Influence of (Sub) Structure Development within Rotary Swaged Al-Cu Clad Conductors on Skin Effect during Transfer of Alternating Current
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-15479S
Czech Science Foundation
SP2021/20
VSB-Technical University of Ostrava
PubMed
35057368
PubMed Central
PMC8779058
DOI
10.3390/ma15020650
PII: ma15020650
Knihovny.cz E-zdroje
- Klíčová slova
- alternating current, clad composite, microstructure, rotary swaging, skin effect,
- Publikační typ
- časopisecké články MeSH
The nature of alternating current transfer via metallic materials is specific, since the current density tends to be inhomogeneous across the cross-section of the conductor and the skin effect tends to occur. However, the influence of this effect on the behaviour of the conductor can be optimized via the design and fabrication procedures. The study presents innovative design of an Al-Cu clad conductor, which is supposed to affect favourably the influence of the skin effect. The clad conductors of various diameters (20 mm, 15 mm, and 10 mm) were fabricated via rotary swaging at room temperature, and their electric characteristics were subsequently examined both experimentally and via numerical simulations. Structure analyses performed to document the effects of the swaging technology on the development of substructure and characteristic structural features were carried out by scanning electron microscopy (electron backscatter diffraction analyses), and transmission electron microscopy. The results showed that the design of the composite has a favourable effect on decreasing the power losses during alternating current transfer and that the substructure development affected favourably the electric resistance of the conductor. The highest electric resistance was measured for the composite conductor with the diameter of 20 mm (1.8% increase compared to electric resistance during transfer of direct current). This value then decreased to 0.6%, and 0.1% after swaging down to the diameters of 15 mm, and 10 mm; the 10 mm composite featured the finest grains, partially restored structure, and texture randomization compared to the 20 mm and 15 mm composites. Manufacturing of the clad composite via rotary swaging imparted advantageous combinations of both the electric and mechanical properties, as swaging also introduced increased microhardness.
Zobrazit více v PubMed
Ling K., Mo Q., Lv X., Qin G., Yang W., Li L., Li W. Growth characteristics and corrosion resistance of micro-arc oxidation coating on Al–Mg composite plate. Vacuum. 2022;195:110640. doi: 10.1016/j.vacuum.2021.110640. DOI
Mozaffari A., Danesh Manesh H., Janghorban K. Evaluation of mechanical properties and structure of multilayered Al/Ni composites produced by accumulative roll bonding (ARB) process. J. Alloys Compd. 2010;489:103–109. doi: 10.1016/j.jallcom.2009.09.022. DOI
Ghalandari L., Mahdavian M.M., Reihanian M., Mahmoudiniya M. Production of Al/Sn multilayer composite by accumulative roll bonding (ARB): A study of microstructure and mechanical properties. Mater. Sci. Eng. A. 2016;661:179–186. doi: 10.1016/j.msea.2016.02.070. DOI
Hosseini M., Danesh Manesh H. Bond strength optimization of Ti/Cu/Ti clad composites produced by roll-bonding. Mater. Des. 2015;81:122–132. doi: 10.1016/j.matdes.2015.05.010. DOI
Tayyebi M., Eghbali B. Study on the microstructure and mechanical properties of multilayer Cu/Ni composite processed by accumulative roll bonding. Mater. Sci. Eng. A. 2013;559:759–764. doi: 10.1016/j.msea.2012.09.021. DOI
Gladkovsky S.V., Kuteneva S.V., Sergeev S.N. Microstructure and mechanical properties of sandwich copper/steel composites produced by explosive welding. Mater. Charact. 2019;154:294–303. doi: 10.1016/j.matchar.2019.06.008. DOI
Motevalli P.D., Eghbali B. Microstructure and mechanical properties of laminated Al–Cu–Mg composite fabricated by accumulative roll bonding. Bull. Mater. Sci. 2017;40:1481–1488. doi: 10.1007/s12034-017-1504-z. DOI
