Interorgan, intraorgan and interplant communication mediated by nitric oxide and related species
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Magyar Tudományos Akadémia
PubMed
39223868
DOI
10.1111/nph.20085
Knihovny.cz E-zdroje
- Klíčová slova
- hydrogen sulphide, interorgan signalling, interplant signalling, nitric oxide, reactive nitrogen species, systemic defence, xylem development,
- MeSH
- kořeny rostlin metabolismus fyziologie MeSH
- oxid dusnatý * metabolismus MeSH
- rostliny metabolismus MeSH
- signální transdukce MeSH
- xylém metabolismus fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- oxid dusnatý * MeSH
Plant survival to a potential plethora of diverse environmental insults is underpinned by coordinated communication amongst organs to help shape effective responses to these environmental challenges at the whole plant level. This interorgan communication is supported by a complex signal network that regulates growth, development and environmental responses. Nitric oxide (NO) has emerged as a key signalling molecule in plants. However, its potential role in interorgan communication has only recently started to come into view. Direct and indirect evidence has emerged supporting that NO and related species (S-nitrosoglutathione, nitro-linolenic acid) are mobile interorgan signals transmitting responses to stresses such as hypoxia and heat. Beyond their role as mobile signals, NO and related species are involved in mediating xylem development, thus contributing to efficient root-shoot communication. Moreover, NO and related species are regulators in intraorgan systemic defence responses aiming an effective, coordinated defence against pathogens. Beyond its in planta signalling role, NO and related species may act as ex planta signals coordinating external leaf-to-leaf, root-to-leaf but also plant-to-plant communication. Here, we discuss these exciting developments and emphasise how their manipulation may provide novel strategies for crop improvement.
Agroécologie INRAE Institut Agro Dijon Univiversité de Bourgogne 21000 Dijon France
Department of Applied Sciences University of the West of England Bristol BS16 1QY UK
Department of Plant Biology University of Szeged H6726 Szeged Hungary
Institute of Molecular Plant Sciences University of Edinburgh Edinburgh EH9 3BF UK
National Institute of Plant Genome Research Aruna Asaf Ali Marg 110067 New Delhi India
Zobrazit více v PubMed
Abe K, Kimura H. 1996. The possible role of hydrogen sulfide as an endogenous neuromodulator. The Journal of Neuroscience 16: 1066–1071.
Ageeva‐Kieferle A, Georgii E, Winkler B, Ghirardo A, Albert A, Hüther P, Mengel A, Becker C, Schnitzler JP, Durner J et al. 2021. Nitric oxide coordinates growth, development, and stress response via histone modification and gene expression. Plant Physiology 187: 336–360.
Aranda‐Caño L, Valderrama R, Chaki M, Begara‐Morales JC, Melguizo M, Barroso JB. 2022. Nitrated fatty‐acids distribution in storage biomolecules during Arabidopsis thaliana development. Antioxidants 11: 1869.
Arasimowicz‐Jelonek M, Floryszak‐Wieczorek J, Suarez S, Doctorovich F, Sobieszczuk‐Nowicka E, Bruce King S, Milczarek G, Rębiś T, Gajewska J, Jagodzik P et al. 2023. Discovery of endogenous nitroxyl as a new redox player in Arabidopsis thaliana. Nature Plants 9: 36–44.
Arechaga‐Ocampo E, Saenz‐Rivera J, Sarath G, Klucas RV, Arredondo‐Peter R. 2001. Cloning and expression analysis of hemoglobin genes from maize (Zea mays ssp. mays) and teosinte (Zea mays ssp. parviglumis). Biochimica et Biophysica Acta 1522: 1–8.
Aroca A, Serna A, Gotor C, Romero LC. 2015. S‐sulfhydration: a cysteine posttranslational modification in plant systems. Plant Physiology 168: 334–342.
Barceló AR, Pomar F, Ferrer MA, Martínez P, Ballesta MC, Pedreño MA. 2002. In situ characterisation of a NO‐sensitive peroxidase in the lignifying xylem of Zinnia elegans. Physiologia Plantarum 114: 33–40.
