Spatial navigation is associated with subcortical alterations and progression risk in subjective cognitive decline

. 2023 Apr 25 ; 15 (1) : 86. [epub] 20230425

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37098612
Odkazy

PubMed 37098612
PubMed Central PMC10127414
DOI 10.1186/s13195-023-01233-6
PII: 10.1186/s13195-023-01233-6
Knihovny.cz E-zdroje

BACKGROUND: Subjective cognitive decline (SCD) may serve as a symptomatic indicator for preclinical Alzheimer's disease; however, SCD is a heterogeneous entity regarding clinical progression. We aimed to investigate whether spatial navigation could reveal subcortical structural alterations and the risk of progression to objective cognitive impairment in SCD individuals. METHODS: One hundred and eighty participants were enrolled: those with SCD (n = 80), normal controls (NCs, n = 77), and mild cognitive impairment (MCI, n = 23). SCD participants were further divided into the SCD-good (G-SCD, n = 40) group and the SCD-bad (B-SCD, n = 40) group according to their spatial navigation performance. Volumes of subcortical structures were calculated and compared among the four groups, including basal forebrain, thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens. Topological properties of the subcortical structural covariance network were also calculated. With an interval of 1.5 years ± 12 months of follow-up, the progression rate to MCI was compared between the G-SCD and B-SCD groups. RESULTS: Volumes of the basal forebrain, the right hippocampus, and their respective subfields differed significantly among the four groups (p < 0.05, false discovery rate corrected). The B-SCD group showed lower volumes in the basal forebrain than the G-SCD group, especially in the Ch4p and Ch4a-i subfields. Furthermore, the structural covariance network of the basal forebrain and right hippocampal subfields showed that the B-SCD group had a larger Lambda than the G-SCD group, which suggested weakened network integration in the B-SCD group. At follow-up, the B-SCD group had a significantly higher conversion rate to MCI than the G-SCD group. CONCLUSION: Compared to SCD participants with good spatial navigation performance, SCD participants with bad performance showed lower volumes in the basal forebrain, a reorganized structural covariance network of subcortical nuclei, and an increased risk of progression to MCI. Our findings indicated that spatial navigation may have great potential to identify SCD subjects at higher risk of clinical progression, which may contribute to making more precise clinical decisions for SCD individuals who seek medical help.

Zobrazit více v PubMed

Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, et al. Clinical diagnosis of Alzheimer’s disease: recommendations of the International Working Group. Lancet Neurol. 2021;20(6):484–496. doi: 10.1016/S1474-4422(21)00066-1. PubMed DOI PMC

Jessen F, Amariglio RE, van Boxtel M, Breteler M, Ceccaldi M, Chetelat G, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement. 2014;10(6):844–852. doi: 10.1016/j.jalz.2014.01.001. PubMed DOI PMC

Molinuevo JL, Rabin LA, Amariglio R, Buckley R, Dubois B, Ellis KA, et al. Implementation of subjective cognitive decline criteria in research studies. Alzheimers Dement. 2017;13(3):296–311. doi: 10.1016/j.jalz.2016.09.012. PubMed DOI PMC

Wang X, Huang W, Su L, Xing Y, Jessen F, Sun Y, et al. Neuroimaging advances regarding subjective cognitive decline in preclinical Alzheimer’s disease. Mol Neurodegener. 2020;15(1):55. doi: 10.1186/s13024-020-00395-3. PubMed DOI PMC

Hu X, Teunissen CE, Spottke A, Heneka MT, Düzel E, Peters O, et al. Smaller medial temporal lobe volumes in individuals with subjective cognitive decline and biomarker evidence of Alzheimer’s disease-Data from three memory clinic studies. Alzheimers Dement. 2019;15(2):185–193. doi: 10.1016/j.jalz.2018.09.002. PubMed DOI

Shu N, Wang X, Bi Q, Zhao T, Han Y. Disrupted topologic efficiency of white matter structural connectome in individuals with subjective cognitive decline. Radiology. 2018;286(1):229–238. doi: 10.1148/radiol.2017162696. PubMed DOI

Jessen F, Amariglio RE, Buckley RF, van der Flier WM, Han Y, Molinuevo JL, et al. The characterisation of subjective cognitive decline. Lancet Neurol. 2020;19(3):271–278. doi: 10.1016/S1474-4422(19)30368-0. PubMed DOI PMC

