Nano-optical Visualization of Interlayer Interactions in WSe2/WS2 Heterostructures
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35727212
PubMed Central
PMC9335877
DOI
10.1021/acs.jpclett.2c01250
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The interplay between excitons and phonons governs the optical and electronic properties of transition metal dichalcogenides (TMDs). Even though a number of linear and nonlinear optical-, electron-, and photoelectron-based approaches have been developed and/or adopted to characterize excitons and phonons in single/few-layer TMDs and their heterostructures, no existing method is capable of directly probing ultralow-frequency and interlayer phonons on the nanoscale. To this end, we developed ultralow-frequency tip-enhanced Raman spectroscopy, which allows spectrally and spatially resolved chemical and structural nanoimaging of WSe2/WS2 heterostructures. In this work, we apply this method to analyze phonons in nanobubbles that are sustained in these heterobilayers. Our method is capable of directly probing interlayer (de)coupling using our novel structurally sensitive nano-optical probe and the interplay between excitons and interlayer/intralayer phonons through correlation analysis of the recorded spectral images.
Zobrazit více v PubMed
Zeng H.; Dai J.; Yao W.; Xiao D.; Cui X. Valley Polarization in MoS2 Monolayers by Optical Pumping. Nat. Nanotechnol. 2012, 7, 490–493. 10.1038/nnano.2012.95. PubMed DOI
Mak K. F.; He K.; Shan J.; Heinz T. F. Control of Valley Polarization in Monolayer MoS2 by Optical Helicity. Nat. Nanotechnol. 2012, 7, 494–498. 10.1038/nnano.2012.96. PubMed DOI
Mak K. F.; McGill K. L.; Park J.; McEuen P. L. The Valley Hall Effect in MoS2 Transistors. Science 2014, 344, 1489–1492. 10.1126/science.1250140. PubMed DOI
Zhang Y. J.; Oka T.; Suzuki R.; Ye J. T.; Iwasa Y. Electrically Switchable Chiral Light-Emitting Transistor. Science 2014, 344, 725–728. 10.1126/science.1251329. PubMed DOI
Radisavljevic B.; Radenovic A.; Brivio J.; Giacometti V.; Kis A. Single-Layer MoS2 Transistors. Nat. Nanotechnol. 2011, 6, 147–150. 10.1038/nnano.2010.279. PubMed DOI
Miao J.; Liu X.; Jo K.; He K.; Saxena R.; Song B.; Zhang H.; He J.; Han M.-G.; Hu W.; et al. Gate-Tunable Semiconductor Heterojunctions from 2D/3D van der Waals Interfaces. Nano Lett. 2020, 20, 2907–2915. 10.1021/acs.nanolett.0c00741. PubMed DOI
Jo K.; Kumar P.; Orr J.; Anantharaman S. B.; Miao J. S.; Motala M. J.; Bandyopadhyay A.; Kisslinger K.; Muratore C.; Shenoy V. B.; et al. Direct Optoelectronic Imaging of 2D Semiconductor-3D Metal Buried Interfaces. ACS Nano 2021, 15, 5618–5630. 10.1021/acsnano.1c00708. PubMed DOI
Moore D.; Jo K.; Nguyen C.; Lou J.; Muratore C.; Jariwala D.; Glavin N. R. Uncovering topographically hidden features in 2D MoSe2 with correlated potential and optical nanoprobes. npj 2D Mater. Appl. 2020, 4, 4410.1038/s41699-020-00178-w. DOI