Barroso JB, Corpas FJ, Carreras A, Rodríguez‐Serrano M, Esteban FJ, Fernández‐Ocaña A, Chaki M, Romero‐Puertas MC, Valderrama R, Sandalio LM et al. 2006. Localization of S‐nitrosoglutathione and expression of S‐nitrosoglutathione reductase in pea plants under cadmium stress. Journal of Experimental Botany 57: 1785–1793.
Becana M, Yruela I, Sarath G, Catalan P, Hargrove MS. 2020. Plant hemoglobins: a journey from unicellular green algae to vascular plants. New Phytologist 227: 1618–1635.
Beckman JS, Koppenol WH. 1996. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. The American Journal of Physiology 271: C1424–C1437.
Begara‐Morales JC, Chaki M, Sánchez‐Calvo B, Mata‐Pérez C, Leterrier M, Palma JM, Barroso JB, Corpas FJ. 2013. Protein tyrosine nitration in pea roots during development and senescence. Journal of Experimental Botany 64: 1121–1134.
Begara‐Morales JC, Mata‐Pérez C, Padilla MN, Chaki M, Valderrama R, Aranda‐Caño L, Barroso JB. 2021. Role of electrophilic nitrated fatty acids during development and response to abiotic stress processes in plants. Journal of Experimental Botany 72: 917–927.
Begara‐Morales JC, Sánchez‐Calvo B, Chaki M, Valderrama R, Mata‐Pérez C, López‐Jaramillo J, Padilla MN, Carreras A, Corpas FJ, Barroso JB. 2014a. Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S‐nitrosylation. Journal of Experimental Botany 65: 527–538.
Begara‐Morales JC, Sánchez‐Calvo B, Luque F, Leyva‐Pérez MO, Leterrier M, Corpas FJ, Barroso JB. 2014b. Differential transcriptomic analysis by RNA‐Seq of GSNO‐responsive genes between Arabidopsis roots and leaves. Plant & Cell Physiology 55: 1080–1095.
Besson‐Bard A, Pugin A, Wendehenne D. 2008. New insights into nitric oxide signalling in plants. Annual Review of Plant Biology 59: 21–39.
Bogusz D, Llewellyn DJ, Craig S, Dennis ES, Appleby CA, Peacock WJ. 1990. Nonlegume hemoglobin genes retain organ‐specific expression in heterologous transgenic plants. Plant Cell 2: 633–641.
Buhtz A, Kolasa A, Arlt K, Walz C, Kehr J. 2004. Xylem sap protein composition is conserved among different plant species. Planta 219: 610–618.
Chaki M, Valderrama R, Fernández‐Ocaña AM, Carreras A, Gómez‐Rodríguez MV, López‐Jaramillo J, Begara‐Morales JC, Sánchez‐Calvo B, Luque F, Leterrier M et al. 2011a. High temperature triggers the metabolism of S‐nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin–NADP reductase by tyrosine nitration. Plant, Cell & Environment 34: 1803–1818.
Chaki M, Valderrama R, Fernández‐Ocaña AM, Carreras A, Gómez‐Rodríguez MV, Pedrajas JR, Begara‐Morales JC, Sánchez‐Calvo B, Luque F, Leterrier M et al. 2011b. Mechanical wounding induces a nitrosative stress by down‐regulation of GSNO reductase and an increase in S‐nitrosothiols in sunflower (Helianthus annuus) seedlings. Journal of Experimental Botany 62: 1803–1813.
Chamizo‐Ampudia A, Sanz‐Luque E, Llamas Á, Ocaña‐Calahorro F, Mariscal V, Carreras A, Barroso JB, Galván A, Fernández E. 2016. A dual system formed by the ARC and NR molybdoenzymes mediates nitrite‐dependent NO production in Chlamydomonas. Plant, Cell & Environment 39: 2097–2107.
Chen J, Wang C, Wu F‐H. 2015. Variation of nitric oxide emission potential in plants. Journal of Plant Ecology 8: 313–320.
Chen J, Xiao Q, Wu FH, Pei ZM, Wang J, Wu YG, Zheng HL. 2010. Nitric oxide emission from barley seedlings and detached leaves and roots treated with nitrate and nitrite. Plant, Soil and Environment 56: 201–208.
Cooney RV, Harwood PJ, Custer LJ, Franke AA. 1994. Light‐mediated conversion of nitrogen dioxide to nitric oxide by carotenoids. Environmental Health Perspectives 102: 460–462.
