Nano-optical Visualization of Interlayer Interactions in WSe2/WS2 Heterostructures

. 2022 Jun 30 ; 13 (25) : 5854-5859. [epub] 20220621

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35727212

The interplay between excitons and phonons governs the optical and electronic properties of transition metal dichalcogenides (TMDs). Even though a number of linear and nonlinear optical-, electron-, and photoelectron-based approaches have been developed and/or adopted to characterize excitons and phonons in single/few-layer TMDs and their heterostructures, no existing method is capable of directly probing ultralow-frequency and interlayer phonons on the nanoscale. To this end, we developed ultralow-frequency tip-enhanced Raman spectroscopy, which allows spectrally and spatially resolved chemical and structural nanoimaging of WSe2/WS2 heterostructures. In this work, we apply this method to analyze phonons in nanobubbles that are sustained in these heterobilayers. Our method is capable of directly probing interlayer (de)coupling using our novel structurally sensitive nano-optical probe and the interplay between excitons and interlayer/intralayer phonons through correlation analysis of the recorded spectral images.

Zobrazit více v PubMed

Zeng H.; Dai J.; Yao W.; Xiao D.; Cui X. Valley Polarization in MoS2 Monolayers by Optical Pumping. Nat. Nanotechnol. 2012, 7, 490–493. 10.1038/nnano.2012.95. PubMed DOI

Mak K. F.; He K.; Shan J.; Heinz T. F. Control of Valley Polarization in Monolayer MoS2 by Optical Helicity. Nat. Nanotechnol. 2012, 7, 494–498. 10.1038/nnano.2012.96. PubMed DOI

Mak K. F.; McGill K. L.; Park J.; McEuen P. L. The Valley Hall Effect in MoS2 Transistors. Science 2014, 344, 1489–1492. 10.1126/science.1250140. PubMed DOI

Zhang Y. J.; Oka T.; Suzuki R.; Ye J. T.; Iwasa Y. Electrically Switchable Chiral Light-Emitting Transistor. Science 2014, 344, 725–728. 10.1126/science.1251329. PubMed DOI

Radisavljevic B.; Radenovic A.; Brivio J.; Giacometti V.; Kis A. Single-Layer MoS2 Transistors. Nat. Nanotechnol. 2011, 6, 147–150. 10.1038/nnano.2010.279. PubMed DOI

Miao J.; Liu X.; Jo K.; He K.; Saxena R.; Song B.; Zhang H.; He J.; Han M.-G.; Hu W.; et al. Gate-Tunable Semiconductor Heterojunctions from 2D/3D van der Waals Interfaces. Nano Lett. 2020, 20, 2907–2915. 10.1021/acs.nanolett.0c00741. PubMed DOI

Jo K.; Kumar P.; Orr J.; Anantharaman S. B.; Miao J. S.; Motala M. J.; Bandyopadhyay A.; Kisslinger K.; Muratore C.; Shenoy V. B.; et al. Direct Optoelectronic Imaging of 2D Semiconductor-3D Metal Buried Interfaces. ACS Nano 2021, 15, 5618–5630. 10.1021/acsnano.1c00708. PubMed DOI

Moore D.; Jo K.; Nguyen C.; Lou J.; Muratore C.; Jariwala D.; Glavin N. R. Uncovering topographically hidden features in 2D MoSe2 with correlated potential and optical nanoprobes. npj 2D Mater. Appl. 2020, 4, 4410.1038/s41699-020-00178-w. DOI

Zhang X.; Qiao X.-F.; Shi W.; Wu J.-B.; Jiang D.-S.; Tan P.-H. Phonon and Raman Scattering of Two-Dimensional Transition Metal Dichalcogenides from Monolayer, Multilayer to Bulk Material. Chem. Soc. Rev. 2015, 44, 2757–2785. 10.1039/C4CS00282B. PubMed DOI

Liang L.; Zhang J.; Sumpter B. G.; Tan Q.-H.; Tan P.-H.; Meunier V. Low-Frequency Shear and Layer-Breathing Modes in Raman Scattering of Two-Dimensional Materials. ACS Nano 2017, 11, 11777–11802. 10.1021/acsnano.7b06551. PubMed DOI

