Basal Forebrain Atrophy Is Associated With Allocentric Navigation Deficits in Subjective Cognitive Decline
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33658916
PubMed Central
PMC7917187
DOI
10.3389/fnagi.2021.596025
Knihovny.cz E-zdroje
- Klíčová slova
- allocentric, basal forebrain, entorhinal cortex, spatial navigation, subjective cognitive decline,
- Publikační typ
- časopisecké články MeSH
Individuals with subjective cognitive decline (SCD) are at higher risk of incipient Alzheimer's disease (AD). Spatial navigation (SN) impairments in AD dementia and mild cognitive impairment patients have been well-documented; however, studies investigating SN deficits in SCD subjects are still lacking. This study aimed to explore whether basal forebrain (BF) and entorhinal cortex (EC) atrophy contribute to spatial disorientation in the SCD stage. In total, 31 SCD subjects and 24 normal controls were enrolled and administered cognitive scales, a 2-dimensional computerized SN test, and structural magnetic resonance imaging (MRI) scanning. We computed the differences in navigation distance errors and volumes of BF subfields, EC, and hippocampus between the SCD and control groups. The correlations between MRI volumetry and navigation distance errors were also calculated. Compared with the controls, the SCD subjects performed worse in both egocentric and allocentric navigation. The SCD group showed volume reductions in the whole BF (p < 0.05, uncorrected) and the Ch4p subfield (p < 0.05, Bonferroni corrected), but comparable EC and hippocampal volumes with the controls. In the SCD cohort, the allocentric errors were negatively correlated with total BF (r = -0.625, p < 0.001), Ch4p (r = -0.625, p < 0.001), total EC (r = -0.423, p = 0.031), and left EC volumes (r = -0.442, p = 0.024), adjusting for age, gender, years of education, total intracranial volume, and hippocampal volume. This study demonstrates that SN deficits and BF atrophy may be promising indicators for the early detection of incipient AD patients. The reduced BF volume, especially in the Ch4p subfield, may serve as a structural basis for allocentric disorientation in SCD subjects independent of hippocampal atrophy. Our findings may have further implications for the preclinical diagnosis and intervention for potential AD patients.
Department of Radiology Drum Tower Hospital Medical School of Nanjing University Nanjing China
Institute of Brain Science Nanjing University Nanjing China
International Clinical Research Center St Anne's University Hospital Brno Brno Czechia
Zobrazit více v PubMed
Ashburner J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–113. 10.1016/j.neuroimage.2007.07.007 PubMed DOI
Berger-Sweeney J., Stearns N. A., Murg S. L., Floerke-Nashner L. R., Lappi D. A., Baxter M. G. (2001). Selective immunolesions of cholinergic neurons in mice: effects on neuroanatomy, neurochemistry, and behavior. J. Neurosci. 21, 8164–8173. 10.1523/JNEUROSCI.21-20-08164.2001 PubMed DOI PMC
Botly L. C., De Rosa E. (2009). Cholinergic deafferentation of the neocortex using 192 IgG-saporin impairs feature binding in rats. J. Neurosci. 29, 4120–4130. 10.1523/JNEUROSCI.0654-09.2009 PubMed DOI PMC
Botly L. C., De Rosa E. (2012). Impaired visual search in rats reveals cholinergic contributions to feature binding in visuospatial attention. Cereb. Cortex 22, 2441–2453. 10.1093/cercor/bhr331 PubMed DOI
Braak H., Del Tredici K. (2015). The preclinical phase of the pathological process underlying sporadic Alzheimer's disease. Brain 138, 2814–2833. 10.1093/brain/awv236 PubMed DOI