Zhang X.; Qiao X.-F.; Shi W.; Wu J.-B.; Jiang D.-S.; Tan P.-H. Phonon and Raman Scattering of Two-Dimensional Transition Metal Dichalcogenides from Monolayer, Multilayer to Bulk Material. Chem. Soc. Rev. 2015, 44, 2757–2785. 10.1039/C4CS00282B. PubMed DOI
Liang L.; Zhang J.; Sumpter B. G.; Tan Q.-H.; Tan P.-H.; Meunier V. Low-Frequency Shear and Layer-Breathing Modes in Raman Scattering of Two-Dimensional Materials. ACS Nano 2017, 11, 11777–11802. 10.1021/acsnano.7b06551. PubMed DOI
Gabel M.; El-Khoury P. Z.; Gu Y. Imaging Charged Exciton Localization in van der Waals WSe2/MoSe2 Heterobilayers. J. Phys. Chem. Lett. 2021, 12, 10589–10594. 10.1021/acs.jpclett.1c03093. PubMed DOI
Albagami A.; Ambardar S.; Hrim H.; Sahoo P. K.; Emirov Y.; Gutiérrez H. R.; Voronine D. V. Tip-Enhanced Photoluminescence of Freestanding Lateral Heterobubbles. ACS Appl. Mater. Interfaces 2022, 14, 11006–11015. 10.1021/acsami.1c24486. PubMed DOI
Garrity O.; Rodriguez A.; Mueller N. S.; Frank O.; Kusch P. Probing the Local Dielectric Function of WS2 on an Au Substrate by Near Field Optical Microscopy Operating in the Visible Spectral Range. Appl. Surf. Sci. 2022, 574, 151672.10.1016/j.apsusc.2021.151672. DOI
Garg S.; Fix J. P.; Krayev A. V.; Flanery C.; Colgrove M.; Sulkanen A. R.; Wang M.; Liu G.-Y.; Borys N. J.; Kung P. Nanoscale Raman Characterization of a 2D Semiconductor Lateral Heterostructure Interface. ACS Nano 2022, 16, 340–350. 10.1021/acsnano.1c06595. PubMed DOI
Krayev A.; Chen P.; Terrones H.; Duan X.; Zhang Z.; Duan X. Importance of Multiple Excitation Wavelengths for TERS Characterization of TMDCs and Their Vertical Heterostructures. J. Phys. Chem. C 2022, 126, 5218–5223. 10.1021/acs.jpcc.1c10469. DOI
Zheng Q.; Saidi W. A.; Xie Y.; Lan Z.; Prezhdo O. V.; Petek H.; Zhao J. Phonon-Assisted Ultrafast Charge Transfer at van der Waals Heterostructure Interface. Nano Lett. 2017, 17, 6435–6442. 10.1021/acs.nanolett.7b03429. PubMed DOI
Jin C.; Regan E. C.; Yan A.; Iqbal Bakti Utama M.; Wang D.; Zhao S.; Qin Y.; Yang S.; Zheng Z.; Shi S.; et al. Observation of Moiré Excitons in WSe2/WS2 Heterostructure Superlattices. Nature 2019, 567, 76–80. 10.1038/s41586-019-0976-y. PubMed DOI
Kang J.; Tongay S.; Zhou J.; Li J.; Wu J. Band Offsets and Heterostructures of Two-Dimensional Semiconductors. Appl. Phys. Lett. 2013, 102, 012111.10.1063/1.4774090. DOI
Zhu X.; Monahan N. R.; Gong Z.; Zhu H.; Williams K. W.; Nelson C. A. Charge Transfer Excitons at van der Waals Interfaces. J. Am. Chem. Soc. 2015, 137, 8313–8320. 10.1021/jacs.5b03141. PubMed DOI
Huang S.; Ling X.; Liang L.; Kong J.; Terrones H.; Meunier V.; Dresselhaus M. S. Probing the Interlayer Coupling of Twisted Bilayer MoS2 Using Photoluminescence Spectroscopy. Nano Lett. 2014, 14, 5500–5508. 10.1021/nl5014597. PubMed DOI
Liu K.; Zhang L.; Cao T.; Jin C.; Qiu D.; Zhou Q.; Zettl A.; Yang P.; Louie S. G.; Wang F. Evolution of Interlayer Coupling in Twisted Molybdenum Disulfide Bilayers. Nat. Commun. 2014, 5, 4966.10.1038/ncomms5966. PubMed DOI