Copolovici L, Niinemets Ü. 2010. Flooding induced emissions of volatile signalling compounds in three tree species with differing waterlogging tolerance. Plant, Cell & Environment 33: 1582–1594.
Corpas FJ, Barroso JB, González‐Gordo S, Muñoz‐Vargas MA, Palma JM. 2019a. Hydrogen sulfide: a novel component in Arabidopsis peroxisomes which triggers catalase inhibition. Journal of Integrative Plant Biology 61: 871–883.
Corpas FJ, Chaki M, Fernández‐Ocaña A, Valderrama R, Palma JM, Carreras A, Begara‐Morales JC, Airaki M, del Río LA, Barroso JB. 2008. Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant & Cell Physiology 49: 1711–1722.
Corpas FJ, González‐Gordo S, Cañas A, Palma JM. 2019b. Nitric oxide and hydrogen sulfide in plants: which comes first? Journal of Experimental Botany 70: 4391–4404.
Corpas FJ, González‐Gordo S, Palma JM. 2021. Nitric oxide and hydrogen sulfide modulate the NADPH‐generating enzymatic system in higher plants. Journal of Experimental Botany 72: 830–847.
Corpas FJ, González‐Gordo S, Rodríguez‐Ruiz M, Muñoz‐Vargas MA, Palma JM. 2022. Thiol‐based oxidative posttranslational modifications (OxiPTMs) of plant proteins. Plant & Cell Physiology 63: 889–900.
Daigle R, Rousseau JA, Guertin M, Lagüe P. 2009. Theoretical investigations of nitric oxide channeling in Mycobacterium tuberculosis truncated hemoglobin. Biophysics Journal 97: 2967–2977.
De Schepper V, De Swaef T, Bauweraerts I, Steppe K. 2013. Phloem transport: a review of mechanisms and controls. Journal of Experimental Botany 64: 4839–4850.
Dempsey DMA, Klessig DF. 2012. SOS – too many signals for systemic acquired resistance? Trends in Plant Science 17: 538–545.
Dent MR, DeMartino AW. 2023. Nitric oxide and thiols: chemical biology, signalling paradigms and vascular therapeutic potential. British Journal of Pharmacology. doi: 10.1111/bph.16274.
Di Fino L, Di Palma AA, Perk EA, García‐Mata C, Schopfer FJ, Laxalt AM. 2021. Nitro‐fatty acids: electrophilic signalling molecules in plant physiology. Planta 254: 120.
Durrant WE, Dong X. 2004. Systemic acquired resistance. Annual Review of Phytopathology 42: 185–209.
Espunya MC, De Michele M, Gomez‐Cadenas A, Martınez C. 2012. S‐nitrosoglutathione is a component of wound‐ and salicylic acid‐induced systemic responses in Arabidopsis thaliana. Journal of Experimental Botany 63: 3219–3227.
Fichman Y, Peláez‐Vico MÁ, Mudalige AK, Lee HO, Mittler R, Park SY. 2024. Rapid plant‐to‐plant systemic signaling via a Cuscuta bridge. Plant Physiology 18: kiae339.
Fichman Y, Zandalinas SI, Peck S, Luan S, Mittler R. 2022. HPCA1 is required for systemic reactive oxygen species and calcium cell‐to‐cell signalling and plant acclimation to stress. Plant Cell 34: 4453–4471.
Freschi L. 2013. Nitric oxide and phytohormone interactions: current status and perspectives. Frontiers in Plant Science 4: 398.
Gabaldón C, Gómez Ros LV, Pedreño MA, Barceló AR. 2005. Nitric oxide production by the differentiating xylem of Zinnia elegans. New Phytologist 165: 121–130.
Gao H, Guo M, Song J, Ma Y, Xu Z. 2021. Signals in systemic acquired resistance of plants against microbial pathogens. Molecular Biology Reports 48: 3747–3759.
Gaupels F, Corina Vlot A. 2012. Plant defense and long‐distance signalling in the phloem. In: Thompson GA, van Bel AJE, eds. Phloem: molecular cell biology, systemic communication, biotic interactions. Wiley‐Blackwell: Chichester, UK, 227–247.