Gabel M.; El-Khoury P. Z.; Gu Y. Imaging Charged Exciton Localization in van der Waals WSe2/MoSe2 Heterobilayers. J. Phys. Chem. Lett. 2021, 12, 10589–10594. 10.1021/acs.jpclett.1c03093. PubMed DOI

Albagami A.; Ambardar S.; Hrim H.; Sahoo P. K.; Emirov Y.; Gutiérrez H. R.; Voronine D. V. Tip-Enhanced Photoluminescence of Freestanding Lateral Heterobubbles. ACS Appl. Mater. Interfaces 2022, 14, 11006–11015. 10.1021/acsami.1c24486. PubMed DOI

Garrity O.; Rodriguez A.; Mueller N. S.; Frank O.; Kusch P. Probing the Local Dielectric Function of WS2 on an Au Substrate by Near Field Optical Microscopy Operating in the Visible Spectral Range. Appl. Surf. Sci. 2022, 574, 151672.10.1016/j.apsusc.2021.151672. DOI

Garg S.; Fix J. P.; Krayev A. V.; Flanery C.; Colgrove M.; Sulkanen A. R.; Wang M.; Liu G.-Y.; Borys N. J.; Kung P. Nanoscale Raman Characterization of a 2D Semiconductor Lateral Heterostructure Interface. ACS Nano 2022, 16, 340–350. 10.1021/acsnano.1c06595. PubMed DOI

Krayev A.; Chen P.; Terrones H.; Duan X.; Zhang Z.; Duan X. Importance of Multiple Excitation Wavelengths for TERS Characterization of TMDCs and Their Vertical Heterostructures. J. Phys. Chem. C 2022, 126, 5218–5223. 10.1021/acs.jpcc.1c10469. DOI

Zheng Q.; Saidi W. A.; Xie Y.; Lan Z.; Prezhdo O. V.; Petek H.; Zhao J. Phonon-Assisted Ultrafast Charge Transfer at van der Waals Heterostructure Interface. Nano Lett. 2017, 17, 6435–6442. 10.1021/acs.nanolett.7b03429. PubMed DOI

Jin C.; Regan E. C.; Yan A.; Iqbal Bakti Utama M.; Wang D.; Zhao S.; Qin Y.; Yang S.; Zheng Z.; Shi S.; et al. Observation of Moiré Excitons in WSe2/WS2 Heterostructure Superlattices. Nature 2019, 567, 76–80. 10.1038/s41586-019-0976-y. PubMed DOI

Kang J.; Tongay S.; Zhou J.; Li J.; Wu J. Band Offsets and Heterostructures of Two-Dimensional Semiconductors. Appl. Phys. Lett. 2013, 102, 012111.10.1063/1.4774090. DOI

Zhu X.; Monahan N. R.; Gong Z.; Zhu H.; Williams K. W.; Nelson C. A. Charge Transfer Excitons at van der Waals Interfaces. J. Am. Chem. Soc. 2015, 137, 8313–8320. 10.1021/jacs.5b03141. PubMed DOI

Huang S.; Ling X.; Liang L.; Kong J.; Terrones H.; Meunier V.; Dresselhaus M. S. Probing the Interlayer Coupling of Twisted Bilayer MoS2 Using Photoluminescence Spectroscopy. Nano Lett. 2014, 14, 5500–5508. 10.1021/nl5014597. PubMed DOI

Liu K.; Zhang L.; Cao T.; Jin C.; Qiu D.; Zhou Q.; Zettl A.; Yang P.; Louie S. G.; Wang F. Evolution of Interlayer Coupling in Twisted Molybdenum Disulfide Bilayers. Nat. Commun. 2014, 5, 4966.10.1038/ncomms5966. PubMed DOI

Zhao W.; Regan E. C.; Wang D.; Jin C.; Hsieh S.; Wang Z.; Wang J.; Wang Z.; Yumigeta K.; Blei M.; et al. Dynamic Tuning of Moiré Excitons in a WSe2/WS2 Heterostructure via Mechanical Deformation. Nano Lett. 2021, 21, 8910–8916. 10.1021/acs.nanolett.1c03611. PubMed DOI