Chao-Gan Y., Yu-Feng Z. (2010). DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 4:13. 10.3389/fnsys.2010.00013 PubMed DOI PMC
Colombo D., Serino S., Tuena C., Pedroli E., Dakanalis A., Cipresso P., et al. . (2017). Egocentric and allocentric spatial reference frames in aging: a systematic review. Neurosci. Biobehav. Rev. 80, 605–621. 10.1016/j.neubiorev.2017.07.012 PubMed DOI
Coughlan G., Laczo J., Hort J., Minihane A. M., Hornberger M. (2018). Spatial navigation deficits - overlooked cognitive marker for preclinical Alzheimer disease? Nat. Rev. Neurol. 14, 496–506. 10.1038/s41582-018-0031-x PubMed DOI
Coughlan G., Zhukovsky P., Puthusseryppady V., Gillings R., Minihane A. M., Cameron D., et al. . (2020). Functional connectivity between the entorhinal and posterior cingulate cortices underpins navigation discrepancies in at-risk Alzheimer's disease. Neurobiol. Aging 90, 110–118. 10.1016/j.neurobiolaging.2020.02.007 PubMed DOI
Dahnke R., Yotter R. A., Gaser C. (2013). Cortical thickness and central surface estimation. Neuroimage 65, 336–348. 10.1016/j.neuroimage.2012.09.050 PubMed DOI
Davies P., Maloney A. J. (1976). Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet 2:1403. 10.1016/S0140-6736(76)91936-X PubMed DOI
Doeller C. F., Barry C., Burgess N. (2010). Evidence for grid cells in a human memory network. Nature 463, 657–661. 10.1038/nature08704 PubMed DOI PMC
Fan L., Li H., Zhuo J., Zhang Y., Wang J., Chen L., et al. . (2016). The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb. Cortex 26, 3508–3526. 10.1093/cercor/bhw157 PubMed DOI PMC
Furey M. L., Pietrini P., Haxby J. V. (2000). Cholinergic enhancement and increased selectivity of perceptual processing during working memory. Science 290, 2315–2319. 10.1126/science.290.5500.2315 PubMed DOI
Gifford K. A., Liu D., Romano R., 3rd, Jones R. N., Jefferson A. L. (2015). Development of a subjective cognitive decline questionnaire using item response theory: a pilot study. Alzheimers Dement. 1, 429–439. 10.1016/j.dadm.2015.09.004 PubMed DOI PMC
Glikmann-Johnston Y., Carmichael A. M., Mercieca E. C., Stout J. C. (2019). “Real-life” hippocampal-dependent spatial memory impairments in Huntington's disease. Cortex 119, 46–60. 10.1016/j.cortex.2019.04.006 PubMed DOI
Grothe M., Heinsen H., Teipel S. (2013). Longitudinal measures of cholinergic forebrain atrophy in the transition from healthy aging to Alzheimer's disease. Neurobiol. Aging 34, 1210–1220. 10.1016/j.neurobiolaging.2012.10.018 PubMed DOI PMC
Grothe M., Heinsen H., Teipel S. J. (2012). Atrophy of the cholinergic Basal forebrain over the adult age range and in early stages of Alzheimer's disease. Biol. Psychiatry 71, 805–813. 10.1016/j.biopsych.2011.06.019 PubMed DOI PMC
Grothe M., Zaborszky L., Atienza M., Gil-Neciga E., Rodriguez-Romero R., Teipel S. J., et al. . (2010). Reduction of basal forebrain cholinergic system parallels cognitive impairment in patients at high risk of developing Alzheimer's disease. Cereb. Cortex 20, 1685–1695. 10.1093/cercor/bhp232 PubMed DOI PMC
Grothe M. J., Ewers M., Krause B., Heinsen H., Teipel S. J. (2014). Basal forebrain atrophy and cortical amyloid deposition in nondemented elderly subjects. Alzheimers Dement. 10, S344–S353. 10.1016/j.jalz.2013.09.011 PubMed DOI PMC
Hafting T., Fyhn M., Molden S., Moser M. B., Moser E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806. 10.1038/nature03721 PubMed DOI
Hamlin A. S., Windels F., Boskovic Z., Sah P., Coulson E. J. (2013). Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation. PLoS ONE 8:e53472. 10.1371/journal.pone.0053472 PubMed DOI PMC
