allocentric
Dotaz
Zobrazit nápovědu
BACKGROUND: Spatial navigation deficits are early symptoms of Alzheimer's disease (AD). The apolipoprotein E (APOE) ε4 allele is the most important genetic risk factor for AD. This study investigated effects of APOE genotype on spatial navigation in biomarker-defined individuals with amnestic mild cognitive impairment (aMCI) and associations of AD biomarkers and atrophy of AD-related brain regions with spatial navigation. METHODS: 107 participants, cognitively normal older adults (CN, n = 48) and aMCI individuals stratified into AD aMCI (n = 28) and non-AD aMCI (n = 31) groups, underwent cognitive assessment, brain MRI, and spatial navigation assessment using the Virtual Supermarket Test with egocentric and allocentric tasks and a self-report questionnaire. Cerebrospinal fluid (CSF) biomarkers (amyloid-β1-42, phosphorylated tau181 and total tau) and amyloid PET imaging were assessed in aMCI participants. RESULTS: AD aMCI participants had the highest prevalence of APOE ε4 carriers and worst allocentric navigation. CSF levels of AD biomarkers and atrophy in AD-related brain regions were associated with worse allocentric navigation. Between-group differences in spatial navigation and associations with AD biomarkers and regional brain atrophy were not influenced by APOE genotype. Self-reported navigation ability was similar across groups and unrelated to spatial navigation performance. CONCLUSIONS: These findings suggest that allocentric navigation deficits in aMCI individuals are predominantly driven by AD pathology, independent of APOE genotype. This highlights the role of AD pathology as measured by biomarkers, rather than genetic status, as a major factor in navigational impairment in aMCI, and emphasizes the assessment of spatial navigation as a valuable tool for early detection of AD.
- MeSH
- Alzheimerova nemoc * genetika mozkomíšní mok diagnostické zobrazování komplikace patofyziologie patologie MeSH
- amyloidní beta-protein mozkomíšní mok MeSH
- apolipoprotein E4 * genetika MeSH
- apolipoproteiny E * genetika MeSH
- atrofie MeSH
- biologické markery mozkomíšní mok MeSH
- genotyp MeSH
- kognitivní dysfunkce * genetika mozkomíšní mok diagnostické zobrazování patofyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mozek patologie diagnostické zobrazování MeSH
- neuropsychologické testy MeSH
- peptidové fragmenty mozkomíšní mok MeSH
- pozitronová emisní tomografie MeSH
- prostorová navigace * fyziologie MeSH
- proteiny tau mozkomíšní mok MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Spatial reference frames (RFs) play a key role in spatial cognition, especially in perception, spatial memory, and navigation. There are two main types of RFs: egocentric (self-centered) and allocentric (object-centered). Although many fMRI studies examined the neural correlates of egocentric and allocentric RFs, they could not sample the fast temporal dynamics of the underlying cognitive processes. Therefore, the interaction and timing between these two RFs remain unclear. Taking advantage of the high temporal resolution of intracranial EEG (iEEG), we aimed to determine the timing of egocentric and allocentric information processing and describe the brain areas involved. We recorded iEEG and analyzed broad gamma activity (50-150 Hz) in 37 epilepsy patients performing a spatial judgment task in a three-dimensional circular virtual arena. We found overlapping activation for egocentric and allocentric RFs in many brain regions, with several additional egocentric- and allocentric-selective areas. In contrast to the egocentric responses, the allocentric responses peaked later than the control ones in frontal regions with overlapping selectivity. Also, across several egocentric or allocentric selective areas, the egocentric selectivity appeared earlier than the allocentric one. We identified the maximum number of egocentric-selective channels in the medial occipito-temporal region and allocentric-selective channels around the intraparietal sulcus in the parietal cortex. Our findings favor the hypothesis that egocentric spatial coding is a more primary process, and allocentric representations may be derived from egocentric ones. They also broaden the dominant view of the dorsal and ventral streams supporting egocentric and allocentric space coding, respectively.
