Spatial Navigation Impairment Is Associated with Alterations in Subcortical Intrinsic Activity in Mild Cognitive Impairment: A Resting-State fMRI Study
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
29085184
PubMed Central
PMC5632470
DOI
10.1155/2017/6364314
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- funkční zobrazování neurálních procesů MeSH
- globus pallidus diagnostické zobrazování patofyziologie MeSH
- hipokampus diagnostické zobrazování patofyziologie MeSH
- kognitivní dysfunkce diagnostické zobrazování patofyziologie psychologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- neuropsychologické testy MeSH
- prostorová navigace fyziologie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- thalamus diagnostické zobrazování patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Impairment of spatial navigation (SN) skills is one of the features of the Alzheimer's disease (AD) already at the stage of mild cognitive impairment (MCI). We used a computer-based battery of spatial navigation tests to measure the SN performance in 22 MCI patients as well as 21 normal controls (NC). In order to evaluate intrinsic activity in the subcortical regions that may play a role in SN, we measured ALFF, fALFF, and ReHo derived within 14 subcortical regions. We observed reductions of intrinsic activity in MCI patients. We also demonstrated that the MCI versus NC group difference can modulate activity-behavior relationship, that is, the correlation slopes between ReHo and allocentric SN task total errors were significantly different between NC and MCI groups in the right hippocampus (interaction F = 4.44, p = 0.05), pallidum (F = 8.97, p = 0.005), and thalamus (F = 5.95, p = 0.02), which were negative in NC (right hippocampus, r = -0.49; right pallidum, r = -0.50; right thalamus, r = -0.45; all p < 0.05) but absent in MCI (right hippocampus, r = 0.21; right pallidum, r = 0.32; right thalamus r = 0.28; all p > 0.2). These findings may provide a novel insight of the brain mechanism associated with SN impairment in MCI and indicated a stage specificity of brain-behavior correlation in dementia. This trial is registered with ChiCTR-BRC-17011316.
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
Philips Healthcare Shanghai China
Zobrazit více v PubMed
Vlcek K., Laczo J. Neural correlates of spatial navigation changes in mild cognitive impairment and Alzheimer’s disease. Frontiers in Behavioral Neuroscience. 2014;8:p. 89. doi: 10.3389/fnbeh.2014.00089. PubMed DOI PMC
Hort J., Laczo J., Vyhnalek M., Bojar M., Bures J., Vlcek K. Spatial navigation deficit in amnestic mild cognitive impairment. Proceedings of the National Academy of Sciences of the United States of America. 2007;104:4042–4047. doi: 10.1073/pnas.0611314104. PubMed DOI PMC
Lithfous S., Dufour A., Despres O. Spatial navigation in normal aging and the prodromal stage of Alzheimer’s disease: insights from imaging and behavioral studies. Ageing Research Reviews. 2013;12:201–213. doi: 10.1016/j.arr.2012.04.007. PubMed DOI
Laczo J., Andel R., Nedelska Z., et al. Exploring the contribution of spatial navigation to cognitive functioning in older adults. Neurobiology of Aging. 2016;51:67–70. doi: 10.1016/j.neurobiolaging.2016.12.003. PubMed DOI
Rusconi M. L., Suardi A., Zanetti M., Rozzini L. Spatial navigation in elderly healthy subjects, amnestic and non amnestic MCI patients. Journal of the Neurological Sciences. 2015;359:430–437. doi: 10.1016/j.jns.2015.10.010. PubMed DOI
Maguire E. A., Burgess N., Donnett J. G., Frackowiak R. S., Frith C. D., O'Keefe J. Knowing where and getting there: a human navigation network. Science. 1998;280:921–924. PubMed
Weniger G., Ruhleder M., Wolf S., Lange C., Irle E. Egocentric memory impaired and allocentric memory intact as assessed by virtual reality in subjects with unilateral parietal cortex lesions. Neuropsychologia. 2009;47:59–69. doi: 10.1016/j.neuropsychologia.2008.08.018. PubMed DOI
Nedelska Z., Andel R., Laczo J., et al. Spatial navigation impairment is proportional to right hippocampal volume. Proceedings of the National Academy of Sciences of the United States of America. 2012;109:2590–2594. doi: 10.1073/pnas.1121588109. PubMed DOI PMC
Weniger G., Ruhleder M., Lange C., Irle E. Impaired egocentric memory and reduced somatosensory cortex size in temporal lobe epilepsy with hippocampal sclerosis. Behavioural Brain Research. 2012;227:116–124. doi: 10.1016/j.bbr.2011.10.043. PubMed DOI
Packard M. G., Knowlton B. J. Learning and memory functions of the basal ganglia. Annual Review of Neuroscience. 2002;25:563–593. doi: 10.1146/annurev.neuro.25.112701.142937. PubMed DOI
Guderian S., Dzieciol A. M., Gadian D. G., et al. Hippocampal volume reduction in humans predicts impaired allocentric spatial memory in virtual-reality navigation. The Journal of Neuroscience. 2015;35:14123–14131. doi: 10.1523/JNEUROSCI.0801-15.2015. PubMed DOI PMC
Devan B. D., Goad E. H., Petri H. L. Dissociation of hippocampal and striatal contributions to spatial navigation in the water maze. Neurobiology of Learning and Memory. 1996;66:305–323. doi: 10.1006/nlme.1996.0072. PubMed DOI
Yuan P., Daugherty A. M., Raz N. Turning bias in virtual spatial navigation: age-related differences and neuroanatomical correlates. Biological Psychology. 2014;96:8–19. doi: 10.1016/j.biopsycho.2013.10.009. PubMed DOI PMC
