A New Hyaluronan Modified with β-Cyclodextrin on Hydroxymethyl Groups Forms a Dynamic Supramolecular Network
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA/FT/2019/007
Univerzita Tomáše Bati ve Zlíně
PubMed
31731484
PubMed Central
PMC6864629
DOI
10.3390/molecules24213849
PII: molecules24213849
Knihovny.cz E-zdroje
- Klíčová slova
- click reaction, cyclodextrin, host-guest systems, sodium hyaluronan, supramolecular network,
- MeSH
- beta-cyklodextriny chemická syntéza chemie MeSH
- click chemie MeSH
- kalorimetrie MeSH
- kyselina hyaluronová chemická syntéza chemie MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární struktura * MeSH
- polymery chemická syntéza chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- beta-cyklodextriny MeSH
- betadex MeSH Prohlížeč
- kyselina hyaluronová MeSH
- polymery MeSH
A new hyaluronan derivative modified with β-cyclodextrin units (CD-HA) was prepared via the click reaction between propargylated hyaluronan and monoazido-cyclodextrin (CD) to achieve a degree of substitution of 4%. The modified hyaluronan was characterized by 1H-nuclear magnetic resonance spectroscopy (NMR) and size exclusion chromatography. Subsequent 1H-NMR and isothermal calorimetric titration experiments revealed that the CD units on CD-HA can form virtual 1:1, 1:2, and 1:3 complexes with one-, two-, and three-site adamantane-based guests, respectively. These results imply that the CD-HA chains used the multitopic guests to form a supramolecular cross-linked network. The free CD-HA polymer was readily restored by the addition of a competing macrocycle, which entrapped the cross-linking guests. Thus, we demonstrated that the new CD-HA polymer is a promising component for the construction of chemical stimuli-responsive supramolecular architectures.
Zobrazit více v PubMed
Rao M.G., Bharathi P., Akila R.M. A comprehensive review on biopolymers. Sci. Revs. Chem. Commun. 2014;4:61–68.
Bernkop-Schnurch A., Dunnhaupt S. Chitosan-based drug delivery systems. Eur. J. Pharm. Biopharm. 2012;81:463–469. doi: 10.1016/j.ejpb.2012.04.007. PubMed DOI
Jin Y.J., Ubonvan T., Kim D.D. Hyaluronic acid in drug delivery systems. J. Pharm. Invest. 2010;40:33–43. doi: 10.4333/KPS.2010.40.S.033. DOI
Huang G., Huang H. Application of hyaluronic acid as carriers in drug delivery. Drug Deliv. 2018;25:766–772. doi: 10.1080/10717544.2018.1450910. PubMed DOI PMC
Hirakura T., Yasugi K., Nemoto T. Hybrid hyaluronan hydrogel encapsulating nanogel as a protein nanocarrier new system for sustained delivery of protein with a chaperone-like function. J. Control. Release. 2010;142:483–489. doi: 10.1016/j.jconrel.2009.11.023. PubMed DOI
Zhang L.M., Wu C.X., Huang J.Y., Peng H.X., Chen P., Tang S.Q. Synthesis and characterization of a degradable composite agarose/HA hydrogel. Carbohydr. Polym. 2012;88:1445–1452. doi: 10.1016/j.carbpol.2012.02.050. DOI
Vercruysse K.P., Prestwich G.D. Hyaluronate derivatives in the drug delivery. Crit. Rev. Ther. Drug Carr. Syst. 1998;15:513–555. doi: 10.1615/CritRevTherDrugCarrierSyst.v15.i5.30. PubMed DOI
Schante C.E., Zuber G., Herlin C., Vandamme T.F. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr. Polym. 2011;85:469–489. doi: 10.1016/j.carbpol.2011.03.019. DOI
Zhang W., Mu H., Dong D., Wang D., Zhang A., Duan J. Alteration in immune responses toward N-deacetylation of hyaluronic acid. Glycobiology. 2014;24:1334–1342. doi: 10.1093/glycob/cwu079. PubMed DOI
