Stabilization of the β-hairpin in Mason-Pfizer monkey virus capsid protein- a critical step for infectivity
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25365920
PubMed Central
PMC4219007
DOI
10.1186/s12977-014-0094-8
PII: s12977-014-0094-8
Knihovny.cz E-zdroje
- MeSH
- AIDS opičí genetika metabolismus MeSH
- buněčné linie MeSH
- HEK293 buňky MeSH
- lidé MeSH
- Masonův-Pfizerův opičí virus genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- mutace genetika MeSH
- sekundární struktura proteinů genetika MeSH
- sekvence aminokyselin MeSH
- sestavení viru genetika MeSH
- virion genetika metabolismus MeSH
- virové plášťové proteiny metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- virové plášťové proteiny MeSH
BACKGROUND: Formation of a mature core is a crucial event for infectivity of retroviruses such as Mason-Pfizer monkey virus (M-PMV). The process is triggered by proteolytic cleavage of the polyprotein precursor Gag, which releases matrix, capsid (CA), and nucleocapsid proteins. Once released, CA assembles to form a mature core - a hexameric lattice protein shell that protects retroviral genomic RNA. Subtle conformational changes within CA induce the transition from the immature lattice to the mature lattice. Upon release from the precursor, the initially unstructured N-terminus of CA is refolded to form a β-hairpin stabilized by a salt bridge between the N-terminal proline and conserved aspartate. Although the crucial role of the β-hairpin in the mature core assembly has been confirmed, its precise structural function remains poorly understood. RESULTS: Based on a previous NMR analysis of the N-terminal part of M-PMV CA, which suggested the role of additional interactions besides the proline-aspartate salt bridge in stabilization of the β-hairpin, we introduced a series of mutations into the CA sequence. The effect of the mutations on virus assembly and infectivity was analyzed. In addition, the structural consequences of selected mutations were determined by NMR spectroscopy. We identified a network of interactions critical for proper formation of the M-PMV core. This network involves residue R14, located in the N-terminal β-hairpin; residue W52 in the loop connecting helices 2 and 3; and residues Q113, Q115, and Y116 in helix 5. CONCLUSION: Combining functional and structural analyses, we identified a network of supportive interactions that stabilize the β-hairpin in mature M-PMV CA.
Zobrazit více v PubMed
Chen K, Piszczek G, Carter C, Tjandra N. The maturational refolding of the beta-hairpin motif of equine infectious anemia virus capsid protein extends its helix alpha1 at capsid assembly locus. J Biol Chem. 2013;288:1511–1520. doi: 10.1074/jbc.M112.425140. PubMed DOI PMC
Kingston RL, Fitzon-Ostendorp T, Eisenmesser EZ, Schatz GW, Vogt VM, Post CB, Rossmann MG. Structure and self-association of the Rous sarcoma virus capsid protein. Structure Fold Des. 2000;8:617–628. doi: 10.1016/S0969-2126(00)00148-9. PubMed DOI
Cornilescu CC, Bouamr F, Yao X, Carter C, Tjandra N. Structural analysis of the N-terminal domain of the human T-cell leukemia virus capsid protein. J Mol Biol. 2001;306:783–797. doi: 10.1006/jmbi.2000.4395. PubMed DOI
Gamble TR, Yoo SH, Vajdos FF, Von Schwedler UK, Worthylake DK, Wang H, McCutcheon JP, Sundquist WI, Hill CP. Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science. 1997;278:849–853. doi: 10.1126/science.278.5339.849. PubMed DOI
Gitti RK, Lee BM, Walker J, Summers MF, Yoo S, Sundquist WI. Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science. 1996;273:231–235. doi: 10.1126/science.273.5272.231. PubMed DOI