BACKGROUND: Cholinergic deficit and medial temporal lobe (MTL) atrophy are hallmarks of Alzheimer's disease (AD) leading to early allocentric spatial navigation (aSN) impairment. APOEɛ4 allele (E4) is a major genetic risk factor for late-onset AD and contributes to cholinergic dysfunction. Basal forebrain (BF) nuclei, the major source of acetylcholine, project into multiple brain regions and, along with MTL and prefrontal cortex (PFC), are involved in aSN processing. OBJECTIVE: We aimed to determine different contributions of individual BF nuclei atrophy to aSN in E4 positive and E4 negative older adults without dementia and assess whether they operate on aSN through MTL and PFC or independently from these structures. METHODS: 120 participants (60 E4 positive, 60 E4 negative) from the Czech Brain Aging Study underwent structural MRI and aSN testing in real-space arena setting. Hippocampal and BF nuclei volumes and entorhinal cortex and PFC thickness were obtained. Associations between brain regions involved in aSN were assessed using MANOVA and complex model of mutual relationships was built using structural equation modelling (SEM). RESULTS: Path analysis based on SEM modeling revealed that BF Ch1-2, Ch4p, and Ch4ai nuclei volumes were indirectly associated with aSN performance through MTL (pch1 - 2 = 0.039; pch4p = 0.042) and PFC (pch4ai = 0.044). In the E4 negative group, aSN was indirectly associated with Ch1-2 nuclei volumes (p = 0.015), while in the E4 positive group, there was indirect effect of Ch4p nucleus (p = 0.035). CONCLUSION: Our findings suggest that in older adults without dementia, BF nuclei affect aSN processing indirectly, through MTL and PFC, and that APOE E4 moderates these associations.
- MeSH
- alely MeSH
- Alzheimerova nemoc * diagnostické zobrazování genetika MeSH
- atrofie MeSH
- cholinergní látky MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- pars basalis telencephali * diagnostické zobrazování MeSH
- senioři MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Cognitive deficits are common in early multiple sclerosis (MS), however, spatial navigation changes and their associations with brain pathology remain poorly understood. OBJECTIVE: To characterize the profile of spatial navigation changes in two main navigational strategies, egocentric (self-centred) and allocentric (world-centred), and their associations with demyelinating and neurodegenerative changes in early MS. METHODS: Participants with early MS after the first clinical event (n = 51) and age-, gender- and education-matched controls (n = 42) underwent spatial navigation testing in a real-space human analogue of the Morris water maze task, comprehensive neuropsychological assessment, and MRI brain scan with voxel-based morphometry and volumetric analyses. RESULTS: The early MS group had lower performance in the egocentric (p = 0.010), allocentric (p = 0.004) and allocentric-delayed (p = 0.038) navigation tasks controlling for age, gender and education. Based on the applied criteria, lower spatial navigation performance was present in 26-29 and 33-41% of the participants with early MS in the egocentric and the allocentric task, respectively. Larger lesion load volume in cortical, subcortical and cerebellar regions (ß ≥ 0.29; p ≤ 0.032) unlike brain atrophy was associated with less accurate allocentric navigation performance. CONCLUSION: Lower spatial navigation performance is present in up to 41% of the participants with early MS. Demyelinating lesions in early MS may disrupt neural network forming the basis of allocentric navigation.
Impairment in spatial navigation (SN) and structural network topology is not limited to patients with Alzheimer's disease (AD) dementia and can be detected earlier in patients with mild cognitive impairment (MCI). We recruited 32 MCI patients (65.91 ± 11.33 years old) and 28 normal cognition patients (NC; 69.68 ± 10.79 years old), all of whom underwent a computer-based battery of SN tests evaluating egocentric, allocentric, and mixed SN strategies and diffusion-weighted and T1-weighted Magnetic Resonance Imaging (MRI). To evaluate the topological features of the structural connectivity network, we calculated its measures such as the global efficiency, local efficiency, clustering coefficient, and shortest path length with GRETNA. We determined the correlation between SN accuracy and network topological properties. Compared to NC, MCI subjects demonstrated a lower egocentric navigation accuracy. Compared with NC, MCI subjects showed significantly decreased clustering coefficients in the left middle frontal gyrus, right rectus, right superior parietal gyrus, and right inferior parietal gyrus and decreased shortest path length in the left paracentral lobule. We observed significant positive correlations of the shortest path length in the left paracentral lobule with both the mixed allocentric-egocentric and the allocentric accuracy measured by the average total errors. A decreased clustering coefficient in the right inferior parietal gyrus was associated with a larger allocentric navigation error. White matter hyperintensities (WMH) did not affect the correlation between network properties and SN accuracy. This study demonstrated that structural connectivity network abnormalities, especially in the frontal and parietal gyri, are associated with a lower SN accuracy, independently of WMH, providing a new insight into the brain mechanisms associated with SN impairment in MCI.