Bulpitt P., Aeschlimann D. New strategy for chemical modification of hyaluronic acid: Preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J. Biomed. Mater. Res. 1999;47:152–169. doi: 10.1002/(SICI)1097-4636(199911)47:2<152::AID-JBM5>3.0.CO;2-I. PubMed DOI
Crescenzi V., Francescangeli A., Segre A.L., Capitani D., Mannina L., Renier D., Bellini D. NMR structural study of hydrogels based on partially deacetylated hyaluronan. Macromol. Biosci. 2002;2:272–279. doi: 10.1002/1616-5195(200208)2:6<272::AID-MABI272>3.0.CO;2-V. DOI
Xu X., Jha A., Harrington D., Farach-Carson M., Jia X. Hyaluronic acid-based hydrogels from a natural polysaccharide to complex networks. Soft Matter. 2012;8:328–329. doi: 10.1039/c2sm06463d. PubMed DOI PMC
Highley C.B., Prestwich G.D., Burdick J.A. Recent advances in hyaluronic acid hydrogels for biomedical applications. Curr. Opin. Biotechnol. 2016;40:35–40. doi: 10.1016/j.copbio.2016.02.008. PubMed DOI
Segura T., Anderson B.C., Chung P.H., Webber R.E., Shull K.R., Shea L.D. Crosslinked hyaluronic acid hydrogels a strategy to functionalize and pattern. Biomaterials. 2005;26:359–371. doi: 10.1016/j.biomaterials.2004.02.067. PubMed DOI
Hahn S.K., Jelacic S., Maier R.V., Stayton P.S., Hoffman A.S. Anti-inflammatory drug delivery from hyaluronic acid hydrogels. J. Biomater. Sci. Polym. Ed. 2004;15:1111–1119. doi: 10.1163/1568562041753115. PubMed DOI
Tomihata K., Ikada Y. Cross-linking of hyaluronic acid with glutaraldehyde. J. Polym. Sci. Part A Polym. Chem. 1997;35:3553–3559. doi: 10.1002/(SICI)1099-0518(19971130)35:16<3553::AID-POLA22>3.0.CO;2-D. DOI
Kuo J.W., Swann D.A., Prestwich G.D. Chemical modification of hyaluronic acid by carbodiimides. Bioconjug. Chem. 1991;2:232–241. doi: 10.1021/bc00010a007. PubMed DOI
Ma X., Tian H. Stimuli-responsive supramolecular polymers in aqueous solution. Acc. Chem. Res. 2014;47:1971–1981. doi: 10.1021/ar500033n. PubMed DOI
Dong R., Zhou Y., Huang X., Zhu X., Lu Y., Shen J. Functional supramolecular polymers for biomedical applications. Adv. Mater. 2015;27:498–526. doi: 10.1002/adma.201402975. PubMed DOI
Harada A. Supramolecular polymers based on cyclodextrins. J. Polym. Sci. Part A Polym. Chem. 2006;44:5113–5119. doi: 10.1002/pola.21618. DOI
Rodell C.B., Kaminski A.L., Burdick J.A. Rational design of network properties in guest-host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromolecules. 2013;14:4125–4134. doi: 10.1021/bm401280z. PubMed DOI PMC
Zhu L.L., Li X., Ji F.Y., Ma X., Wang Q.C., Tian H. Photolockable ratiometric viscosity sensitivity of cyclodextrin polypseudorotaxane with light-active rotor graft. Langmuir. 2009;25:3482–3486. doi: 10.1021/la8042457. PubMed DOI
Yang Y., Zhang Y.M., Chen Y., Chen J.T., Liu Y. Polysaccharide-based noncovalent assembly for targeted delivery of taxol. Sci. Rep. 2016;6:19212. doi: 10.1038/srep19212. PubMed DOI PMC
Zhang Y.H., Zhang Y.M., Yang Y., Chen L.X., Liu Y. Controlled DNA condensation and targeted cellular imaging by ligand exchange in a polysaccharide-quantum dot conjugate. Chem. Commun. 2016;52:6087–6090. doi: 10.1039/C6CC01571A. PubMed DOI
Kim S.H., In I., Park S.Y. pH-Responsive NIR-absorbing fluorescent polydopamine with hyaluronic acid for dual targeting and synergistic effects of photothermal and chemotherapy. Biomacromolecules. 2017;18:1825–1835. doi: 10.1021/acs.biomac.7b00267. PubMed DOI