Ribaldi F, Chicherio C, Altomare D, Martins M, Tomczyk S, Jelescu I, et al. Brain connectivity and metacognition in persons with subjective cognitive decline (COSCODE): rationale and study design. Alzheimers Res Ther. 2021;13(1):105. doi: 10.1186/s13195-021-00846-z. PubMed DOI PMC

Jessen F, Kleineidam L, Wolfsgruber S, Bickel H, Brettschneider C, Fuchs A, et al. Prediction of dementia of Alzheimer type by different types of subjective cognitive decline. Alzheimers Dement. 2020;16(12):1745–1749. doi: 10.1002/alz.12163. PubMed DOI

Slot RER, Sikkes SAM, Berkhof J, Brodaty H, Buckley R, Cavedo E, et al. Subjective cognitive decline and rates of incident Alzheimer’s disease and non-Alzheimer’s disease dementia. Alzheimers Dement. 2019;15(3):465–476. doi: 10.1016/j.jalz.2018.10.003. PubMed DOI PMC

Sheng C, Yang K, He B, Li T, Wang X, Du W, et al. Cross-cultural longitudinal study on cognitive decline (CLoCODE) for subjective cognitive decline in China and Germany: a protocol for study design. J Alzheimers Dis. 2022;87(3):1319–1333. doi: 10.3233/JAD-215452. PubMed DOI

Gazova I, Vlcek K, Laczó J, Nedelska Z, Hyncicova E, Mokrisova I, et al. Spatial navigation-a unique window into physiological and pathological aging. Front Aging Neurosci. 2012;4:16. doi: 10.3389/fnagi.2012.00016. PubMed DOI PMC

Nedelska Z, Andel R, Laczo J, Vlcek K, Horinek D, Lisy J, et al. Spatial navigation impairment is proportional to right hippocampal volume. Proc Natl Acad Sci U S A. 2012;109(7):2590–2594. doi: 10.1073/pnas.1121588109. PubMed DOI PMC

Li W, Zhao H, Qing Z, Nedelska Z, Wu S, Lu J, et al. Disrupted network topology contributed to spatial navigation impairment in patients with mild cognitive impairment. Front Aging Neurosci. 2021;13:630677. doi: 10.3389/fnagi.2021.630677. PubMed DOI PMC

Howett D, Castegnaro A, Krzywicka K, Hagman J, Marchment D, Henson R, et al. Differentiation of mild cognitive impairment using an entorhinal cortex-based test of virtual reality navigation. Brain. 2019;142(6):1751–1766. doi: 10.1093/brain/awz116. PubMed DOI PMC

Coughlan G, Laczo J, Hort J, Minihane AM, Hornberger M. Spatial navigation deficits - overlooked cognitive marker for preclinical Alzheimer disease? Nat Rev Neurol. 2018;14(8):496–506. doi: 10.1038/s41582-018-0031-x. PubMed DOI

Cerman J, Andel R, Laczo J, Vyhnalek M, Nedelska Z, Mokrisova I, et al. Subjective spatial navigation complaints - a frequent symptom reported by patients with subjective cognitive decline, mild cognitive impairment and Alzheimer’s disease. Curr Alzheimer Res. 2018;15(3):219–228. doi: 10.2174/1567205014666171120145349. PubMed DOI

Chen Q, Qing Z, Jin J, Sun Y, Chen W, Lu J, et al. Ego- and allo-network disconnection underlying spatial disorientation in subjective cognitive decline. Cortex. 2021;137:35–48. doi: 10.1016/j.cortex.2020.12.022. PubMed DOI

Levine TF, Allison SL, Stojanovic M, Fagan AM, Morris JC, Head D. Spatial navigation ability predicts progression of dementia symptomatology. Alzheimers Dement. 2020;16(3):491–500. doi: 10.1002/alz.12031. PubMed DOI PMC

Verghese J, Lipton R, Ayers E. Spatial navigation and risk of cognitive impairment: a prospective cohort study. Alzheimers Dement. 2017;13(9):985–992. doi: 10.1016/j.jalz.2017.01.023. PubMed DOI PMC

Nie X, Sun Y, Wan S, Zhao H, Liu R, Li X, et al. Subregional structural alterations in hippocampus and nucleus accumbens correlate with the clinical impairment in patients with Alzheimer’s disease clinical spectrum: parallel combining volume and vertex-based approach. Front Neurol. 2017;8:399. doi: 10.3389/fneur.2017.00399. PubMed DOI PMC

