bensalah K., Giles R.H., Hofmann F., Dabestani S., Ferna S., Hora M., Kuczyk M.A., et al. European Association of Urology Guidelines on Renal Cell Carcinoma: The 2019 Update. Eur. Urol. 2019;5:799–810. doi: 10.1016/j.eururo.2019.02.011. PubMed DOI
Kroeger N., Xie W., Lee J.L., Bjarnason G.A., Knox J.J., MacKenzie M.J., Wood L., Srinivas S., Vaishamayan U.N., Rha S.Y., et al. Metastatic non-clear cell renal cell carcinoma treated with targeted therapy agents: Characterization of survival outcome and application of the International mRCC Database Consortium criteria. Cancer. 2013;119:2999–3006. doi: 10.1002/cncr.28151. PubMed DOI PMC
Courtney K.D., Ma Y., de Leon A.D., Christie A., Xie Z., Woolford L., Singla N., Joyce A., Hill H., Madhuranthakam A.J., et al. HIF-2 complex dissociation, target inhibition, and acquired resistance with PT2385, a first-in-class HIF-2 inhibitor, in patients with clear cell renal cell carcinoma. Clin. Cancer Res. 2020;26:793–803. doi: 10.1158/1078-0432.CCR-19-1459. PubMed DOI PMC
Pichler M., Hutterer G.C., Chromecki T.F., Jesche J., Kampel-Kettner K., Groselj-Strele A., Hoefler G., Pummer K., Zigeuner R. Comparison of the 2002 and 2010 TNM classification systems regarding outcome prediction in clear cell and papillary renal cell carcinoma. Histopathology. 2013;62:237–246. doi: 10.1111/his.12001. PubMed DOI
Pichler M., Hutterer G.C., Chromecki T.F., Jesche J., Kampel-Kettner K., Eberhard K., Hoefler G., Pummer K., Zigeuner R. Trends of stage, grade, histology and tumour necrosis in renal cell carcinoma in a European centre surgical series from 1984 to 2010. J. Clin. Pathol. 2012;65:721–724. doi: 10.1136/jclinpath-2012-200797. PubMed DOI
Pichler M., Hutterer G.C., Stoeckigt C., Chromecki T.F., Stojakovic T., Golbeck S., Eberhard K., Gerger A., Mannweiler S., Pummer K., et al. Validation of the pre-treatment neutrophil-lymphocyte ratio as a prognostic factor in a large European cohort of renal cell carcinoma patients. Br. J. Cancer. 2013;108:901–907. doi: 10.1038/bjc.2013.28. PubMed DOI PMC
Pichler M., Hutterer G.C., Chromecki T.F., Jesche J., Groselj-Strele A., Kampel-Kettner K., Pummer K., Zigeuner R. Prognostic value of the leibovich prognosis score supplemented by vascular invasion for clear cell renal cell carcinoma. J. Urol. 2012;187:834–839. doi: 10.1016/j.juro.2011.10.155. PubMed DOI
Pichler M., Hutterer G., Chromecki T., Jesche J., Kampel-Kettner K., Pummer K., Zigeuner R. Renal cell carcinoma stage migration in a single European centre over 25 years: Effects on 5- and 10-year metastasis-free survival. Int. Urol. Nephrol. 2012;44:997–1004. doi: 10.1007/s11255-012-0165-5. PubMed DOI
Pichler M., Hutterer G.C., Stojakovic T., Mannweiler S., Pummer K., Zigeuner R. High plasma fibrinogen level represents an independent negative prognostic factor regarding cancer-specific, metastasis-free, as well as overall survival in a European cohort of non-metastatic renal cell carcinoma patients. Br. J. Cancer. 2013;109:1123–1129. doi: 10.1038/bjc.2013.443. PubMed DOI PMC
Pichler M., Hutterer G.C., Chromecki T.F., Pummer K., Mannweiler S., Zigeuner R. Presence and extent of histological tumour necrosis is an adverse prognostic factor in papillary type 1 but not in papillary type 2 renal cell carcinoma. Histopathology. 2013;62:219–228. doi: 10.1111/j.1365-2559.2012.04328.x. PubMed DOI