Macek P, Chmelik J, Krizova I, Kaderavek P, Padrta P, Zidek L, Wildova M, Hadravova R, Chaloupkova R, Pichova I, Ruml T, Rumlova M, Sklenář V. NMR structure of the N-terminal domain of capsid protein from the Mason-Pfizer monkey virus. J Mol Biol. 2009;392:100–114. doi: 10.1016/j.jmb.2009.06.029. PubMed DOI
Mortuza GB, Dodding MP, Goldstone DC, Haire LF, Stoye JP, Taylor IA. Structure of B-MLV capsid amino-terminal domain reveals Key features of viral tropism, Gag assembly and core formation. J Mol Biol. 2008;376:1493–1508. doi: 10.1016/j.jmb.2007.12.043. PubMed DOI
Bharat TA, Davey NE, Ulbrich P, Riches JD, de Marco A, Rumlova M, Sachse C, Ruml T, Briggs JA. Structure of the immature retroviral capsid at 8 A resolution by cryo-electron microscopy. Nature. 2012;487:385–389. doi: 10.1038/nature11169. PubMed DOI
Pornillos O, Ganser-Pornillos BK, Kelly BN, Hua Y, Whitby FG, Stout CD, Sundquist WI, Hill CP, Yeager M. X-ray structures of the hexameric building block of the HIV capsid. Cell. 2009;137:1282–1292. doi: 10.1016/j.cell.2009.04.063. PubMed DOI PMC
Tang C, Ndassa Y, Summers MF. Structure of the N-terminal 283-residue fragment of the immature HIV-1 Gag polyprotein. Nat Struct Biol. 2002;9:537–543. PubMed
Kelly BN, Howard BR, Wang H, Robinson H, Sundquist WI, Hill CP. Implications for viral capsid assembly from crystal structures of HIV-1 Gag(1–278) and CA(N)(133–278) Biochemistry. 2006;45:11257–11266. doi: 10.1021/bi060927x. PubMed DOI
Ganser-Pornillos BK, Cheng A, Yeager M. Structure of full-length HIV-1 CA: a model for the mature capsid lattice. Cell. 2007;131:70–79. doi: 10.1016/j.cell.2007.08.018. PubMed DOI
Mortuza GB, Haire LF, Stevens A, Smerdon SJ, Stoye JP, Taylor IA. High-resolution structure of a retroviral capsid hexameric amino-terminal domain. Nature. 2004;431:481–485. doi: 10.1038/nature02915. PubMed DOI
Monroe EB, Kang S, Kyere SK, Li R, Prevelige PE., Jr Hydrogen/deuterium exchange analysis of HIV-1 capsid assembly and maturation. Structure. 2010;18:1483–1491. doi: 10.1016/j.str.2010.08.016. PubMed DOI PMC
von Schwedler UK, Stemmler TL, Klishko VY, Li S, Albertine KH, Davis DR, Sundquist WI. Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J. 1998;19:2391–2391. doi: 10.1038/sj.emboj.7593063. PubMed DOI PMC
Wildova M, Hadravova R, Stokrova J, Krizova I, Ruml T, Hunter E, Pichova I, Rumlova M. The effect of point mutations within the N-terminal domain of Mason-Pfizer monkey virus capsid protein on virus core assembly and infectivity. Virology. 2008;380:157–163. doi: 10.1016/j.virol.2008.07.021. PubMed DOI PMC
Rumlova-Klikova M, Hunter E, Nermut MV, Pichova I, Ruml T. Analysis of Mason-Pfizer monkey virus Gag domains required for capsid assembly in bacteria: Role of the N-terminal proline residue of CA in directing particle shape. J Virol. 2000;74:8452–8459. doi: 10.1128/JVI.74.18.8452-8459.2000. PubMed DOI PMC
Ulbrich P, Haubova S, Nermut MV, Hunter E, Rumlova M, Ruml T. Distinct roles for nucleic acid in in vitro assembly of purified Mason-Pfizer monkey virus CANC proteins. J Virol. 2006;80:7089–7099. doi: 10.1128/JVI.02694-05. PubMed DOI PMC
Joshi SM, Vogt VM. Role of the rous sarcoma virus p10 domain in shape determination of Gag virus-like particles assembled in vitro and within Escherichia coli. J Virol. 2000;74:10260–10268. doi: 10.1128/JVI.74.21.10260-10268.2000. PubMed DOI PMC
Gross I, Hohenberg H, Wilk T, Wiegers K, Grattinger M, Muller B, Fuller S, Krausslich HG. A conformational switch controlling HIV-1 morphogenesis. EMBO J. 2000;19:103–113. doi: 10.1093/emboj/19.1.103. PubMed DOI PMC
Phillips JM, Murray PS, Murray D, Vogt VM. A molecular switch required for retrovirus assembly participates in the hexagonal immature lattice. EMBO J. 2008;27:1411–1420. doi: 10.1038/emboj.2008.71. PubMed DOI PMC
Nermut MV, Bron P, Thomas D, Rumlova M, Ruml T, Hunter E. Molecular organization of mason-pfizer monkey virus capsids assembled from Gag polyprotein in Escherichia coli. J Virol. 2002;76:4321–4330. doi: 10.1128/JVI.76.9.4321-4330.2002. PubMed DOI PMC
Krizova I, Hadravova R, Stokrova J, Gunterova J, Dolezal M, Ruml T, Rumlova M, Pichova I. The G-patch domain of Mason-Pfizer monkey virus is a part of reverse transcriptase. J Virol. 2012;86:1988–1998. doi: 10.1128/JVI.06638-11. PubMed DOI PMC
Brody BA, Rhee SS, Sommerfelt MA, Hunter E. A viral protease-mediated cleavage of the transmembrane glycoprotein of mason-pfizer monkey virus can be suppressed by mutations within the matrix protein. Proc Natl Acad Sci. 1992;89:3443–3447. doi: 10.1073/pnas.89.8.3443. PubMed DOI PMC
Keller PW, Huang RK, England MR, Waki K, Cheng N, Heymann JB, Craven RC, Freed EO, Steven AC. A two-pronged structural analysis of retroviral maturation indicates that core formation proceeds by a disassembly-reassembly pathway rather than a displacive transition. J Virol. 2013;87:13655–13664. doi: 10.1128/JVI.01408-13. PubMed DOI PMC
von Schwedler UK, Stray KM, Garrus JE, Sundquist WI. Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J Virol. 2003;77:5439–5450. doi: 10.1128/JVI.77.9.5439-5450.2003. PubMed DOI PMC
Forshey BM, von Schwedler U, Sundquist WI, Aiken C. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J Virol. 2002;76:5667–5677. doi: 10.1128/JVI.76.11.5667-5677.2002. PubMed DOI PMC
Newman RM, Hall L, Connole M, Chen GL, Sato S, Yuste E, Diehl W, Hunter E, Kaur A, Miller GM, Johnson WE. Balancing selection and the evolution of functional polymorphism in Old World monkey TRIM5{alpha} Proc Natl Acad Sci. 2006;103:19134–19139. doi: 10.1073/pnas.0605838103. PubMed DOI PMC
Rumlova M, Benedikova J, Cubinkova R, Pichova I, Ruml T. Comparison of classical and affinity purification techniques of Mason-Pfizer monkey virus capsid protein: The alteration of the product by an affinity tag. Protein Expr Purif. 2001;23:75–83. doi: 10.1006/prep.2001.1488. PubMed DOI
Stansell E, Apkarian R, Haubova S, Diehl WE, Tytler EM, Hunter E. Basic residues in the mason-pfizer monkey virus Gag matrix domain regulate intracellular trafficking and capsid-membrane interactions. J Virol. 2007;81:8977–8988. doi: 10.1128/JVI.00657-07. PubMed DOI PMC
Macek P, Żídek L, Rumlová M, Pichová I, Sklenář V. 1H, 13C, and 15N resonance assignment of the N-terminal domain of Mason-Pfizer monkey virus capsid protein, CANTD 1–140. Biomol NMR Assign. 2008;2:43–45. doi: 10.1007/s12104-008-9080-1. PubMed DOI
Marion D, Driscoll PC, Kay LE, Wingfield PT, Bax A, Gronenborn AM, Clore GM. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry. 1989;28:6150–6156. doi: 10.1021/bi00441a004. PubMed DOI
Sattler M, Schleucher J, Griesinger C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Magn Reson Spectrosc. 1999;34:93–158. doi: 10.1016/S0079-6565(98)00025-9. DOI
Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. NMRpipe - a multidimensional spectral processing system based on unix pipes. J Biomol NMR. 1995;6:277–293. doi: 10.1007/BF00197809. PubMed DOI
Rumlova M, Ruml T, Pohl J, Pichova I. Specific in vitro cleavage of Mason-Pfizer monkey virus capsid protein: evidence for a potential role of retroviral protease in early stages of infection. Virology. 2003;310:310–318. doi: 10.1016/S0042-6822(03)00128-4. PubMed DOI
Unveiling the DHX15-G-patch interplay in retroviral RNA packaging