Leh SE, Kälin AM, Schroeder C, Park MT, Chakravarty MM, Freund P, et al. Volumetric and shape analysis of the thalamus and striatum in amnestic mild cognitive impairment. J Alzheimers Dis. 2016;49(1):237–249. doi: 10.3233/JAD-150080. PubMed DOI

Jack CR, Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–562. doi: 10.1016/j.jalz.2018.02.018. PubMed DOI PMC

Scheef L, Grothe MJ, Koppara A, Daamen M, Boecker H, Biersack H, et al. Subregional volume reduction of the cholinergic forebrain in subjective cognitive decline (SCD) Neuroimage Clin. 2019;21:101612. doi: 10.1016/j.nicl.2018.101612. PubMed DOI PMC

Zhao W, Wang X, Yin C, He M, Li S, Han Y. Trajectories of the hippocampal subfields atrophy in the Alzheimer’s disease: a structural imaging study. Front Neuroinform. 2019;13:13. doi: 10.3389/fninf.2019.00013. PubMed DOI PMC

Braak H, Del Tredici K. The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain. 2015;138(Pt 10):2814–2833. doi: 10.1093/brain/awv236. PubMed DOI

Colombo D, Serino S, Tuena C, Pedroli E, Dakanalis A, Cipresso P, et al. Egocentric and allocentric spatial reference frames in aging: a systematic review. Neurosci Biobehav Rev. 2017;80:605–621. doi: 10.1016/j.neubiorev.2017.07.012. PubMed DOI

Lithfous S, Dufour A, Després O. Spatial navigation in normal aging and the prodromal stage of Alzheimer’s disease: insights from imaging and behavioral studies. Ageing Res Rev. 2013;12(1):201–213. doi: 10.1016/j.arr.2012.04.007. PubMed DOI

Kerbler GM, Nedelska Z, Fripp J, Laczó J, Vyhnalek M, Lisý J, et al. Basal forebrain atrophy contributes to allocentric navigation impairment in Alzheimer’s disease patients. Front Aging Neurosci. 2015;7:185. doi: 10.3389/fnagi.2015.00185. PubMed DOI PMC

Qing Z, Li W, Nedelska Z, Wu W, Wang F, Liu R, et al. Spatial navigation impairment is associated with alterations in subcortical intrinsic activity in mild cognitive impairment: a resting-state fMRI study. Behav Neurol. 2017;2017:6364314. doi: 10.1155/2017/6364314. PubMed DOI PMC

Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186–198. doi: 10.1038/nrn2575. PubMed DOI

delEtoile J, Adeli H. Graph theory and brain connectivity in Alzheimer’s disease. Neuroscientist. 2017;23(6):616–626. doi: 10.1177/1073858417702621. PubMed DOI

Liu Z, Palaniyappan L, Wu X, Zhang K, Du J, Zhao Q, et al. Resolving heterogeneity in schizophrenia through a novel systems approach to brain structure: individualized structural covariance network analysis. Mol Psychiatry. 2021;26(12):7719–7731. doi: 10.1038/s41380-021-01229-4. PubMed DOI

Matsuda H. MRI morphometry in Alzheimer’s disease. Ageing Res Rev. 2016;30:17–24. doi: 10.1016/j.arr.2016.01.003. PubMed DOI

Li Q, Li X, Wang X, Li Y, Li K, Yu Y, et al. Topological properties of large-scale cortical networks based on multiple morphological features in amnestic mild cognitive impairment. Neural Plast. 2016;2016:3462309. doi: 10.1155/2016/3462309. PubMed DOI PMC

Chu T, Li J, Zhang Z, Gong P, Che K, Li Y, et al. Altered structural covariance of hippocampal subregions in patients with Alzheimer’s disease. Behav Brain Res. 2021;409:113327. doi: 10.1016/j.bbr.2021.113327. PubMed DOI

Xue C, Sun H, Hu G, Qi W, Yue Y, Rao J, et al. Disrupted patterns of rich-club and diverse-club organizations in subjective cognitive decline and amnestic mild cognitive impairment. Front Neurosci. 2020;14:575652. doi: 10.3389/fnins.2020.575652. PubMed DOI PMC