Harris M. A., Wiener J. M., Wolbers T. (2012). Aging specifically impairs switching to an allocentric navigational strategy. Front. Aging Neurosci. 4:29. 10.3389/fnagi.2012.00029 PubMed DOI PMC
Henry J. D., Crawford J. R., Phillips L. H. (2004). Verbal fluency performance in dementia of the Alzheimer's type: a meta-analysis. Neuropsychologia 42, 1212–1222. 10.1016/j.neuropsychologia.2004.02.001 PubMed DOI
Hong Y. J., Kim C. M., Jang E. H., Hwang J., Roh J. H., Lee J. H. (2016). White matter changes may precede gray matter loss in elderly with subjective memory impairment. Dement. Geriatr. Cogn. Disord. 42, 227–235. 10.1159/000450749 PubMed DOI
Hort J., Andel R., Mokrisova I., Gazova I., Amlerova J., Valis M., et al. . (2014). Effect of donepezil in Alzheimer disease can be measured by a computerized human analog of the Morris water maze. Neurodegener. Dis. 13, 192–196. 10.1159/000355517 PubMed DOI
Hort J., Laczo J., Vyhnalek M., Bojar M., Bures J., Vlcek K. (2007). Spatial navigation deficit in amnestic mild cognitive impairment. Proc. Natl. Acad. Sci. U. S. A. 104, 4042–4047. 10.1073/pnas.0611314104 PubMed DOI PMC
Howard R. (2020). Subjective cognitive decline: what is it good for? Lancet Neurol. 19, 203–204. 10.1016/S1474-4422(20)30002-8 PubMed DOI
Howett D., Castegnaro A., Krzywicka K., Hagman J., Marchment D., Henson R., et al. . (2019). Differentiation of mild cognitive impairment using an entorhinal cortex-based test of virtual reality navigation. Brain 142, 1751–1766. 10.1093/brain/awz116 PubMed DOI PMC
Ito H. T. (2018). Prefrontal-hippocampal interactions for spatial navigation. Neurosci. Res. 129, 2–7. 10.1016/j.neures.2017.04.016 PubMed DOI
Jak A. J., Bondi M. W., Delano-Wood L., Wierenga C., Corey-Bloom J., Salmon D. P., et al. . (2009). Quantification of five neuropsychological approaches to defining mild cognitive impairment. Am. J. Geriatr. Psychiatry 17, 368–375. 10.1097/JGP.0b013e31819431d5 PubMed DOI PMC
Jessen F., Amariglio R. E., Buckley R. F., Van Der Flier W. M., Han Y., Molinuevo J. L., et al. . (2020). The characterisation of subjective cognitive decline. Lancet Neurol. 19, 271–278. 10.1016/S1474-4422(19)30368-0 PubMed DOI PMC
Jessen F., Amariglio R. E., Van Boxtel M., Breteler M., Ceccaldi M., Chételat G., et al. . (2014). A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease. Alzheimers Dement. 10, 844–852. 10.1016/j.jalz.2014.01.001 PubMed DOI PMC
Jessen F., Feyen L., Freymann K., Tepest R., Maier W., Heun R., et al. . (2006). Volume reduction of the entorhinal cortex in subjective memory impairment. Neurobiol. Aging 27, 1751–1756. 10.1016/j.neurobiolaging.2005.10.010 PubMed DOI
Kalová E., Vlcek K., Jarolímová E., Bures J. (2005). Allothetic orientation and sequential ordering of places is impaired in early stages of Alzheimer's disease: corresponding results in real space tests and computer tests. Behav. Brain Res. 159, 175–186. 10.1016/j.bbr.2004.10.016 PubMed DOI
Kerbler G. M., Fripp J., Rowe C. C., Villemagne V. L., Salvado O., Rose S., et al. . (2015a). Basal forebrain atrophy correlates with amyloid β burden in Alzheimer's disease. Neuroimage Clin. 7, 105–113. 10.1016/j.nicl.2014.11.015 PubMed DOI PMC
Kerbler G. M., Nedelska Z., Fripp J., Laczó J., Vyhnalek M., Lisý J., et al. . (2015b). Basal forebrain atrophy contributes to allocentric navigation impairment in Alzheimer's disease patients. Front. Aging Neurosci. 7:185. 10.3389/fnagi.2015.00185 PubMed DOI PMC
Kilimann I., Grothe M., Heinsen H., Alho E. J., Grinberg L., Amaro E., Jr., et al. . (2014). Subregional basal forebrain atrophy in Alzheimer's disease: a multicenter study. J. Alzheimers Dis. 40, 687–700. 10.3233/JAD-132345 PubMed DOI PMC