Darlington T. P.; Carmesin C.; Florian M.; Yanev E.; Ajayi O.; Ardelean J.; Rhodes D. A.; Ghiotto A.; Krayev A.; Watanabe K.; et al. Imaging Strain-Localized Excitons in Nanoscale Bubbles of Monolayer WSe2 at Room Temperature. Nat. Nanotechnol. 2020, 15, 854–860. 10.1038/s41565-020-0730-5. PubMed DOI

Darlington T. P.; Krayev A.; Venkatesh V.; Saxena R.; Kysar J. W.; Borys N. J.; Jariwala D.; Schuck P. J. Facile and Quantitative Estimation of Strain in Nanobubbles with Arbitrary Symmetry in 2D Semiconductors Verified using Hyperspectral Nano-Optical Imaging. J. Chem. Phys. 2020, 153, 024702.10.1063/5.0012817. PubMed DOI

Rodriguez A.; Kalbáč M.; Frank O. Strong Localization Effects in the Photoluminescence of Transition Metal Dichalcogenide Heterobilayers. 2D Mater. 2021, 8, 025028.10.1088/2053-1583/abe363. DOI

Wang K.; Huang B.; Tian M.; Ceballos F.; Lin M.-W.; Mahjouri-Samani M.; Boulesbaa A.; Puretzky A. A.; Rouleau C. M.; Yoon M.; et al. Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy. ACS Nano 2016, 10, 6612–6622. 10.1021/acsnano.6b01486. PubMed DOI

Shi J.; Li Y.; Zhang Z.; Feng W.; Wang Q.; Ren S.; Zhang J.; Du W.; Wu X.; Sui X.; et al. Twisted-Angle-Dependent Optical Behaviors of Intralayer Excitons and Trions in WS2/WSe2 Heterostructure. ACS Photonics 2019, 6, 3082–3091. 10.1021/acsphotonics.9b00855. DOI

Castellanos-Gomez A.; Buscema M.; Molenaar R.; Singh V.; Janssen L.; van der Zant H. S. J.; Steele G. A. Deterministic Transfer of Two-Dimensional Materials by All-Dry Viscoelastic Stamping. 2D Mater. 2014, 1, 011002.10.1088/2053-1583/1/1/011002. DOI

Khestanova E.; Guinea F.; Fumagalli L.; Geim A. K.; Grigorieva I. V. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun. 2016, 7, 12587.10.1038/ncomms12587. PubMed DOI PMC

Lui C. H.; Ye Z.; Ji C.; Chiu K.-C.; Chou C.-T.; Andersen T. I.; Means-Shively C.; Anderson H.; Wu J.-M.; Kidd T.; et al. Observation of Interlayer Phonon Modes in van der Waals Heterostructures. Phys. Rev. B 2015, 91, 165403.10.1103/PhysRevB.91.165403. DOI

Noda I.; Ozaki Y.. Two-Dimensional Correlation Spectroscopy: Applications in Vibrational and Optical Spectroscopy. John Wiley & Sons, 2004; p 310.

El-Khoury P. Z.; Hess W. P. Vibronic Raman Scattering at the Quantum Limit of Plasmons. Nano Lett. 2014, 14, 4114–4118. 10.1021/nl501690u. PubMed DOI

Zeng H.; Liu G.-B.; Dai J.; Yan Y.; Zhu B.; He R.; Xie L.; Xu S.; Chen X.; Yao W.; et al. Optical Signature of Symmetry Variations and Spin-Valley Coupling in Atomically Thin Tungsten Dichalcogenides. Sci. Rep. 2013, 3, 1608.10.1038/srep01608. PubMed DOI PMC

Cao L.; Zhong J.; Yu J.; Zeng C.; Ding J.; Cong C.; Yue X.; Liu Z.; Liu Y. Valley-Polarized Local Excitons in WSe2/WS2 Vertical Heterostructures. Opt. Express 2020, 28, 22135–22143. 10.1364/OE.399142. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Roadmap for Photonics with 2D Materials

. 2025 Aug 20 ; 12 (8) : 3961-4095. [epub] 20250724

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...