Mahdavian M.M., Ghalandari L., Reihanian M. Accumulative roll bonding of multilayered Cu/Zn/Al: An evaluation of microstructure and mechanical properties. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2013;579:99–107. doi: 10.1016/j.msea.2013.05.002. DOI
Akgul B., Erden F., Ozbay S. Porous Cu/Al composites for cost-effective thermal management. Powder Technol. 2021;391:11–19. doi: 10.1016/j.powtec.2021.06.007. DOI
Wang Y., Li X., Wang X., Yan H. Fabrication of a thick copper-stainless steel clad plate for nuclear fusion equipment by explosive welding. Fusion Eng. Des. 2018;137:91–96. doi: 10.1016/j.fusengdes.2018.08.017. DOI
Shen W., Yu L., Liu H., He Y., Zhou Z., Zhang Q. Diffusion welding of powder metallurgy high speed steel by spark plasma sintering. J. Mater. Process. Technol. 2020;275:116383. doi: 10.1016/j.jmatprotec.2019.116383. DOI
Jamili A.M., Zarei-Hanzaki A., Abedi H.R., Mosayebi M., Kocich R., Kunčická L. Development of fresh and fully recrystallized microstructures through friction stir processing of a rare earth bearing magnesium alloy. Mater. Sci. Eng. A. 2019;775:138837. doi: 10.1016/j.msea.2019.138837. DOI
Kocich R., Kunčická L., Macháčková A., Šofer M. Improvement of mechanical and electrical properties of rotary swaged Al-Cu clad composites. Mater. Des. 2017;123:137–146. doi: 10.1016/j.matdes.2017.03.048. DOI
Kocich R., Macháčková A., Kunčická L., Fojtík F. Fabrication and characterization of cold-swaged multilayered Al-Cu clad composites. Mater. Des. 2015;71:36–47. doi: 10.1016/j.matdes.2015.01.008. DOI
Kunčická L., Lowe T.C., Davis C.F., Kocich R., Pohludka M. Synthesis of an Al/Al2O3 composite by severe plastic deformation. Mater. Sci. Eng. A. 2015;646:234–241. doi: 10.1016/j.msea.2015.08.075. DOI
Awang Sh’ri D.N., Zahari Z.S., Yamamoto A. Effect of ECAP Die Angle on Mechanical Properties and Biocompatibility of SS316L. Metals. 2021;11:1513. doi: 10.3390/met11101513. DOI
Hlaváč L.M., Kocich R., Gembalová L., Jonšta P., Hlaváčová I.M. AWJ cutting of copper processed by ECAP. Int. J. Adv. Manuf. Technol. 2016;86:885–894. doi: 10.1007/s00170-015-8236-2. DOI
Kunčická L., Kocich R., Drápala J., Andreyachshenko V.A. FEM simulations and comparison of the ecap and ECAP-PBP influence on Ti6Al4V alloy’s deformation behaviour; Proceedings of the METAL 2013—22nd International Conference on Metallurgy and Materials; Brno, Czech Republic. 15–17 May 2013; pp. 391–396.
Derakhshan J.F., Parsa M.H., Jafarian H.R. Microstructure and mechanical properties variations of pure aluminum subjected to one pass of ECAP-Conform process. Mater. Sci. Eng. A. 2019;747:120–129. doi: 10.1016/j.msea.2019.01.058. DOI
Kunčická L., Kocich R., Ryukhtin V., Cullen J.C.T., Lavery N.P. Study of structure of naturally aged aluminium after twist channel angular pressing. Mater. Charact. 2019;152:94–100. doi: 10.1016/j.matchar.2019.03.045. DOI
Kocich R., Kunčická L., Macháčková A. Twist Channel Multi-Angular Pressing ( TCMAP ) as a method for increasing the efficiency of SPD. IOP Conf. Ser. Mater. Sci. Eng. 2014;63:012006. doi: 10.1088/1757-899X/63/1/012006. DOI
Deb S., Panigrahi S.K., Weiss M. Development of bulk ultrafine grained Al-SiC nano composite sheets by a SPD based hybrid process: Experimental and theoretical studies. Mater. Sci. Eng. A. 2018;738:323–334. doi: 10.1016/j.msea.2018.09.101. DOI
Shahabi H.S., Eizadjou M., Manesh H.D. Evolution of mechanical properties in SPD processed Cu/Nb nano-layered composites. Mater. Sci. Eng. A. 2010;527:5790–5795. doi: 10.1016/j.msea.2010.05.087. DOI
Chlupová A., Šulák I., Kunčická L., Kocich R., Svoboda J. Microstructural aspects of new grade ODS alloy consolidated by rotary swaging. Mater. Charact. 2021;181:111477. doi: 10.1016/j.matchar.2021.111477. DOI