Yan T, Wang W, Yang L, Chen K, Chen R, Han Y. Rich club disturbances of the human connectome from subjective cognitive decline to Alzheimer’s disease. Theranostics. 2018;8(12):3237–3255. doi: 10.7150/thno.23772. PubMed DOI PMC

Tijms BM, Ten Kate M, Gouw AA, Borta A, Verfaillie S, Teunissen CE, et al. Gray matter networks and clinical progression in subjects with predementia Alzheimer’s disease. Neurobiol Aging. 2018;61:75–81. doi: 10.1016/j.neurobiolaging.2017.09.011. PubMed DOI

Verfaillie SCJ, Slot RER, Dicks E, Prins ND, Overbeek JM, Teunissen CE, et al. A more randomly organized grey matter network is associated with deteriorating language and global cognition in individuals with subjective cognitive decline. Hum Brain Mapp. 2018;39(8):3143–3151. doi: 10.1002/hbm.24065. PubMed DOI PMC

Fu Z, Zhao M, He Y, Wang X, Li X, Kang G, et al. Aberrant topological organization and age-related differences in the human connectome in subjective cognitive decline by using regional morphology from magnetic resonance imaging. Brain Struct Funct. 2022;227(6):2015–2033. doi: 10.1007/s00429-022-02488-9. PubMed DOI

Jak AJ, Bondi MW, Delano-Wood L, Wierenga C, Corey-Bloom J, Salmon DP, et al. Quantification of five neuropsychological approaches to defining mild cognitive impairment. Am J Geriatr Psychiatry. 2009;17(5):368–375. doi: 10.1097/JGP.0b013e31819431d5. PubMed DOI PMC

Li X, Wang X, Su L, Hu X, Han Y. Sino Longitudinal Study on Cognitive Decline (SILCODE): protocol for a Chinese longitudinal observational study to develop risk prediction models of conversion to mild cognitive impairment in individuals with subjective cognitive decline. BMJ Open. 2019;9(7):e028188. doi: 10.1136/bmjopen-2018-028188. PubMed DOI PMC

Tombaugh TN, McIntyre NJ. The mini-mental state examination: a comprehensive review. J Am Geriatr Soc. 1992;40(9):922–935. doi: 10.1111/j.1532-5415.1992.tb01992.x. PubMed DOI

Zhao Q, Lv Y, Zhou Y, Hong Z, Guo Q. Short-term delayed recall of auditory verbal learning test is equivalent to long-term delayed recall for identifying amnestic mild cognitive impairment. PLoS ONE. 2012;7(12):e51157. doi: 10.1371/journal.pone.0051157. PubMed DOI PMC

Zhao Q, Guo Q, Li F, Zhou Y, Wang B, Hong Z. The Shape Trail Test: application of a new variant of the Trail making test. PLoS ONE. 2013;8(2):e57333. doi: 10.1371/journal.pone.0057333. PubMed DOI PMC

Sheridan LK, Fitzgerald HE, Adams KM, Nigg JT, Martel MM, Puttler LI, et al. Normative Symbol Digit Modalities Test performance in a community-based sample. Arch Clin Neuropsychol. 2006;21(1):23–28. doi: 10.1016/j.acn.2005.07.003. PubMed DOI

Shulman KI. Clock-drawing: is it the ideal cognitive screening test? Int J Geriatr Psychiatry. 2000;15(6):548–561. doi: 10.1002/1099-1166(200006)15:6<548::AID-GPS242>3.0.CO;2-U. PubMed DOI

Henry JD, Crawford JR, Phillips LH. Verbal fluency performance in dementia of the Alzheimer’s type: a meta-analysis. Neuropsychologia. 2004;42(9):1212–1222. doi: 10.1016/j.neuropsychologia.2004.02.001. PubMed DOI

Mack WJ, Freed DM, Williams BW, Henderson VW. Boston Naming Test: shortened versions for use in Alzheimer’s disease. J Gerontol. 1992;47(3):P154–P158. doi: 10.1093/geronj/47.3.P154. PubMed DOI

Kalová E, Vlcek K, Jarolímová E, Bures J. Allothetic orientation and sequential ordering of places is impaired in early stages of Alzheimer’s disease: corresponding results in real space tests and computer tests. Behav Brain Res. 2005;159(2):175–186. doi: 10.1016/j.bbr.2004.10.016. PubMed DOI