Gaupels F, Durner J, Kogel KH. 2017. Production, amplification and systemic propagation of redox messengers in plants? The phloem can do it all! New Phytologist 214: 554–560.
Gaupels F, Furch ACU, Will T, Mur LAJ, Kogel KH, Van Bel AJE. 2008. Nitric oxide generation in Vicia faba phloem cells reveals them to be sensitive detectors as well as possible systemic transducers of stress signals. New Phytologist 178: 634–646.
Godber BL, Doel JJ, Sapkota GP, Blake DR, Stevens CR, Eisenthal R, Harrison R. 2000. Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase. The Journal of Biological Chemistry 275: 7757–7763.
González‐Gordo S, Bautista R, Gonzalo Claros M, Cañas A, Palma JM, Corpas FJ. 2019. Nitric oxide‐dependent regulation of sweet pepper fruit ripening. Journal of Experimental Botany 70: 4557–4570.
González‐Gordo S, López‐Jaramillo J, Rodríguez‐Ruiz M, Taboada J, Palma JM, Corpas FJ. 2024. Pepper catalase: a broad analysis of its modulation during fruit ripening and by nitric oxide. The Biochemical Journal 481: 883–901.
González‐Gordo S, Palma JM, Corpas FJ. 2020. Appraisal of H2S metabolism in Arabidopsis thaliana: in silico analysis at the subcellular level. Plant Physiology and Biochemistry 155: 579–658.
Gow AJ, Stamler JS. 1998. Reactions between nitric oxide and haemoglobin under physiological conditions. Nature 391: 169–173.
Groß F, Rudolf EE, Thiele B, Durner J, Astier J. 2017. Copper amine oxidase 8 regulates arginine‐dependent nitric oxide production in Arabidopsis thaliana. Journal of Experimental Botany 68: 2149–2162.
Gupta KJ, Mur LAJ, Wany A, Kumari A, Fernie AR, Ratcliffe RG. 2020. The role of nitrite and nitric oxide under low oxygen conditions in plants. New Phytologist 225: 1143–1151.
Hancock JT. 2019. Considerations of the importance of redox state for reactive nitrogen species action. Journal of Experimental Botany 70: 4323–4331.
He NY, Chen LS, Sun AZ, Zhao Y, Yin SN, Guo FQ. 2022. A nitric oxide burst at the shoot apex triggers a heat‐responsive pathway in Arabidopsis. Nature Plants 8: 434–450.
Houmani H, Rodríguez‐Ruiz M, Palma JM, Corpas FJ. 2018. Mechanical wounding promotes local and long distance response in the halophyte Cakile maritima through the involvement of the ROS and RNS metabolism. Nitric Oxide 74: 93–101.
Jacobsen‐Lyon K, Jensen EOJ, Ørgensen JE, Marcker KA, Peacock WJ, Dennis ES. 1995. Symbiotic and nonsymbiotic hemoglobin genes of Casuarina glauca. Plant Cell 7: 213–223.
Jahnová J, Činčalová L, Sedlářová M, Jedelská T, Sekaninová J, Mieslerová B, Luhová L, Barroso JB, Petřivalský M. 2020. Differential modulation of S‐nitrosoglutathione reductase and reactive nitrogen species in wild and cultivated tomato genotypes during development and powdery mildew infection. Plant Physiology and Biochemistry 155: 297–310.
Jedelská T, Sedlářová M, Lochman J, Činčalová L, Luhová L, Petřivalský M. 2021. Protein S‐nitrosation differentially modulates tomato responses to infection by hemi‐biotrophic oomycetes of Phytophthora spp. Horticulture Research 8: 34.
Jin CW, Du ST, Zhang YS, Tang C, Lin XY. 2009. Atmospheric nitric oxide stimulates plant growth and improves the quality of spinach (Spinacia oleracea). Annals of Botany 104: 9–17.
Kachroo A, Kachroo P. 2020. Mobile signals in systemic acquired resistance. Current Opinion in Plant Biology 58: 41–47.
Karpinska B, Foyer CH. 2024. Superoxide signalling and antioxidant processing in the plant nucleus. Journal of Experimental Botany 9: erae090.