Seles M., Posch F., Pichler G.P., Gary T., Pummer K., Zigeuner R., Hutterer G.C., Pichler M. Blood Platelet Volume Represents a Novel Prognostic Factor in Patients with Nonmetastatic Renal Cell Carcinoma and Improves the Predictive Ability of Established Prognostic Scores. J. Urol. 2017;198:1247–1252. doi: 10.1016/j.juro.2017.07.036. PubMed DOI
Klatte T., Rossi S.H., Stewart G.D. Prognostic factors and prognostic models for renal cell carcinoma: A literature review. World J. Urol. 2018;36:1943–1952. doi: 10.1007/s00345-018-2309-4. PubMed DOI
Ling H., Vincent K., Pichler M., Fodde R., Berindan-Neagoe I., Slack F.J., Calin G. a Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene. 2015;34:1–9. doi: 10.1038/onc.2014.456. PubMed DOI PMC
Fang Y., Fullwood M.J. Roles, Functions, and Mechanisms of Long Non-coding RNAs in Cancer. Genomics Proteomics Bioinformatics. 2016;14:42–54. doi: 10.1016/j.gpb.2015.09.006. PubMed DOI PMC
Li X., Wu Z., Fu X., Han W. Long Noncoding RNAs: Insights from Biological Features and Functions to Diseases. Med. Res. Rev. 2013;33:517–553. doi: 10.1002/med.21254. PubMed DOI
Seles M., Hutterer G., Kiesslich T., Pummer K., Berindan-Neagoe I., Perakis S., Schwarzenbacher D., Stotz M., Gerger A., Pichler M. Current Insights into Long Non-Coding RNAs in Renal Cell Carcinoma. Int. J. Mol. Sci. 2016;17:573. doi: 10.3390/ijms17040573. PubMed DOI PMC
Martens-Uzunova E.S., Böttcher R., Croce C.M., Jenster G., Visakorpi T., Calin G.A. Long noncoding RNA in prostate, bladder, and kidney cancer. Eur. Urol. 2014;65:1140–1151. doi: 10.1016/j.eururo.2013.12.003. PubMed DOI
Kumar S., Rathkolb B., Kemter E., Sabrautzki S., Michel D., Adler T., Becker L., Beckers J., Busch D.H., Garrett L., et al. Generation and Standardized, Systemic Phenotypic Analysis of Pou3f3 L423P Mutant Mice. PLoS ONE. 2016;11:e0150472. PubMed PMC
Li W., Wu X., She W. LncRNA POU3F3 promotes cancer cell migration and invasion in nasopharyngeal carcinoma by up-regulating TGF-β1. Biosci. Rep. 2019;39:BSR20181632. doi: 10.1042/BSR20181632. PubMed DOI PMC
Li Y., Li Y., Wang D., Meng Q. Linc-POU3F3 is overexpressed in hepatocellular carcinoma and regulates cell proliferation, migration and invasion. Biomed. Pharmacother. 2018;105:683–689. doi: 10.1016/j.biopha.2018.06.006. PubMed DOI
Shan T.-D., Xu J.-H., Yu T., Li J.-Y., Zhao L.-N., Ouyang H., Luo S., Lu X.-J., Huang C.-Z., Lan Q.-S., et al. Knockdown of linc-POU3F3 suppresses the proliferation, apoptosis, and migration resistance of colorectal cancer. Oncotarget. 2016;7 doi: 10.18632/oncotarget.5830. PubMed DOI PMC
Tong Y.S., Wang X.W., Zhou X.L., Liu Z.H., Yang T.X., Shi W.H., Xie H.W., Lv J., Wu Q.Q., Cao X.F. Identification of the long non-coding RNA POU3F3 in plasma as a novel biomarker for diagnosis of esophageal squamous cell carcinoma. Mol. Cancer. 2015;14:1–13. doi: 10.1186/1476-4598-14-3. PubMed DOI PMC
Lang H.-L., Hu G.-W., Chen Y., Liu Y., Tu W., Lu Y.-M., Wu L., Xu G.-H. Glioma cells promote angiogenesis through the release of exosomes containing long non-coding RNA POU3F3. Eur. Rev. Med. Pharmacol. Sci. 2017;21:959–972. PubMed