Kunz L., Schröder T. N., Lee H., Montag C., Lachmann B., Sariyska R., et al. . (2015). Reduced grid-cell-like representations in adults at genetic risk for Alzheimer's disease. Science 350, 430–433. 10.1126/science.aac8128 PubMed DOI
Laczó J., Andel R., Vlček K., Macoška V., Vyhnálek M., Tolar M., et al. . (2011). Spatial navigation and APOE in amnestic mild cognitive impairment. Neurodegener Dis. 8, 169–177. 10.1159/000321581 PubMed DOI
Laczó J., Andel R., Vyhnalek M., Matoska V., Kaplan V., Nedelska Z., et al. . (2015). The effect of TOMM40 on spatial navigation in amnestic mild cognitive impairment. Neurobiol. Aging 36, 2024–2033. 10.1016/j.neurobiolaging.2015.03.004 PubMed DOI
Laczo J., Andel R., Vyhnalek M., Vlcek K., Magerova H., Varjassyova A., et al. . (2010). Human analogue of the morris water maze for testing subjects at risk of Alzheimer's disease. Neurodegener. Dis. 7, 148–152. 10.1159/000289226 PubMed DOI
Laczo J., Andel R., Vyhnalek M., Vlcek K., Nedelska Z., Matoska V., et al. . (2014). APOE and spatial navigation in amnestic MCI: results from a computer-based test. Neuropsychology 28, 676–684. 10.1037/neu0000072 PubMed DOI
Laczó J., Parizkova M., Moffat S. D. (2018). Spatial navigation, aging and Alzheimer's disease. Aging 10, 3050–3051. 10.18632/aging.101634 PubMed DOI PMC
Lester A. W., Moffat S. D., Wiener J. M., Barnes C. A., Wolbers T. (2017). The aging navigational system. Neuron 95, 1019–1035. 10.1016/j.neuron.2017.06.037 PubMed DOI PMC
Li A. W. Y., King J. (2019). Spatial memory and navigation in ageing: a systematic review of MRI and fMRI studies in healthy participants. Neurosci. Biobehav. Rev. 103, 33–49. 10.1016/j.neubiorev.2019.05.005 PubMed DOI
Li X., Wang X., Su L., Hu X., Han Y. (2019). Sino Longitudinal Study on Cognitive Decline (SILCODE): protocol for a Chinese longitudinal observational study to develop risk prediction models of conversion to mild cognitive impairment in individuals with subjective cognitive decline. BMJ Open 9:28188. 10.1136/bmjopen-2018-028188 PubMed DOI PMC
Lithfous S., Dufour A., Després O. (2013). Spatial navigation in normal aging and the prodromal stage of Alzheimer's disease: insights from imaging and behavioral studies. Ageing Res. Rev. 12, 201–213. 10.1016/j.arr.2012.04.007 PubMed DOI
Liu A. K., Chang R. C., Pearce R. K., Gentleman S. M. (2015). Nucleus basalis of Meynert revisited: anatomy, history and differential involvement in Alzheimer's and Parkinson's disease. Acta Neuropathol. 129, 527–540. 10.1007/s00401-015-1392-5 PubMed DOI PMC
Mack W. J., Freed D. M., Williams B. W., Henderson V. W. (1992). Boston Naming Test: shortened versions for use in Alzheimer's disease. J. Gerontol. 47, P154–158. 10.1093/geronj/47.3.P154 PubMed DOI
Mcgeer P. L., Mcgeer E. G., Suzuki J., Dolman C. E., Nagai T. (1984). Aging, Alzheimer's disease, and the cholinergic system of the basal forebrain. Neurology 34, 741–745. 10.1212/WNL.34.6.741 PubMed DOI
Meiberth D., Scheef L., Wolfsgruber S., Boecker H., Block W., Träber F., et al. . (2015). Cortical thinning in individuals with subjective memory impairment. J. Alzheimers Dis. 45, 139–146. 10.3233/JAD-142322 PubMed DOI
Mesulam M. M., Mufson E. J., Levey A. I., Wainer B. H. (1983). Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neurol. 214, 170–197. 10.1002/cne.902140206 PubMed DOI
Nedelska Z., Andel R., Laczó J., Vlcek K., Horinek D., Lisy J., et al. . (2012). Spatial navigation impairment is proportional to right hippocampal volume. Proc. Natl. Acad. Sci. U. S. A. 109, 2590–2594. 10.1073/pnas.1121588109 PubMed DOI PMC
O'Keefe J., Nadel L. (1978). The Hippocampus as a Cognitive Map.
Parizkova M., Lerch O., Moffat S. D., Andel R., Mazancova A. F., Nedelska Z., et al. . (2018). The effect of Alzheimer's disease on spatial navigation strategies. Neurobiol. Aging 64, 107–115. 10.1016/j.neurobiolaging.2017.12.019 PubMed DOI
Qing Z., Li W., Nedelska Z., Wu W., Wang F., Liu R., et al. . (2017). Spatial navigation impairment is associated with alterations in subcortical intrinsic activity in mild cognitive impairment: a resting-state fMRI Study. Behav. Neurol. 2017:6364314. 10.1155/2017/6364314 PubMed DOI PMC
Raskind M. A., Peskind E. R., Wessel T., Yuan W. (2000). Galantamine in AD: a 6-month randomized, placebo-controlled trial with a 6-month extension. the Galantamine USA-1 Study Group. Neurology 54, 2261–2268. 10.1212/WNL.54.12.2261 PubMed DOI
Rockwood K., Fay S., Song X., Macknight C., Gorman M. (2006). Attainment of treatment goals by people with Alzheimer's disease receiving galantamine: a randomized controlled trial. Cmaj 174, 1099–1105. 10.1503/cmaj.051432 PubMed DOI PMC
Ryu S. Y., Lim E. Y., Na S., Shim Y. S., Cho J. H., Yoon B., et al. . (2017). Hippocampal and entorhinal structures in subjective memory impairment: a combined MRI volumetric and DTI study. Int. Psychogeriatr. 29, 785–792. 10.1017/S1041610216002349 PubMed DOI
Saykin A. J., Wishart H. A., Rabin L. A., Santulli R. B., Flashman L. A., West J. D., et al. . (2006). Older adults with cognitive complaints show brain atrophy similar to that of amnestic MCI. Neurology 67, 834–842. 10.1212/01.wnl.0000234032.77541.a2 PubMed DOI PMC
Scheef L., Grothe M. J., Koppara A., Daamen M., Boecker H., Biersack H., et al. . (2019). Subregional volume reduction of the cholinergic forebrain in subjective cognitive decline (SCD). Neuroimage Clin. 21:101612. 10.1016/j.nicl.2018.101612 PubMed DOI PMC
Schmitz T. W., Spreng R. N., Alzheimer's Dis Neuroimaging I. (2016). Basal forebrain degeneration precedes and predicts the cortical spread of Alzheimer's pathology. Nat. Commun. 7:13249. 10.1038/ncomms13249 PubMed DOI PMC
Selnes P., Fjell A. M., Gjerstad L., Bjørnerud A., Wallin A., Due-Tønnessen P., et al. . (2012). White matter imaging changes in subjective and mild cognitive impairment. Alzheimers Dement. 8, S112–S121. 10.1016/j.jalz.2011.07.001 PubMed DOI
Sheridan L. K., Fitzgerald H. E., Adams K. M., Nigg J. T., Martel M. M., Puttler L. I., et al. . (2006). Normative symbol digit modalities test performance in a community-based sample. Arch. Clin. Neuropsychol. 21, 23–28. 10.1016/j.acn.2005.07.003 PubMed DOI
Shin M. S., Park S. Y., Park S. R., Seol S. H., Kwon J. S. (2006). Clinical and empirical applications of the Rey-Osterrieth Complex Figure Test. Nat. Protoc. 1, 892–899. 10.1038/nprot.2006.115 PubMed DOI
Shulman K. I. (2000). Clock-drawing: Is it the ideal cognitive screening test? Int. J. Geriatr. Psychiatry 15, 548–561. 10.1002/1099-1166(200006)15:6<548::AID-GPS242>3.0.CO;2-U PubMed DOI