Kasten D, Durner J, Gaupels F. 2017. Gas alert: the NO2 pitfall during NO fumigation of plants. Frontiers in Plant Science 8: 85.
Kasten D, Mithöfer A, Georgii E, Lang H, Durner J, Gaupels F. 2016. Nitrite is the driver, phytohormones are modulators while NO and H2O2 act as promoters of NO2‐induced cell death. Journal of Experimental Botany 67: 6337–6349.
Kawabe H, Ohtani M, Kurata T, Sakamoto T, Demura T. 2018. Protein S‐nitrosylation regulates xylem vessel cell differentiation in Arabidopsis. Plant & Cell Physiology 59: 17–29.
Kneeshaw S, Gelineau S, Tada Y, Loake GJ, Spoel SH. 2014. Selective protein denitrosylation activity of Thioredoxin‐h5 modulates plant Immunity. Molecular Cell 56: 153–162.
Kramer M, Ackelsberg EM. 2015. Auxin metabolism rates and implications for plant development. Frontiers in Plant Science 6: 150.
Kumari A, Kaladhar VC, Yadav N, Singh P, Reddy K, Gupta KJ. 2023. Nitric oxide regulates mitochondrial biogenesis in plants. Plant, Cell & Environment 46: 2492–2506.
Kuromori T, Fujita M, Takahashi F, Yamaguchi‐Shinozaki K, Shinozaki K. 2022. Inter‐tissue and inter‐organ signalling in drought stress response and phenotyping of drought tolerance. The Plant Journal 109: 342–358.
Kuruthukulangarakoola GT, Zhang J, Albert A, Winkler B, Lang H, Buegger F, Gaupels F, Heller W, Michalke B, Sarioglu H et al. 2017. Nitric oxide‐fixation by non‐symbiotic haemoglobin proteins in Arabidopsis thaliana under N‐limited conditions. Plant, Cell & Environment 40: 36–50.
Lancaster JR. 1997. A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide 1: 18–30.
Leshem YY, Haramaty E. 1996. The characterisation and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage. Journal of Plant Physiology 148: 258–263.
Li H, Testerink C, Zhang Y. 2021. How roots and shoots communicate through stressful times. Trends in Plant Science 26: 940–952.
Lindermayr C, Sell S, Muller B, Leister D, Durner J. 2010. Redox regulation of the NPR1‐TGA1 system of Arabidopsis thaliana by nitric oxide. Plant Cell 22: 2894–2907.
Lira‐Ruan V, Sarath G, Klucas H, Arredondo‐Peter R. 2001. Synthesis of hemoglobins in rice (Oryza sativa var. Jackson) plants growing in normal and stress conditions. Plant Science 161: 279–287.
Liu B, Rennenberg H, Kreuzwieser J. 2015. Hypoxia induces stem and leaf nitric oxide (NO) emission from poplar seedlings. Planta 241: 579–589.
López‐Gómez P, Buezo J, Urra M, Cornejo A, Esteban R, Fernández de Los Reyes J, Urarte E, Rodríguez‐Dobreva E, Chamizo‐Ampudia A, Eguaras A et al. 2024. A new oxidative pathway of nitric oxide production from oximes in plants. Molecular Plant 17: P178–P198.
Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y, He XQ, Fukuda H, Kang J, Brady SM et al. 2013. The plant vascular system: evolution, development and functions. Journal of Integrative Plant Biology 55: 294–388.
Ma M, Wendehenne D, Philippot L, Hänsch R, Flemetakis E, Hu B, Rennenberg H. 2020. Physiological significance of pedospheric nitric oxide for root growth, development and organismic interactions. Plant, Cell & Environment 43: 2336–2354.
Maiber L, Koprivova A, Bender D, Kopriva S, Fischer‐Schrader K. 2022. Characterization of the amidoxime reducing components ARC1 and ARC2 from Arabidopsis thaliana. The FEBS Journal 289: 5656–5669.
Marcolongo JP, Venâncio MF, Rocha WR, Doctorovich F, Olabe JA. 2019. NO/H2S “crosstalk” reactions. The role of thionitrites (SNO–) and perthionitrites (SSNO–). Inorganic Chemistry 58: 14981–14997.