Wan X., Xiang J., Zhang Q., Bian C. Long noncoding RNA POU3F3 promotes cancer cell proliferation in prostate carcinoma by upregulating rho-associated protein kinase 1. J. Cell. Biochem. 2019;120:8195–8200. doi: 10.1002/jcb.28101. PubMed DOI
Guo H., Wu L., Yang Q., Ye M., Zhu X. Functional linc-POU3F3 is overexpressed and contributes to tumorigenesis in glioma. Gene. 2015;554:114–119. doi: 10.1016/j.gene.2014.10.038. PubMed DOI
Kaufmann S.H., Desnoyers S., Ottaviano Y., Davidson N.E., Poirier G.G. Specific Proteolytic Cleavage of Poly(ADP-ribose) Polymerase: An Early Marker of Chemotherapy-induced Apoptosis. Cancer Res. 1993;53:3976–3985. PubMed
Lamalice L., Le Boeuf F., Huot J. Endothelial cell migration during angiogenesis. Circ. Res. 2007;100:782–794. doi: 10.1161/01.RES.0000259593.07661.1e. PubMed DOI
Claesson-Welsh L., Welsh M. VEGFA and tumour angiogenesis. J. Intern. Med. 2013;273:114–127. doi: 10.1111/joim.12019. PubMed DOI
Garg M., Kanojia D., Okamoto R., Jain S., Jain V., Chien W., Sampath A., Ding L.W., Xuan M., Said J.W., et al. Laminin-5γ-2 (LAMC2) is highly expressed in anaplastic thyroid carcinoma and is associated with tumor progression, migration, and invasion by modulating signaling of EGFR. J. Clin. Endocrinol. Metab. 2014;99:62–72. doi: 10.1210/jc.2013-2994. PubMed DOI PMC
Sauvageau M., Goff L.A., Lodato S., Bonev B., Groff A.F., Gerhardinger C., Sanchez-Gomez D.B., Hacisuleyman E., Li E., Spence M., et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife. 2013;2013:1–24. doi: 10.7554/eLife.01749. PubMed DOI PMC
Nakai S., Sugitani Y., Sato H., Ito S., Miura Y., Ogawa M., Nishi M., Jishage K.I., Minowa O., Noda T. Crucial roles fo Brn1 in distal tubule formation and function in mouse kidney. Development. 2003;130:4751–4759. doi: 10.1242/dev.00666. PubMed DOI
Dheedene A., Maes M., Vergult S., Menten B. A de novo POU3F3 Deletion in a Boy with Intellectual Disability and Dysmorphic. Mol. Syndromol. 2014;5:32–35. PubMed PMC
Blok L.S., Kleefstra T., Venselaar H., Maas S., Kroes H.Y., Lachmeijer A.M.A., Van Gassen K.L.I., Firth H.V., Tomkins S., Bodek S., et al. De Novo Variants Disturbing the Transactivation Capacity of POU3F3 Cause a Characteristic Neurodevelopmental Disorder. Am. J. Hum. Genet. 2019:1–10. PubMed PMC
Ljungberg B., Albiges L., Bensalah K., Vice-chair A.B., Advocate R.H.G.P., Hora M., Kuczyk M.A., Lam T., Marconi L., Merseburger A.S., et al. EAU Guidelines on Renal Cell Carcinoma. Eur. Urol. 2019;23:799–810. PubMed
Schanza L.M., Seles M., Stotz M., Fosselteder J., Hutterer G.C., Pichler M., Stiegelbauer V. MicroRNAs associated with Von Hippel-Lindau pathway in renal cell carcinoma: A comprehensive review. Int. J. Mol. Sci. 2017;18:2495. doi: 10.3390/ijms18112495. PubMed DOI PMC
Shen C., Kaelin W.G., Jr. The VHL/HIF axis in clear cell renal carcinoma. Semin. Cancer Biol. 2013;23:18–25. doi: 10.1016/j.semcancer.2012.06.001. PubMed DOI PMC
Moch H., Cubilla A.L., Humphrey P.A., Reuter V.E., Ulbright T.M. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs—Part A: Renal, Penile, and Testicular Tumours. Eur. Urol. 2016;70:93–105. doi: 10.1016/j.eururo.2016.02.029. PubMed DOI