Hort J, Laczó J, Vyhnálek M, Bojar M, Bures J, Vlcek K. Spatial navigation deficit in amnestic mild cognitive impairment. Proc Natl Acad Sci U S A. 2007;104(10):4042–4047. doi: 10.1073/pnas.0611314104. PubMed DOI PMC

Wolf D, Grothe M, Fischer FU, Heinsen H, Kilimann I, Teipel S, et al. Association of basal forebrain volumes and cognition in normal aging. Neuropsychologia. 2014;53:54–63. doi: 10.1016/j.neuropsychologia.2013.11.002. PubMed DOI

Avram M, Grothe MJ, Meinhold L, Leucht C, Leucht S, Borgwardt S, et al. Lower cholinergic basal forebrain volumes link with cognitive difficulties in schizophrenia. Neuropsychopharmacology. 2021;46(13):2320–2329. doi: 10.1038/s41386-021-01070-x. PubMed DOI PMC

Grothe MJ, Ewers M, Krause B, Heinsen H, Teipel SJ. Basal forebrain atrophy and cortical amyloid deposition in nondemented elderly subjects. Alzheimers Dement. 2014;10(5 Suppl):S344–S353. PubMed PMC

Gaser C, Dahnke R, Thompson PM, Kurth F, Luders E. CAT – a computational anatomy toolbox for the analysis of structural MRI data. 2022:2022.06.11.495736. PubMed PMC

Gilmore AD, Buser NJ, Hanson JL. Variations in structural MRI quality significantly impact commonly used measures of brain anatomy. Brain Inform. 2021;8(1):7. doi: 10.1186/s40708-021-00128-2. PubMed DOI PMC

Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):1059–1069. doi: 10.1016/j.neuroimage.2009.10.003. PubMed DOI

Wang C, Zhang P, Wang C, Yang L, Zhang X. Cortical thinning and abnormal structural covariance network after three hours sleep restriction. Front Psychiatry. 2021;12:664811. doi: 10.3389/fpsyt.2021.664811. PubMed DOI PMC

Zhang Y, Qiu T, Yuan X, Zhang J, Wang Y, Zhang N, et al. Abnormal topological organization of structural covariance networks in amyotrophic lateral sclerosis. Neuroimage Clin. 2019;21:101619. doi: 10.1016/j.nicl.2018.101619. PubMed DOI PMC

Wang J, Wang X, Xia M, Liao X, Evans A, He Y. GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci. 2015;9:386. PubMed PMC

Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998;393(6684):440–442. doi: 10.1038/30918. PubMed DOI

Mai N, Wu Y, Zhong X, Chen B, Zhang M, Ning Y. Determining the effects of LLD and MCI on brain decline according to machine learning and a structural covariance network analysis. J Psychiatr Res. 2020;126:43–54. doi: 10.1016/j.jpsychires.2020.04.011. PubMed DOI

Fernández-Cabello S, Kronbichler M, Van Dijk KRA, Goodman JA, Spreng RN, Schmitz TW. Basal forebrain volume reliably predicts the cortical spread of Alzheimer’s degeneration. Brain. 2020;143(3):993–1009. doi: 10.1093/brain/awaa012. PubMed DOI PMC

McGeer PL, McGeer EG, Suzuki J, Dolman CE, Nagai T. Aging, Alzheimer’s disease, and the cholinergic system of the basal forebrain. Neurology. 1984;34(6):741–745. doi: 10.1212/WNL.34.6.741. PubMed DOI

Mesulam MM, Mufson EJ, Levey AI, Wainer BH. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol. 1983;214(2):170–197. doi: 10.1002/cne.902140206. PubMed DOI

Baker-Nigh A, Vahedi S, Davis EG, Weintraub S, Bigio EH, Klein WL, et al. Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer’s disease. Brain. 2015;138(Pt 6):1722–1737. doi: 10.1093/brain/awv024. PubMed DOI PMC

Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018;141(7):1917–1933. doi: 10.1093/brain/awy132. PubMed DOI PMC

Grothe M, Zaborszky L, Atienza M, Gil-Neciga E, Rodriguez-Romero R, Teipel SJ, et al. Reduction of basal forebrain cholinergic system parallels cognitive impairment in patients at high risk of developing Alzheimer’s disease. Cereb Cortex. 2010;20(7):1685–1695. doi: 10.1093/cercor/bhp232. PubMed DOI PMC