- Publikační typ
- časopisecké články MeSH
Individuals with subjective cognitive decline (SCD) are at higher risk of incipient Alzheimer's disease (AD). Spatial navigation (SN) impairments in AD dementia and mild cognitive impairment patients have been well-documented; however, studies investigating SN deficits in SCD subjects are still lacking. This study aimed to explore whether basal forebrain (BF) and entorhinal cortex (EC) atrophy contribute to spatial disorientation in the SCD stage. In total, 31 SCD subjects and 24 normal controls were enrolled and administered cognitive scales, a 2-dimensional computerized SN test, and structural magnetic resonance imaging (MRI) scanning. We computed the differences in navigation distance errors and volumes of BF subfields, EC, and hippocampus between the SCD and control groups. The correlations between MRI volumetry and navigation distance errors were also calculated. Compared with the controls, the SCD subjects performed worse in both egocentric and allocentric navigation. The SCD group showed volume reductions in the whole BF (p < 0.05, uncorrected) and the Ch4p subfield (p < 0.05, Bonferroni corrected), but comparable EC and hippocampal volumes with the controls. In the SCD cohort, the allocentric errors were negatively correlated with total BF (r = -0.625, p < 0.001), Ch4p (r = -0.625, p < 0.001), total EC (r = -0.423, p = 0.031), and left EC volumes (r = -0.442, p = 0.024), adjusting for age, gender, years of education, total intracranial volume, and hippocampal volume. This study demonstrates that SN deficits and BF atrophy may be promising indicators for the early detection of incipient AD patients. The reduced BF volume, especially in the Ch4p subfield, may serve as a structural basis for allocentric disorientation in SCD subjects independent of hippocampal atrophy. Our findings may have further implications for the preclinical diagnosis and intervention for potential AD patients.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The apolipoprotein E (APOE) ɛ4 allele is associated with episodic memory and spatial navigation deficits. The brain-derived neurotrophic factor (BDNF) Met allele may further worsen memory impairment in APOEɛ4 carriers but its role in APOEɛ4-related spatial navigation deficits has not been established. OBJECTIVE: We examined influence of APOE and BDNF Val66Met polymorphism combination on spatial navigation and volumes of selected navigation-related brain regions in cognitively unimpaired (CU) older adults and those with amnestic mild cognitive impairment (aMCI). METHODS: 187 participants (aMCI [n = 116] and CU [n = 71]) from the Czech Brain Aging Study were stratified based on APOE and BDNF Val66Met polymorphisms into four groups: ɛ4-/BDNFVal/Val, ɛ4-/BDNFMet, ɛ4+/BDNFVal/Val, and ɛ4+/BDNFMet. The participants underwent comprehensive neuropsychological examination, brain MRI, and spatial navigation testing of egocentric, allocentric, and allocentric delayed navigation in a real-space human analogue of the Morris water maze. RESULTS: Among the aMCI participants, the ɛ4+/BDNFMet group had the least accurate egocentric navigation performance (p < 0.05) and lower verbal memory performance than the ɛ4-/BDNFVal/Val group (p = 0.007). The ɛ4+/BDNFMet group had smaller hippocampal and entorhinal cortical volumes than the ɛ4-/BDNFVal/Val (p≤0.019) and ɛ4-/BDNFMet (p≤0.020) groups. Among the CU participants, the ɛ4+/BDNFMet group had less accurate allocentric and allocentric delayed navigation performance than the ɛ4-/BDNFVal/Val group (p < 0.05). CONCLUSION: The combination of APOEɛ4 and BDNF Met polymorphisms is associated with more pronounced egocentric navigation impairment and atrophy of the medial temporal lobe regions in individuals with aMCI and less accurate allocentric navigation in CU older adults.