Fernández-Pello S., Hofmann F., Tahbaz R., Marconi L., Lam T.B., Albiges L., Bensalah K., Canfield S.E., Dabestani S., Giles R.H., et al. A Systematic Review and Meta-analysis Comparing the Effectiveness and Adverse Effects of Different Systemic Treatments for Non-clear Cell Renal Cell Carcinoma. Eur. Urol. 2017;71:426–436. doi: 10.1016/j.eururo.2016.11.020. PubMed DOI
Li W., Zheng J., Deng J., You Y., Wu H., Li N., Lu J., Zhou Y. Increased levels of the long intergenic non-protein coding RNA POU3F3 promote DNA methylation in esophageal squamous cell carcinoma cells. Gastroenterology. 2014;146:1714–1726. doi: 10.1053/j.gastro.2014.03.002. PubMed DOI
Chang S., Sun L., Feng G. SP1-mediated long noncoding RNA POU3F3 accelerates the cervical cancer through miR-127-5p/FOXD1. Biomed. Pharmacother. 2019;117 doi: 10.1016/j.biopha.2019.109133. PubMed DOI
Xiong G., Yang L., Chen Y., Fan Z. Linc-POU3F3 promotes cell proliferation in gastric cancer via increasing T-reg distribution. Am. J. Transl. Res. 2015;7:2262–2269. PubMed PMC
Yang J., Meng X., Yu Y., Pan L., Zheng Q., Lin W. LncRNA POU3F3 promotes proliferation and inhibits apoptosis of cancer cells in triple-negative breast cancer by inactivating caspase 9. Biosci. Biotechnol. Biochem. 2019;83:1117–1123. doi: 10.1080/09168451.2019.1588097. PubMed DOI
Hanahan D., Weinberg R.A. Review Hallmarks of Cancer: The Next Generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
Gerlinger M., Rowan A.J., Horswell S., Larkin J., Endesfelder D., Gronroos E., Martinez P., Matthews N., Stewart A., Tarpey P., et al. Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. N. Engl. J. Med. 2012;366:883–892. doi: 10.1056/NEJMoa1113205. PubMed DOI PMC
Takyar S., Diaz J., Sehgal M., Sapunar F., Pandha H. First-line therapy for treatment-naive patients with advanced/metastatic renal cell carcinoma: A systematic review of published randomized controlled trials. Anticancer Drugs. 2016;27:383–397. doi: 10.1097/CAD.0000000000000335. PubMed DOI
Lai Y., Zeng T., Liang X., Wu W., Zhong F., Wu W. Cell death-related molecules and biomarkers for renal cell carcinoma targeted therapy. Cancer Cell Int. 2019;19:1–15. doi: 10.1186/s12935-019-0939-2. PubMed DOI PMC
Liou J.S., Wu Y.C., Yen W.Y., Tang Y.S., Kakadiya R.B., Su T.L., Yih L.H. Inhibition of autophagy enhances DNA damage-induced apoptosis by disrupting CHK1-dependent S phase arrest. Toxicol. Appl. Pharmacol. 2014;278:249–258. doi: 10.1016/j.taap.2014.04.028. PubMed DOI
Masoud G.N., Li W. HIF-1α pathway: Role, regulation and intervention for cancer therapy. Acta Pharm. Sin. B. 2015;5:378–389. doi: 10.1016/j.apsb.2015.05.007. PubMed DOI PMC
Huang D., Du C., Ji D., Xi J., Gu J. Overexpression of LAMC2 predicts poor prognosis in colorectal cancer patients and promotes cancer cell proliferation, migration, and invasion. Tumor Biol. 2017;39 doi: 10.1177/1010428317705849. PubMed DOI
Pei Y.F., Liu J., Cheng J., Wu W.D., Liu X.Q. Silencing of LAMC2 Reverses Epithelial-Mesenchymal Transition and Inhibits Angiogenesis in Cholangiocarcinoma via Inactivation of the Epidermal Growth Factor Receptor Signaling Pathway. Am. J. Pathol. 2019;189:1637–1653. doi: 10.1016/j.ajpath.2019.03.012. PubMed DOI
Zhang D., Guo H., Feng W., Qiu H. LAMC2 regulated by microRNA-125a-5p accelerates the progression of ovarian cancer via activating p38 MAPK signalling. Life Sci. 2019;232:116648. doi: 10.1016/j.lfs.2019.116648. PubMed DOI