Mata‐Pérez C, Sánchez‐Calvo B, Padilla MN. 2016. Nitro‐fatty acids in plant signalling: nitro‐linolenic acid induces the molecular chaperone network in Arabidopsis. Plant Physiology 170: 686–701.
Mata‐Pérez C, Sánchez‐Calvo B, Padilla MN, Begara‐Morales JC, Valderrama R, Corpas FJ, Barroso JB. 2017. Nitro‐fatty acids in plant signalling: new key mediators of nitric oxide metabolism. Redox Biology 11: 554–561.
Mata‐Pérez C, Padilla María N, Sánchez‐Calvo B, Begara‐Morales JC, Valderrama R, Chaki M, Aranda‐Caño L, Moreno‐González D, Molina‐Díaz A, Barroso JB. 2020. Endogenous biosynthesis of S‐nitrosoglutathione from nitro‐fatty acids in plants. Frontiers in Plant Science 11: 962.
Mathieu C, Moreau S, Frendo P, Puppo A, Davies MJ. 1998. Direct detection of radicals in intact soybean nodules: presence of nitric oxide‐leghemoglobin complexes. Free Radical Biology and Medicine 24: 1242–1249.
Meilhoc E, Boscari A, Bruand C, Puppo A, Brouquisse R. 2011. Nitric oxide in legume–rhizobium symbiosis. Plant Science 181: 573–581.
Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R. 2009. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Science Signaling 2: ra45.
Mishra V, Singh P, Tripathi DK, Corpas FJ, Singh VP. 2021. Nitric oxide and hydrogen sulfide: an indispensable combination for plant functioning. Trends in Plant Science 26: 1270–1285.
Mohn MA, Thaqi B, Fischer‐Schrader K. 2019. Isoform‐specific NO synthesis by Arabidopsis thaliana nitrate reductase. Plants 8: 67.
Muñoz‐Vargas MA, González‐Gordo S, Cañas A, López‐Jaramillo J, Palma JM, Corpas FJ. 2018. Endogenous hydrogen sulfide (H2S) is up‐regulated during sweet pepper (Capsicum annuum L.) fruit ripening. In vitro analysis shows that NADP‐dependent isocitrate dehydrogenase (ICDH) activity is inhibited by H2S and NO. Nitric Oxide 81: 36–45.
Muñoz‐Vargas MA, López‐Jaramillo J, González‐Gordo S, Paradela A, Palma JM, Corpas FJ. 2023. H2S‐generating cytosolic l‐cysteine desulfhydrase and mitochondrial d‐cysteine desulfhydrase from sweet pepper (Capsicum annuum L.) are regulated during fruit ripening and by nitric oxide. Antioxidants & Redox Signaling 39: 2–18.
Mur LAJ, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJM, Hebelstrup KH, Gupta KJ. 2012. Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5: pls052.
Narsai R, Howell KA, Millar AH, O'toole N, Small I, Whelan J. 2007. Genome‐wide analysis of mRNA decay rates and their determinants in Arabidopsis thaliana. Plant Cell 19: 3418–3436.
Neill S. 2005. NO way to die – nitric oxide, programmed cell death and xylogenesis. New Phytologist 165: 5–8.
Neill S, Bright J, Desikan R, Hancock J, Harrison J, Wilson I. 2008. Nitric oxide evolution and perception. Journal of Experimental Botany 59: 25–35.
Palma JM, Mateos RM, López‐Jaramillo J, Rodríguez‐Ruiz M, González‐Gordo S, Lechuga‐Sancho AM, Corpas FJ. 2020. Plant catalases as NO and H2S targets. Redox Biology 34: 101525.
Palmieri CM, Sell S, Huang X, Scherf M, Werner T, Durner J, Lindermayr C. 2008. Nitric oxide‐responsive genes and promoters in Arabidopsis thaliana: a bioinformatics approach. Journal of Experimental Botany 59: 177–186.
Parent C, Berger A, Folzer H, Dat J, Crevècoeur M, Badot P‐M, Capelli N. 2008. A novel nonsymbiotic hemoglobin from oak: cellular and tissue specificity of gene expression. New Phytologist 177: 142–154.
Pilegaard K. 2013. Processes regulating nitric oxide emissions from soils. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 368: 20130126.