Kunčická L., Kocich R. Deformation behaviour of Cu-Al clad composites produced by rotary swaging. IOP Conf. Ser. Mater. Sci. Eng. 2018;369:012029. doi: 10.1088/1757-899X/369/1/012029. DOI
Kunčická L., Macháčková A., Lavery N.P., Kocich R., Cullen J.C.T., Hlaváč L.M. Effect of thermomechanical processing via rotary swaging on properties and residual stress within tungsten heavy alloy. Int. J. Refract. Met. Hard Mater. 2020;87:1–15. doi: 10.1016/j.ijrmhm.2019.105120. DOI
Kocich R., Kunčická L., Král P., Strunz P. Characterization of innovative rotary swaged Cu-Al clad composite wire conductors. Mater. Des. 2018;160:828–835. doi: 10.1016/j.matdes.2018.10.027. DOI
Beygi R., Kazeminezhad M., Mehrizi M.Z., Eisaabadi B.G., Loureiro A. Friction stir butt welding of Al-Cu bilayer laminated composites: Analysis of force, torque, and temperature. Int. J. Adv. Manuf. Technol. 2017;88:393–400. doi: 10.1007/s00170-016-8778-y. DOI
Danilenko V.N.N., Sergeev S.N.N., Baimova J.A.A., Korznikova G.F.F., Nazarov K.S.S., Khisamov R.K., Glezer A.M.M., Mulyukov R.R.R. An approach for fabrication of Al-Cu composite by high pressure torsion. Mater. Lett. 2019;236:51–55. doi: 10.1016/j.matlet.2018.09.158. DOI
Kocich R., Kunčická L., Davis C.F., Lowe T.C., Szurman I., Macháčková A. Deformation behavior of multilayered Al-Cu clad composite during cold-swaging. Mater. Des. 2016;90:379–388. doi: 10.1016/j.matdes.2015.10.145. DOI
Yousefi Mehr V., Toroghinejad M.R., Rezaeian A., Asgari H., Szpunar J.A. A texture study of nanostructured Al–Cu multi-layered composite manufactured via the accumulative roll bonding (ARB) J. Mater. Res. Technol. 2021;14:2909–2919. doi: 10.1016/j.jmrt.2021.08.054. DOI
Kunčická L., Kocich R., Strunz P., Macháčková A. Texture and residual stress within rotary swaged Cu/Al clad composites. Mater. Lett. 2018;230:88–91. doi: 10.1016/j.matlet.2018.07.085. DOI
Kocich R., Kunčická L. Development of structure and properties in bimetallic Al/Cu sandwich composite during cumulative severe plastic deformation. J. Sandw. Struct. Mater. 2021;23:4252–4275. doi: 10.1177/1099636221993886. DOI
Kim I.-K., Hong S.I. Effect of heat treatment on the bending behavior of tri-layered Cu/Al/Cu composite plates. Mater. Des. 2013;47:590–598. doi: 10.1016/j.matdes.2012.12.070. DOI
Kunčická L., Kocich R., Dvořák K., Macháčková A. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. A. 2019;742:743–750. doi: 10.1016/j.msea.2018.11.026. DOI
Koo G.M., Tallman T.N. Frequency-dependent alternating current piezoresistive switching behavior in self-sensing carbon nanofiber composites. Carbon N. Y. 2021;173:384–394. doi: 10.1016/j.carbon.2020.11.018. DOI
Jouni M., Buzlukov A., Bardet M., Da Cruz-Boisson F., Eddarir A., Massardier V., Boiteux G. Skin effect of conductive polymer composites observed by high-resolution solid-state NMR. Compos. Sci. Technol. 2014;104:104–110. doi: 10.1016/j.compscitech.2014.08.031. DOI
Webster J.G. Electrical Measurement, Signal Processing, and Displays (Principles and Applications in Engineering) 1st ed. CRC Press; Boca Raton, FL, USA: 2003. [(accessed on 25 August 2021)]. Available online: https://www.amazon.com/Electrical-Measurement-Processing-Applications-Engineering/dp/0849317339.
Dugdale J.S. The Electrical Properties of Metals and Alloys. Dover Publication; Garden City, NY, USA: 2016.
Gennesson M., Zollinger J., Daloz D., Rouat B., Demurger J., Combeau H. Three Dimensional Methodology to Characterize Large Dendritic Equiaxed Grains in Industrial Steel Ingots. Materials. 2018;11:1007. doi: 10.3390/ma11061007. PubMed DOI PMC
Toth L.S., Biswas S., Gu C., Beausir B. Notes on representing grain size distributions obtained by electron backscatter diffraction. Mater. Charact. 2013;84:67–71. doi: 10.1016/j.matchar.2013.07.013. DOI
Russell A., Lee K.L. Structure-Property Relations in Nonferrous Metals. 1st ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2005.