Yamamoto H., Itoh F., Iku S., Hosokawa M., Imai K. Expression of the γ2 chain of laminin-5 at the invasive front is associated with recurrence and poor prognosis in human esophageal squamous cell carcinoma. Clin. Cancer Res. 2001;7:896–900. PubMed
Morlando M., Fatica A. Alteration of epigenetic regulation by long noncoding RNAs in cancer. Int. J. Mol. Sci. 2018;19:570. doi: 10.3390/ijms19020570. PubMed DOI PMC
Hanly D., Esteller M., Berdasco M. Interplay between long non-coding RNAs and epigenetic machinery: Emerging targets in cancer? Phil. Trans. R. Soc. B. 2018;373:20170074. doi: 10.1098/rstb.2017.0074. PubMed DOI PMC
Kotake Y., Nakagawa T., Kitagawa K., Suzuki S., Liu N., Kitagawa M., Xiong Y. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15 INK4B tumor suppressor gene. Oncogene. 2011;30:1956–1962. doi: 10.1038/onc.2010.568. PubMed DOI PMC
Fazi B., Garbo S., Toschi N., Mangiola A., Lombari M., Sicari D., Battistelli C., Galardi S., Michienzi A., Trevisi G., et al. The lncRNA H19 positively affects the tumorigenic properties of glioblastoma cells and contributes to NKD1 repression through the recruitment of EZH2 on its promoter. Oncotarget. 2018;9:15512–15525. doi: 10.18632/oncotarget.24496. PubMed DOI PMC
Portoso M., Ragazzini R., Brenčič Ž., Moiani A., Michaud A., Vassilev I., Wassef M., Servant N., Sargueil B., Margueron R. PRC 2 is dispensable for HOTAIR -mediated transcriptional repression. EMBO J. 2017;36:981–994. doi: 10.15252/embj.201695335. PubMed DOI PMC
Zhang J., Gao F., Ni T., Lu W., Lin N., Zhang C., Sun Z. Linc-POU3F3 is overexpressed in in-stent restenosis patients and induces VSMC phenotypic transformation via POU3F3/miR-449a/KLF4 signaling pathway. Am. J. Transl. Res. 2019;11:4481–4490. PubMed PMC
Barth D.A., Slaby O., Klec C., Juracek J., Drula R., Calin G.A., Pichler M. Current concepts of non-coding RNAs in the pathogenesis of non-clear cell renal cell carcinoma. Cancers. 2019;11:1580. doi: 10.3390/cancers11101580. PubMed DOI PMC
HPA RNA-seq Normal Tissues Project ID: PRJEB4337. [(accessed on 13 March 2020)]; Available online: https://www.ncbi.nlm.nih.gov/gene/100506421.
Fagerberg L., Hallstrom B.M., Oksvold P., Kampf C., Djureinovic D., Odeberg J., Habuka M., Tahmasebpoor S., Danielsson A., Edlund K., et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteom. 2014;13:397–406. doi: 10.1074/mcp.M113.035600. PubMed DOI PMC
van Roemeling C., Radisky D., Marlow L., Cooper S.J., Grebe S., Anastasiadis P., Tun H., Copland J. Neuronal pentraxin 2 supports clear cell renal cell carcinoma by activating the AMPA-selective glutamate receptor-4 Christina. Cancer Res. 2015;74:4796–4810. doi: 10.1158/0008-5472.CAN-14-0210. PubMed DOI PMC
Gene Array Analysis of Clear Cell Renal Cell Carcinoma Tissue Versus Matched Normal Kidney Tissue in Humans. [(accessed on 20 March 2020)]; Available online: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53757.
TCGA PanCancer Atlas. [(accessed on 15 March 2020)]; Available online: https://www.cbioportal.org/orgepia.cancer-pku.cn/
TCGA Pan-Cancer Data Set derived by Kaplan Meier plotter. [(accessed on 10 March 2020)]; Available online: http://kmplot.com/analysis/index.php?p=service&cancer=pancancer_rnaseq.