Piterková J, Petrivalský M, Luhová L, Mieslerová B, Sedlárová M, Lebeda A. 2009. Local and systemic production of nitric oxide in tomato responses to powdery mildew infection. Molecular Plant Pathology 10: 501–513.
Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM. 2002. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. Journal of Experimental Botany 53: 103–110.
Rosenkranz M, Chen Y, Zhu P, Vlot AC. 2021. Volatile terpenes – mediators of plant‐to‐plant communication. The Plant Journal 108: 617–631.
Ross EJH, Shearman L, Mathiesen M, Zhou YJ, Arredondo‐Peter R, Sarath G, Klucas RV. 2001. Nonsymbiotic hemoglobins in rice are synthesized during germination and in differentiating cell types. Protoplasma 218: 125–133.
Rümer S, Gupta KJ, Kaiser WM. 2009. Plant cells oxidise hydroxylamines to NO. Journal of Experimental Botany 60: 2065–2072.
Sakamoto A, Ueda M, Morikawa H. 2002. Arabidopsis glutathione‐dependent formaldehyde dehydrogenase is an S‐nitrosoglutathione reductase. FEBS Letters 515: 20–24.
Sánchez‐Vicente I, Albertos P, Sanz C, Wybouw B, De Rybel B, Begara‐Morales JC, Chaki M, Mata‐Pérez C, Barroso JB, Lorenzo O. 2024. Reversible S‐nitrosylation of bZIP67 by peroxiredoxin IIE activity and nitro‐fatty acids regulates the plant lipid profile. Cell Reports 43: 114091.
Scuffi D, Álvarez C, Laspina N, Gotor C, Lamattina L, García‐Mata C. 2014. Hydrogen sulfide generated by l‐cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid‐dependent stomatal closure. Plant Physiology 166: 2065–2076.
Seregélyes C, Igamberdiev AU, Maassen A, Hennig J, Dudits D, Hill RD. 2004. NO‐degradation by alfalfa class 1 hemoglobin (Mhb1): a possible link to PR‐1a gene expression in Mhb1‐overproducing tobacco plants. FEBS Letters 571: 61–66.
Shah J, Chaturvedi R, Chowdhury Z, Venables B, Petros RA. 2014. Signalling by small metabolites in systemic acquired resistance. The Plant Journal 79: 645–658.
Shen J, Zhang J, Zhou M, Zhou H, Cui B, Gotor C, Romero LC, Fu L, Yang J, Foyer CH et al. 2020. Persulfidation‐based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling. Plant Cell 32: 1000–1017.
Shulaev V, Silverman P, Raskin I. 1997. Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385: 718–721.
Singh SP, Wishnok JS, Keshive M, Deen WM, Tannenbaum SR. 1996. The chemistry of the S‐nitrosoglutathione/glutathione system. Proceedings of the National Academy of Sciences, USA 93: 14428–14433.
Song F, Goodman RM. 2001. Activity of nitric oxide is dependent on, but is partially required for function of salicylic acid in the signalling pathway in tobacco systemic acquired resistance. Molecular Plant–Microbe Interactions 14: 1458–1462.
Stamler JS, Singel DJ, Loscalzo J. 1992. Biochemistry of nitric oxide and its redox‐activated forms. Science 258: 1898–1902.
Stöhr C, Strube F, Marx G, Ullrich WR, Rockel P. 2001. A plasma membrane‐bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212: 835–841.
Szechyńska‐Hebda M, Lewandowska M, Witoń D, Fichman Y, Mittler R, Karpiński SM. 2022. Aboveground plant‐to‐plant electrical signaling mediates network acquired acclimation. Plant Cell 34: 3047–3065.
Tada T, Spoel SH, Pajerowska‐Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X. 2008. Plant immunity requires conformational changes of NPR1 via S‐nitrosylation and thioredoxins. Science 321: 952–956.
Takahashi M, Furuhashi T, Ishikawa N, Horiguchi G, Sakamoto A, Tsukaya H, Morikawa H. 2014. Nitrogen dioxide regulates organ growth by controlling cell proliferation and enlargement in Arabidopsis. New Phytologist 201: 1304–1315.
Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D. 2009. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. The Plant Journal 60: 795–804.
Thomas DD. 2015. Breathing new life into nitric oxide signalling: a brief overview of the interplay between oxygen and nitric oxide. Redox Biology 5: 225–233.