deIpolyi A. R., Rankin K. P., Mucke L., Miller B. L., Gorno-Tempini M. L. Spatial cognition and the human navigation network in AD and MCI. Neurology. 2007;69:986–997. doi: 10.1212/01.wnl.0000271376.19515.c6. PubMed DOI
Raichle M. E. The brain’s dark energy. Science. 2006;314:1249–1250. doi: 10.1126/science.1134405. PubMed DOI
Raichle M. E., MacLeod A. M., Snyder A. Z., Powers W. J., Gusnard D. A., Shulman G. L. A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America. 2001;98:676–682. doi: 10.1073/pnas.98.2.676. PubMed DOI PMC
Zhang Z., Liu Y., Jiang T., et al. Altered spontaneous activity in Alzheimer’s disease and mild cognitive impairment revealed by regional homogeneity. NeuroImage. 2012;59:1429–1440. doi: 10.1016/j.neuroimage.2011.08.049. PubMed DOI
Li H. J., Hou X. H., Liu H. H., Yue C. L., He Y., Zuo X. N. Toward systems neuroscience in mild cognitive impairment and Alzheimer’s disease: a meta-analysis of 75 fMRI studies. Human Brain Mapping. 2015;36:1217–1232. doi: 10.1002/hbm.22689. PubMed DOI PMC
Liang P., Xiang J., Liang H., Qi Z., Li K., Alzheimer's Disease NeuroImaging I Altered amplitude of low-frequency fluctuations in early and late mild cognitive impairment and Alzheimer’s disease. Current Alzheimer Research. 2014;11:389–398. PubMed
Diciotti S., Orsolini S., Salvadori E., et al. Resting state fMRI regional homogeneity correlates with cognition measures in subcortical vascular cognitive impairment. Journal of the Neurological Sciences. 2017;373:1–6. doi: 10.1016/j.jns.2016.12.003. PubMed DOI
Ni L., Liu R., Yin Z., et al. Aberrant spontaneous brain activity in patients with mild cognitive impairment and concomitant lacunar infarction: a resting-state functional MRI study. Journal of Alzheimer's Disease. 2016;50:1243–1254. doi: 10.3233/JAD-150622. PubMed DOI
Wang Y., Zhao X., Xu S., et al. Using regional homogeneity to reveal altered spontaneous activity in patients with mild cognitive impairment. BioMed Research International. 2015;2015:8. doi: 10.1155/2015/807093.807093 PubMed DOI PMC
Petersen R. C. Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine. 2004;256:183–194. doi: 10.1111/j.1365-2796.2004.01388.x. PubMed DOI
McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E. M. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology. 1984;34:939–944. PubMed
Laczo J., Andel R., Vyhnalek M., et al. APOE and spatial navigation in amnestic MCI: results from a computer-based test. Neuropsychology. 2014;28:676–684. doi: 10.1037/neu0000072. PubMed DOI
Biswal B. B., Mennes M., Zuo X. N., et al. Toward discovery science of human brain function. Proceedings of the National Academy of Sciences of the United States of America. 2010;107:4734–4739. doi: 10.1073/pnas.0911855107. PubMed DOI PMC
Yan C. G., Zang Y. F. DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Frontiers in Systems Neuroscience. 2010;4:p. 13. doi: 10.3389/fnsys.2010.00013. PubMed DOI PMC
Song X. W., Dong Z. Y., Long X. Y., et al. REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One. 2011;6, article e25031 doi: 10.1371/journal.pone.0025031. PubMed DOI PMC
Zang Y. F., He Y., Zhu C. Z., et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 2007;29:83–91. doi: 10.1016/j.braindev.2006.07.002. PubMed DOI
Zou Q. H., Zhu C. Z., Yang Y., et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. Journal of Neuroscience Methods. 2008;172:137–141. doi: 10.1016/j.jneumeth.2008.04.012. PubMed DOI PMC
Zang Y., Jiang T., Lu Y., He Y., Tian L. Regional homogeneity approach to fMRI data analysis. NeuroImage. 2004;22:394–400. doi: 10.1016/j.neuroimage.2003.12.030. PubMed DOI
Patenaude B., Smith S. M., Kennedy D. N., Jenkinson M. A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage. 2011;56:907–922. doi: 10.1016/j.neuroimage.2011.02.046. PubMed DOI PMC
Sargolini F., Fyhn M., Hafting T., et al. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science. 2006;312:758–762. doi: 10.1126/science.1125572. PubMed DOI
Gibson B., Butler W. N., Taube J. S. The head-direction signal is critical for navigation requiring a cognitive map but not for learning a spatial habit. Current Biology. 2013;23:1536–1540. doi: 10.1016/j.cub.2013.06.030. PubMed DOI PMC
Zuo X. N., Xu T., Jiang L., et al. Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space. NeuroImage. 2013;65:374–386. doi: 10.1016/j.neuroimage.2012.10.017. PubMed DOI PMC
Boccia M., Nemmi F., Guariglia C. Neuropsychology of environmental navigation in humans: review and meta-analysis of FMRI studies in healthy participants. Neuropsychology Review. 2014;24:236–251. doi: 10.1007/s11065-014-9247-8. PubMed DOI PMC
Zhao H., Li X., Wu W., et al. Atrophic patterns of the frontal-subcortical circuits in patients with mild cognitive impairment and Alzheimer’s disease. PLoS One. 2015;10, article e0130017 doi: 10.1371/journal.pone.0130017. PubMed DOI PMC
Migo E. M., O'Daly O., Mitterschiffthaler M., et al. Investigating virtual reality navigation in amnestic mild cognitive impairment using fMRI. Neuropsychology, Development, and Cognition Section B, Aging, Neuropsychology and Cognition. 2016;23:196–217. doi: 10.1080/13825585.2015.1073218. PubMed DOI