Zhao Q., Chen Y., Sun M., Wu X.J., Liu Y. Construction and drug delivery of a fluorescent TPE-bridged cyclodextrin/hyaluronic acid supramolecular assembles. RSC Adv. 2016;6:50673–50679. doi: 10.1039/C6RA07572J. DOI
Badwaik V., Liu L., Gunasekera D., Kulkarni A., Thompson D.H. Mechanistic insight into receptor-mediated Delivery of Cationic-β-Cyclodextrin: Hyaluronic Acid-Adamantamethamidyl Host-Guest p-DNA nanoparticles to CD44+ Cells. Mol. Pharm. 2016;13:1176–1184. doi: 10.1021/acs.molpharmaceut.6b00078. PubMed DOI PMC
Piperno A., Zagami R., Cordaro A., Pennisi R., Musarra-Pizzo M., Scala A., Sciortino M.T., Mazzaglia A. Exploring the entrapment of antiviral agents in hyaluronic acid-cyclodextrin conjugates. J. Incl. Phenom. Macrocycl. Chem. 2019;93:33–40. doi: 10.1007/s10847-018-0829-6. DOI
Banerji S., Wright A.J., Noble M., Mahoney D.J., Campbell I.D., Day A.J., Jackson D.G. Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction. Nat. Struct. Mol. Biol. 2007;14:234–239. doi: 10.1038/nsmb1201. PubMed DOI
Zhong S.P., Campoccia D., Doherty P.J., Williams R.L., Benedetti L., Williams D.F. Biodegradation of hyaluronic acid derivatives by hyaluronidase. Biomaterials. 1994;15:359–365. doi: 10.1016/0142-9612(94)90248-8. PubMed DOI
Raoov M., Mohamad S.H., Radzi M. Synthesis and characterization of β-cyclodextrin functionalized ionic liquid polymer as a macroporous material for the removal of phenols and As (V) Int. J. Mol. Sci. 2014;15:100–119. doi: 10.3390/ijms15010100. PubMed DOI PMC
Nielsen T.T., Wintgens V., Amiel C., Wimmer R., Lambertsen K. Facile synthesis of β-cyclodextrin-dextran polymers by click chemistry. Biomacromolecules. 2010;11:1710–1715. doi: 10.1021/bm9013233. PubMed DOI
Huerta-Angeles G., Němcova M., Přikopová E., Šmjekalová D., Pravda M., Kučera L., Velebný V. Reductive alkylation of hyaluronic acid for the synthesis of biocompatible hydrogels by click chemistry. Carbohydr. Polym. 2012;90:1704–1711. doi: 10.1016/j.carbpol.2012.07.054. PubMed DOI
Rekharsky M.V., Inoue Y. Complexation Thermodynamics of Cyclodextrins. Chem. Rev. 1998;98:1875–1918. doi: 10.1021/cr970015o. PubMed DOI
Moghaddam S., Yang C., Rekharsky M., Ko Y.H., Inoue Y., Gilson M.K. New Ultrahigh Affinity Host-Guest Complexes of Cucurbit[7]uril with Bicyclo[2.2.2]octane and Adamantane Guests: Thermodynamic Analysis and Evaluation of M2 Affinity Calculations. J. Am. Chem. Soc. 2011;133:3570–3581. doi: 10.1021/ja109904u. PubMed DOI PMC
Branná P., Rouchal M., Prucková Z., Dastychová L., Lenobel R., Pospíšil T., Maláč K., Vícha R. Rotaxanes capped with host molecules: Supramolecular behavior of adamantylated bisimidazolium salts containing a biphenyl centerpiece. Chem. Eur. J. 2015;21:11712–11718. PubMed
Kulkarni S.G., Prucková Z., Rouchal M., Dastychová L., Vícha R. Adamantylated trisimidazolium-based tritopic guests and their binding properties towards cucurbit[7]uril and β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2016;84:11–20. doi: 10.1007/s10847-015-0577-9. DOI
Schneider H.-J., Hacket F., Rüdiger V., Ikeda H. NMR Studies of Cyclodextrins and Cyclodextrin Complexes. Chem. Rev. 1998;98:1755–1785. doi: 10.1021/cr970019t. PubMed DOI
Assaf K.I., Nau W.M. Cucurbiturils: From synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 2015;44:394–418. doi: 10.1039/C4CS00273C. PubMed DOI
Barrow S.J., Kasera S., Rowland M.J., del Barrio J., Scherman O.A. Cucurbituril-Based Molecular Recognition. Chem. Rev. 2015;115:12320–12406. doi: 10.1021/acs.chemrev.5b00341. PubMed DOI