Treffon P, Rossi J, Gabellini G, Trost P, Zaffagnini M, Vierling E. 2021. Proteome profiling of a S‐Nitrosoglutathione reductase (GSNOR) null mutant reveals that aldo‐keto reductases form a new class of enzymes involved in nitric oxide homeostasis. Frontiers in Plant Science 12: 787435.
Valderrama R, Corpas FJ, Carreras A, Fernández‐Ocaña A, Chaki M, Luque F, Gómez‐Rodríguez MV, Colmenero‐Varea P, Del Río LA, Barroso JB. 2007. Nitrosative stress in plants. FEBS Letters 581: 453–461.
Villar I, Larrainzar E, Milazzo L, Pérez‐Rontomé C, Rubio MC, Smulevich G, Martínez JI, Wilson MT, Reeder B, Huertas R et al. 2020. A plant gene encoding one‐heme and two‐heme hemoglobins with extreme reactivities toward diatomic gases and nitrite. Frontiers in Plant Science 11: 600336.
Vitecek J, Reinohl V, Jones RL. 2008. Measuring NO production by plant tissues and suspension cultured cells. Molecular Plant 1: 270–284.
Wang C, El‐Shetehy M, Shine MB, Yu K, Navarre D, Wendehenne D, Kachroo A, Kachroo P. 2014. Free radicals mediate systemic acquired resistance. Cell Reports 7: 348–355.
Wang C, Liu R, Lim GH, de Lorenzo L, Yu K, Zhang K, Hunt AG, Kachroo A, Kachroo P. 2018. Pipecolic acid confers systemic immunity by regulating free radicals. Science Advances 4: eaar4509.
Wang X, Hargrove MS. 2013. Nitric oxide in plants: the roles of ascorbate and hemoglobin. PLoS ONE 8: e82611.
Wang YQ, Feechan A, Yun BW, Shafiei R, Hofmann A, Taylor P, Xue P, Yang FQ, Xie ZS, Pallas JA et al. 2009. S‐nitrosylation of AtSABP3 antagonises the expression of plant immunity. The Journal of Biological Chemistry 284: 2131–2137.
Welle M, Niether W, Stöhr C. 2024. The underestimated role of plant root nitric oxide emission under low‐oxygen stress. Frontiers in Plant Science 15: 1290700.
Wendehenne D, Gao Q‐M, Kachroo A, Kachroo P. 2014. Free radical‐mediated systemic immunity in plants. Current Opinion in Plant Biology 20: 127–134.
Wimalasekera R, Villar C, Begum T, Scherer GFE. 2011. COPPER AMINE OXIDASE1 (CuAO1) of Arabidopsis thaliana contributes to abscisic acid‐ and polyamine‐induced nitric oxide biosynthesis and abscisic acid signal transduction. Molecular Plant 4: 663–678.
Wink DA, Mitchell JB. 1998. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radical Biology & Medicine 25: 434–456.
Yun BW, Feechan A, Yin M, Saidi NB, Le Bihan T, Yu M, Moore JW, Kang JG, Kwon E, Spoel SH et al. 2011. S‐nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478: 264–268.
Zhang J, Buegger F, Albert A, Ghirardo A, Winkler B, Schnitzler JP, Hebelstrup KH, Durner J, Lindermayr C. 2019. Phytoglobin overexpression promotes barley growth in the presence of enhanced level of atmospheric nitric oxide. Journal of Experimental Botany 70: 4521–4537.
Ziogas V, Molassiotis A, Fotopoulos V, Tanou G. 2018. Hydrogen sulfide: a potent tool in postharvest fruit biology and possible mechanism of action. Frontiers in Plant Science 9: 1375.
Zuccarelli R, Rodríguez‐Ruiz M, Lopes‐Oliveira PJ, Pascoal GB, Andrade SCS, Furlan CM, Purgatto E, Palma JM, Corpas FJ, Rossi M et al. 2021. Multifaceted roles of nitric oxide in tomato fruit ripening: NO‐induced metabolic rewiring and consequences for fruit quality traits. Journal of Experimental Botany 72: 941–958.
Progress in Plant Nitric Oxide Studies: Implications for Phytopathology and Plant Protection