Solari N., Hangya B. (2018). Cholinergic modulation of spatial learning, memory and navigation. Eur. J. Neurosci. 48, 2199–2230. 10.1111/ejn.14089 PubMed DOI PMC
Sperling R. A., Aisen P. S., Beckett L. A., Bennett D. A., Craft S., Fagan A. M., et al. . (2011). Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7, 280–292. 10.1016/j.jalz.2011.03.003 PubMed DOI PMC
Tariot P. N., Solomon P. R., Morris J. C., Kershaw P., Lilienfeld S., Ding C. (2000). A 5-month, randomized, placebo-controlled trial of galantamine in AD. the galantamine USA-10 study group. Neurology 54, 2269–2276. 10.1212/WNL.54.12.2269 PubMed DOI
Teipel S. J., Meindl T., Grinberg L., Grothe M., Cantero J. L., Reiser M. F., et al. . (2011). The cholinergic system in mild cognitive impairment and Alzheimer's disease: an in vivo MRI and DTI study. Hum. Brain Mapp. 32, 1349–1362. 10.1002/hbm.21111 PubMed DOI PMC
Tombaugh T. N., Mcintyre N. J. (1992). The mini-mental state examination: a comprehensive review. J. Am. Geriatr. Soc. 40, 922–935. 10.1111/j.1532-5415.1992.tb01992.x PubMed DOI
Vann S. D., Aggleton J. P., Maguire E. A. (2009). What does the retrosplenial cortex do? Nat. Rev. Neurosci. 10, 792–802. 10.1038/nrn2733 PubMed DOI
Vogels O. J., Broere C. A., Ter Laak H. J., Ten Donkelaar H. J., Nieuwenhuys R., Schulte B. P. (1990). Cell loss and shrinkage in the nucleus basalis Meynert complex in Alzheimer's disease. Neurobiol. Aging 11, 3–13. 10.1016/0197-4580(90)90056-6 PubMed DOI
Wang C., Chen X., Knierim J. J. (2020). Egocentric and allocentric representations of space in the rodent brain. Curr. Opin. Neurobiol. 60, 12–20. 10.1016/j.conb.2019.11.005 PubMed DOI PMC
Wiener J. M., De Condappa O., Harris M. A., Wolbers T. (2013). Maladaptive bias for extrahippocampal navigation strategies in aging humans. J. Neurosci. 33, 6012–6017. 10.1523/JNEUROSCI.0717-12.2013 PubMed DOI PMC
Wolf D., Grothe M., Fischer F. U., Heinsen H., Kilimann I., Teipel S., et al. . (2014). Association of basal forebrain volumes and cognition in normal aging. Neuropsychologia 53, 54–63. 10.1016/j.neuropsychologia.2013.11.002 PubMed DOI
Zhao Q., Guo Q., Li F., Zhou Y., Wang B., Hong Z. (2013). The Shape Trail Test: application of a new variant of the Trail making test. PLoS ONE 8:e57333. 10.1371/journal.pone.0057333 PubMed DOI PMC
Zhao Q., Lv Y., Zhou Y., Hong Z., Guo Q. (2012). Short-term delayed recall of auditory verbal learning test is equivalent to long-term delayed recall for identifying amnestic mild cognitive impairment. PLoS ONE 7:e51157. 10.1371/journal.pone.0051157 PubMed DOI PMC
Zhao W., Wang X., Yin C., He M., Li S., Han Y. (2019). Trajectories of the hippocampal subfields atrophy in the Alzheimer's disease: a structural imaging study. Front. Neuroinform. 13:13. 10.3389/fninf.2019.00013 PubMed DOI PMC