- MeSH
- apolipoprotein E4 genetika MeSH
- kognitivní dysfunkce genetika patofyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mozkový neurotrofický faktor genetika MeSH
- polymorfismus genetický MeSH
- prostorová navigace fyziologie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The dissociation between egocentric and allocentric reference frames is well established. Spatial coding relative to oneself has been associated with a brain network distinct from spatial coding using a cognitive map independently of the actual position. These differences were, however, revealed by a variety of tasks from both static conditions, using a series of images, and dynamic conditions, using movements through space. We aimed to clarify how these paradigms correspond to each other concerning the neural correlates of the use of egocentric and allocentric reference frames. We review here studies of allocentric and egocentric judgments used in static two- and three-dimensional tasks and compare their results with the findings from spatial navigation studies. We argue that neural correlates of allocentric coding in static conditions but using complex three-dimensional scenes and involving spatial memory of participants resemble those in spatial navigation studies, while allocentric representations in two-dimensional tasks are connected with other perceptual and attentional processes. In contrast, the brain networks associated with the egocentric reference frame in static two-dimensional and three-dimensional tasks and spatial navigation tasks are, with some limitations, more similar. Our review demonstrates the heterogeneity of experimental designs focused on spatial reference frames. At the same time, it indicates similarities in brain activation during reference frame use despite this heterogeneity.
- MeSH
- lidé MeSH
- mapování mozku metody MeSH
- mínění fyziologie MeSH
- neuropsychologické testy MeSH
- pozornost fyziologie MeSH
- prostorová paměť fyziologie MeSH
- světelná stimulace metody MeSH
- vnímání prostoru fyziologie MeSH
- zraková percepce fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
AIMS: To find out whether neuropsychiatric comorbidity (comMCI) influences spatial navigation performance in amnestic mild cognitive impairment (aMCI). METHODS: We recruited aMCI patients with (n = 21) and without (n = 21) neuropsychiatric comorbidity or alcohol abuse, matched for global cognitive impairment and cognitively healthy elderly participants (HE, n = 22). They completed the Mini-Mental State Examination and a virtual Hidden Goal Task in egocentric, allocentric, and delayed recall subtests. RESULTS: In allocentric navigation, aMCI and comMCI performed significantly worse than HE and similarly to each other. Although aMCI performed significantly worse at egocentric navigation than HE, they performed significantly better than patients with comMCI. CONCLUSIONS: Despite the growing burden of dementia and the prevalence of neuropsychiatric symptoms in the elderly population, comMCI remains under-studied. Since trials often assess "pure" aMCI, we may underestimate patients' navigation and other deficits. This finding emphasizes the importance of taking account of the cognitive effects of psychiatric disorders in aMCI.
- MeSH
- amnézie epidemiologie psychologie MeSH
- kognitivní dysfunkce epidemiologie psychologie MeSH
- komorbidita MeSH
- lidé MeSH
- prostorová navigace * MeSH
- prostorová paměť MeSH
- senioři MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hippocampal and basal forebrain (BF) atrophy is associated with allocentric navigation impairment in Alzheimer's disease (AD) and may lead to recruitment of compensatory navigation strategies. We examined navigation strategy preference, its association with allocentric navigation, and the role of hippocampal and BF volumes in this association in early clinical stages of AD. Sixty nine participants-amnestic mild cognitive impairment (aMCI) due to AD (n = 28), AD dementia (n = 21), and cognitively normal (CN) older adults (n = 20)-underwent virtual Y-maze strategy assessment, real-space navigation testing, cognitive assessment, and hippocampal and BF volumetry. Preference for egocentric over allocentric strategy increased with AD severity (aMCI: 67% vs. 33%; dementia: 94% vs. 6%), which contrasted with preference in the CN group (39% vs. 61%). Those with aMCI who preferred egocentric strategy had worse allocentric navigation. Among those with aMCI, hippocampal and BF atrophy explained up to 25% of the association between strategy preference and allocentric navigation. The preference for egocentric strategy in AD may reflect recruitment of compensatory extrahippocampal navigation strategies as adaptation to hippocampal and BF neurodegeneration.
- MeSH
- Alzheimerova nemoc patologie psychologie MeSH
- atrofie MeSH
- bludiště - učení MeSH
- degenerace nervu MeSH
- hipokampus patologie patofyziologie MeSH
- kognitivní dysfunkce patologie psychologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- neuropsychologické testy MeSH
- pars basalis telencephali patologie patofyziologie MeSH
- prostorová navigace fyziologie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- stupeň závažnosti nemoci MeSH
- velikost orgánu MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH