The effect of point mutations within the N-terminal domain of Mason-Pfizer monkey virus capsid protein on virus core assembly and infectivity
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
R01 CA027834
NCI NIH HHS - United States
R37 CA027834
NCI NIH HHS - United States
PubMed
18755489
PubMed Central
PMC3779695
DOI
10.1016/j.virol.2008.07.021
PII: S0042-6822(08)00482-0
Knihovny.cz E-zdroje
- MeSH
- bodová mutace * MeSH
- Masonův-Pfizerův opičí virus genetika metabolismus MeSH
- sestavení viru genetika fyziologie MeSH
- virion genetika metabolismus MeSH
- virové plášťové proteiny chemie genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- virové plášťové proteiny MeSH
Retroviral capsid protein (CA) mediates protein interactions driving the assembly of both immature viral particles and the core of the mature virions. Structurally conserved N-terminal domains of several retroviruses refold after proteolytic cleavage into a beta-hairpin, stabilized by a salt bridge between conserved N-terminal Pro and Asp residues. Based on comparison with other retroviral CA, we identified Asp50 and Asp57 as putative interacting partners for Pro1 in Mason-Pfizer monkey virus (M-PMV) CA. To investigate the importance of CA Pro1 and its interacting Asp in M-PMV core assembly and infectivity, P1A, P1Y, D50A, T54A and D57A mutations were introduced into M-PMV. The P1A and D57A mutations partially blocked Gag processing and the released viral particles exhibited aberrant cores and were non-infectious. These data indicate that the region spanning residues Asp50-Asp57 plays an important role in stabilization of the beta-hairpin and that Asp57 likely forms a salt-bridge with P1 in M-PMV CA.
Zobrazit více v PubMed
Abdurahman S, Youssefi M, Hoglund S, Vahlne A. Characterization of the invariable residue 51 mutations of human immunodeficiency virus type 1 capsid protein on in vitro CA assembly and infectivity. Retrovirology. 2007;4:69. PubMed PMC
Auerbach MR, Brown KR, Singh IR. Mutational analysis of the N-Terminal domain of Moloney murine leukemia virus capsid protein. J. Virol. 2007;81:12337–12347. PubMed PMC
Bouamr F, Cornilescu CC, Goff SP, Tjandra N, Carter CA. Structural and dynamics studies of the D54A mutant of human T cell leukemia virus-1 capsid protein. J. Biol. Chem. 2005;280:6792–6801. PubMed
Brody BA, Hunter E. Mutations within the env gene of Mason-Pfizer monkey virus: effects on protein transport and SU–TM association. J.Virol. 1992;66:3466–3475. PubMed PMC
Campos-Olivas R, Newman JL, Summers MF. Solution structure and dynamics of the Rous sarcoma virus capsid protein and comparison with capsid proteins of other retroviruses. J. Mol. Biol. 2000;296:633–649. PubMed
Cornilescu CC, Bouamr F, Yao X, Carter C, Tjandra N. Structural analysis of the N-terminal domain of the human T-cell leukemia virus capsid protein. J. Mol. Biol. 2001;306:783–797. PubMed
Forshey BM, von Schwedler U, Sundquist WI, Aiken C. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J. Virol. 2002;76:5667–5677. PubMed PMC
Gamble TR, Yoo SH, Vajdos FF, vonSchwedler UK, Worthylake DK, Wang H, McCutcheon JP, Sundquist WI, Hill CP. Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science. 1997;278:849–853. PubMed
Gamble TR, Vajdos FF, Yoo S, Worthylake DK, Houseweart M, Sundquist WI, Hill CP. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell. 1996;87:1285–1294. PubMed
Ganser-Pornillos BK, von Schwedler UK, Stray KM, Aiken C, Sundquist WI. Assembly properties of the human immunodeficiency virus type 1 CA protein. J. Virol. 2004;78:2545–2552. PubMed PMC
Ganser-Pornillos BK, Cheng A, Yeager M. Structure of full-length HIV-1 CA: a model for the mature capsid lattice. Cell. 2007;131:70–79. PubMed
Gitti RK, Lee BM, Walker J, Summers MF, Yoo S, Sundquist WI. Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science. 1996;273:231–235. PubMed