Kilimann I, Grothe M, Heinsen H, Alho EJ, Grinberg L, Amaro E, Jr, et al. Subregional basal forebrain atrophy in Alzheimer’s disease: a multicenter study. J Alzheimers Dis. 2014;40(3):687–700. doi: 10.3233/JAD-132345. PubMed DOI PMC

Schmitz TW, Nathan SR. Basal forebrain degeneration precedes and predicts the cortical spread of Alzheimer’s pathology. Nat Commun. 2016;7:13249. doi: 10.1038/ncomms13249. PubMed DOI PMC

Gargouri F, Gallea C, Mongin M, Pyatigorskaya N, Valabregue R, Ewenczyk C, et al. Multimodal magnetic resonance imaging investigation of basal forebrain damage and cognitive deficits in Parkinson’s disease. Mov Disord. 2019;34(4):516–525. doi: 10.1002/mds.27561. PubMed DOI PMC

Mesulam MM. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. J Comp Neurol. 2013;521(18):4124–4144. doi: 10.1002/cne.23415. PubMed DOI PMC

Solari N, Hangya B. Cholinergic modulation of spatial learning, memory and navigation. Eur J Neurosci. 2018;48(5):2199–2230. doi: 10.1111/ejn.14089. PubMed DOI PMC

Patai EZ, Spiers HJ. The versatile wayfinder: prefrontal contributions to spatial navigation. Trends Cogn Sci. 2021;25(6):520–533. doi: 10.1016/j.tics.2021.02.010. PubMed DOI

Vann SD, Aggleton JP, Maguire EA. What does the retrosplenial cortex do? Nat Rev Neurosci. 2009;10(11):792–802. doi: 10.1038/nrn2733. PubMed DOI

Miller J, Watrous AJ, Tsitsiklis M, Lee SA, Sheth SA, Schevon CA, et al. Lateralized hippocampal oscillations underlie distinct aspects of human spatial memory and navigation. Nat Commun. 2018;9(1):2423. doi: 10.1038/s41467-018-04847-9. PubMed DOI PMC

Ten Kate M, Visser PJ, Bakardjian H, Barkhof F, Sikkes SAM, van der Flier WM, et al. Gray matter network disruptions and regional amyloid beta in cognitively normal adults. Front Aging Neurosci. 2018;10:67. doi: 10.3389/fnagi.2018.00067. PubMed DOI PMC

Qing Z, Chen F, Lu J, Lv P, Li W, Liang X, et al. Causal structural covariance network revealing atrophy progression in Alzheimer’s disease continuum. Hum Brain Mapp. 2021;42(12):3950–3962. doi: 10.1002/hbm.25531. PubMed DOI PMC

Fu Z, Zhao M, He Y, Wang X, Lu J, Li S, et al. Divergent connectivity changes in gray matter structural covariance networks in subjective cognitive decline, amnestic mild cognitive impairment, and Alzheimer’s disease. Front Aging Neurosci. 2021;13:686598. doi: 10.3389/fnagi.2021.686598. PubMed DOI PMC

Wang X, Yu Y, Zhao W, Li Q, Li X, Li S, et al. Altered whole-brain structural covariance of the hippocampal subfields in subcortical vascular mild cognitive impairment and amnestic mild cognitive impairment patients. Front Neurol. 2018;9:342. doi: 10.3389/fneur.2018.00342. PubMed DOI PMC

Diaz-Galvan P, Poulakis K, Grothe MJ, Fripp J, Maruff PT, Rowe CC, et al. Magnetic resonance imaging subtypes in subjective cognitive decline. 2020;16(S5):e042439

Diaz-Galvan P, Ferreira D, Cedres N, Falahati F, Hernández-Cabrera JA, Ames D, et al. Comparing different approaches for operationalizing subjective cognitive decline: impact on syndromic and biomarker profiles. Sci Rep. 2021;11(1):4356. doi: 10.1038/s41598-021-83428-1. PubMed DOI PMC

Palmqvist S, Tideman P, Cullen N, Zetterberg H, Blennow K, Dage JL, et al. Prediction of future Alzheimer’s disease dementia using plasma phospho-tau combined with other accessible measures. Nat Med. 2021;27(6):1034–1042. doi: 10.1038/s41591-021-01348-z. PubMed DOI

Teunissen CE, Verberk IMW, Thijssen EH, Vermunt L, Hansson O, Zetterberg H, et al. Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation. Lancet Neurol. 2022;21(1):66–77. doi: 10.1016/S1474-4422(21)00361-6. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...