Zhao W.; Regan E. C.; Wang D.; Jin C.; Hsieh S.; Wang Z.; Wang J.; Wang Z.; Yumigeta K.; Blei M.; et al. Dynamic Tuning of Moiré Excitons in a WSe2/WS2 Heterostructure via Mechanical Deformation. Nano Lett. 2021, 21, 8910–8916. 10.1021/acs.nanolett.1c03611. PubMed DOI
Darlington T. P.; Carmesin C.; Florian M.; Yanev E.; Ajayi O.; Ardelean J.; Rhodes D. A.; Ghiotto A.; Krayev A.; Watanabe K.; et al. Imaging Strain-Localized Excitons in Nanoscale Bubbles of Monolayer WSe2 at Room Temperature. Nat. Nanotechnol. 2020, 15, 854–860. 10.1038/s41565-020-0730-5. PubMed DOI
Darlington T. P.; Krayev A.; Venkatesh V.; Saxena R.; Kysar J. W.; Borys N. J.; Jariwala D.; Schuck P. J. Facile and Quantitative Estimation of Strain in Nanobubbles with Arbitrary Symmetry in 2D Semiconductors Verified using Hyperspectral Nano-Optical Imaging. J. Chem. Phys. 2020, 153, 024702.10.1063/5.0012817. PubMed DOI
Rodriguez A.; Kalbáč M.; Frank O. Strong Localization Effects in the Photoluminescence of Transition Metal Dichalcogenide Heterobilayers. 2D Mater. 2021, 8, 025028.10.1088/2053-1583/abe363. DOI
Wang K.; Huang B.; Tian M.; Ceballos F.; Lin M.-W.; Mahjouri-Samani M.; Boulesbaa A.; Puretzky A. A.; Rouleau C. M.; Yoon M.; et al. Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy. ACS Nano 2016, 10, 6612–6622. 10.1021/acsnano.6b01486. PubMed DOI
Shi J.; Li Y.; Zhang Z.; Feng W.; Wang Q.; Ren S.; Zhang J.; Du W.; Wu X.; Sui X.; et al. Twisted-Angle-Dependent Optical Behaviors of Intralayer Excitons and Trions in WS2/WSe2 Heterostructure. ACS Photonics 2019, 6, 3082–3091. 10.1021/acsphotonics.9b00855. DOI
Castellanos-Gomez A.; Buscema M.; Molenaar R.; Singh V.; Janssen L.; van der Zant H. S. J.; Steele G. A. Deterministic Transfer of Two-Dimensional Materials by All-Dry Viscoelastic Stamping. 2D Mater. 2014, 1, 011002.10.1088/2053-1583/1/1/011002. DOI
Khestanova E.; Guinea F.; Fumagalli L.; Geim A. K.; Grigorieva I. V. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun. 2016, 7, 12587.10.1038/ncomms12587. PubMed DOI PMC
Lui C. H.; Ye Z.; Ji C.; Chiu K.-C.; Chou C.-T.; Andersen T. I.; Means-Shively C.; Anderson H.; Wu J.-M.; Kidd T.; et al. Observation of Interlayer Phonon Modes in van der Waals Heterostructures. Phys. Rev. B 2015, 91, 165403.10.1103/PhysRevB.91.165403. DOI
Noda I.; Ozaki Y.. Two-Dimensional Correlation Spectroscopy: Applications in Vibrational and Optical Spectroscopy. John Wiley & Sons, 2004; p 310.
El-Khoury P. Z.; Hess W. P. Vibronic Raman Scattering at the Quantum Limit of Plasmons. Nano Lett. 2014, 14, 4114–4118. 10.1021/nl501690u. PubMed DOI
Zeng H.; Liu G.-B.; Dai J.; Yan Y.; Zhu B.; He R.; Xie L.; Xu S.; Chen X.; Yao W.; et al. Optical Signature of Symmetry Variations and Spin-Valley Coupling in Atomically Thin Tungsten Dichalcogenides. Sci. Rep. 2013, 3, 1608.10.1038/srep01608. PubMed DOI PMC
Cao L.; Zhong J.; Yu J.; Zeng C.; Ding J.; Cong C.; Yue X.; Liu Z.; Liu Y. Valley-Polarized Local Excitons in WSe2/WS2 Vertical Heterostructures. Opt. Express 2020, 28, 22135–22143. 10.1364/OE.399142. PubMed DOI