Gross I, Hohenberg H, Huckhagel C, Krausslich HG. N-terminal extension of human immunodeficiency virus capsid protein converts the in vitro assembly phenotype from tubular to spherical particles. J. Virol. 1998;72:4798–4810. PubMed PMC
Jin Z, Jin L, Peterson DL, Lawson CL. Model for lentivirus capsid core assembly based on crystal dimers of EIAV p26. J. Mol. Biol. 1999;286:83–93. PubMed
Khorasanizadeh S, Campos-Olivas R, Summers MF. Solution structure of the capsid protein from the human T-cell leukemia virus type-I. J. Mol. Biol. 1999;291:491–505. PubMed
Kingston RL, Fitzon-Ostendorp T, Eisenmesser EZ, Schatz GW, Vogt VM, Post CB, Rossmann MG. Structure and self-association of the Rous sarcoma virus capsid protein. Struc. Fold. Des. 2000;8:617–628. PubMed
Leschonsky B, Ludwig C, Bieler K, Wagner R. Capsid stability and replication of human immunodeficiency virus type 1 are influenced critically by charge and size of Gag residue 183. J. Gen. Virol. 2007;88:207–216. PubMed
Momany C, Kovari LC, Prongay AJ, Keller W, Gitti RK, Lee BM, Gorbalenya AE, Tong L, McClure J, Ehrlich LS, Summers MF, Carter C, Rossmann MG. Crystal structure of dimeric HIV-1 capsid protein. Nat. Struct. Biol. 1996;3:763–770. PubMed
Mortuza GB, Haire LF, Stevens A, Smerdon SJ, Stoye JP, Taylor IA. High-resolution structure of a retroviral capsid hexameric amino-terminal domain. Nature. 2004;431:481–485. PubMed
Mortuza GB, Dodding MP, Goldstone DC, Haire LF, Stoye JP, Taylor IA. Structure of B-MLV capsid amino-terminal domain reveals key features of viral tropism, Gag assembly and core formation. J. Gen. Virol. 2008;376:1493–1508. PubMed
Nandhagopal N, Simpson AA, Johnson MC, Francisco AB, Schatz GW, Rossmann MG, Vogt VM. Dimeric Rous sarcoma virus capsid protein structure relevant to immature Gag assembly. J. Mol. Biol. 2004;335:275–282. PubMed
Newman RM, Hall L, Connole M, Chen GL, Sato S, Yuste E, Diehl W, Hunter E, Kaur A, Miller GM, Johnson WE. Balancing selection and the evolution of functional polymorphism in Old World monkey TRIM5{alpha} Proc. Natl. Acad. Sci. U. S. A. 2006;103:19134–19139. PubMed PMC
Parker SD, Hunter E. Activation of the Mason-Pfizer monkey virus protease within immature capsids in vitro. Proc. Natl. Acad. Sci. U. S. A. 2001;98:14631–14636. PubMed PMC
Pettit SC, Henderson GJ, Schiffer CA, Swanstrom R. Replacement of the P1 amino acid of human immunodeficiency virus type 1 Gag processing sites can inhibit or enhance the rate of cleavage by the viral protease. J. Virol. 2002;76:10226–10233. PubMed PMC
Rayne F, Bouamr F, Lalanne J, Mamoun RZ. The NH2-terminal domain of the human T-cell leukemia virus type 1 capsid protein is involved in particle formation. J. Virol. 2001;75:5277–5287. PubMed PMC
Rumlova M, Ruml T, Pohl J, Pichova I. Specific in vitro cleavage of Mason-Pfizer monkey virus capsid protein: evidence for a potential role of retroviral protease in early stages of infection. Virology. 2003;310:310–318. PubMed
Rumlova-Klikova M, Hunter E, Nermut MV, Pichova I, Ruml T. Analysis of Mason-Pfizer monkey virus gag domains required for capsid assembly in bacteria: role of the N-terminal proline residue of CA in directing particle shape. J. Virol. 2000;74:8452–8459. PubMed PMC
Stansell E, Apkarian R, Haubova S, Diehl WE, Tytler EM, Hunter E. Basic residues in the Mason-Pfizer monkey virus Gag matrix domain regulate intracellular trafficking and capsid-membrane interactions. J. Virol. 2007;81:8977–8988. PubMed PMC
Strambio-de-Castillia C, Hunter E. Mutational analysis of the major homology region of Mason-Pfizer monkey virus by use of saturation mutagenesis. J. Virol. 1992;66:7021–7032. PubMed PMC
von Schwedler UK, Stemmler TL, Klishko VY, Li S, Albertine KH, Davis DR, Sundquist WI. Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. Embo. J. 1998;17:1555–1568. PubMed PMC
von Schwedler UK, Stray KM, Garrus JE, Sundquist WI. Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J. Virol. 2003;77:5439–5450. PubMed PMC
In vitro assembly of virus-like particles of a gammaretrovirus, the murine leukemia virus XMRV