• This record comes from PubMed

Roadmap for Photonics with 2D Materials

. 2025 Aug 20 ; 12 (8) : 3961-4095. [epub] 20250724

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article, Review

Triggered by advances in atomic-layer exfoliation and growth techniques, along with the identification of a wide range of extraordinary physical properties in self-standing films consisting of one or a few atomic layers, two-dimensional (2D) materials such as graphene, transition metal dichalcogenides (TMDs), and other van der Waals (vdW) crystals now constitute a broad research field expanding in multiple directions through the combination of layer stacking and twisting, nanofabrication, surface-science methods, and integration into nanostructured environments. Photonics encompasses a multidisciplinary subset of those directions, where 2D materials contribute remarkable nonlinearities, long-lived and ultraconfined polaritons, strong excitons, topological and chiral effects, susceptibility to external stimuli, accessibility, robustness, and a completely new range of photonic materials based on layer stacking, gating, and the formation of moiré patterns. These properties are being leveraged to develop applications in electro-optical modulation, light emission and detection, imaging and metasurfaces, integrated optics, sensing, and quantum physics across a broad spectral range extending from the far-infrared to the ultraviolet, as well as enabling hybridization with spin and momentum textures of electronic band structures and magnetic degrees of freedom. The rapid expansion of photonics with 2D materials as a dynamic research arena is yielding breakthroughs, which this Roadmap summarizes while identifying challenges and opportunities for future goals and how to meet them through a wide collection of topical sections prepared by leading practitioners.

4th Physics Institute Research Center SCoPE and Integrated Quantum Science and Technology Center University of Stuttgart 70569 Stuttgart Germany

Abbe Center of Photonics Friedrich Schiller University Jena Albert Einstein Straße 6 07745 Jena Germany

Andrea and Erna Viterbi Department of Electrical and Computer Engineering Technion Israel Institute of Technology 3200003 Haifa Israel

ARC Centre of Excellence for Transformative Meta Optical Systems Department of Electronic Materials Engineering Research School of Physics The Australian National University Canberra ACT 2601 Australia

CAS Key Laboratory of Nanophotonic Materials and Devices CAS Key Laboratory of Standardization and Measurement for Nanotechnology National Center for Nanoscience and Technology Beijing 100190 P R China

Catalan Institute of Nanoscience and Nanotechnology CSIC and BIST Bellaterra 08193 Barcelona Spain

Center for Functional Nanomaterials Brookhaven National Laboratory Upton New York 11973 United States

Center for Nanoscale Dynamics Carl von Ossietzky Universität 26129 Oldenburg Germany

Center for Quantum Nanoscience Institute for Basic Science Seoul 03760 Republic of Korea

Center for Quantum Physics Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement School of Physics Beijing Institute of Technology 100081 Beijing China

Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P R China

Center of Research on Nanomaterials and Nanotechnology CINN El Entrego 33940 Spain

Centre for Advanced Laser Techniques Institute of Physics 10000 Zagreb Croatia

Centre for Interdisciplinary Science of Optical Quantum and NEMS Integration School of Physics Beijing Institute of Technology 100081 Beijing China

Centro de Física and Departamento de Física Universidade do Minho P 4710 057 Braga Portugal

Centro de Física de Materiales CSIC UPV EHU and Departamento de Física Aplicada Universidad del País Vasco 20018 San Sebastián Spain

Computational Atomic Scale Materials Design Department of Physics Technical University of Denmark 2800 Lyngby Denmark

Danish Institute for Advanced Study University of Southern Denmark Campusvej 55 DK 5230 Odense M Denmark

Departamento de Física de la Materia Condensada Instituto Nicolás Cabrera and Condensed Matter Physics Center Universidad Autónoma de Madrid E 28049 Madrid Spain

Departamento de Física de la Materia Condensada Universidad de Zaragoza Zaragoza 50009 Spain

Department of Applied Physics Stanford University Stanford California 94305 United States

Department of Chemistry Columbia University New York New York 10027 United States

Department of Chemistry Northwestern University Evanston Illinois 60208 United States

Department of Electrical and Computer Engineering Northwestern University Evanston Illinois 60208 United States

Department of Electrical and Computer Engineering University of Minnesota Minneapolis Minnesota 55455 United States

Department of Electrical and Computer Engineering Yale University New Haven Connecticut 06511 United States

Department of Electrical Engineering Ginzton Laboratory Stanford University Stanford California 94305 United States

Department of Materials Science and Engineering National University of Singapore 117575 Singapore

Department of Materials Science and Engineering Northwestern University Evanston Illinois 60208 United States

Department of Materials Science and Engineering University of Maryland College Park Maryland 20742 United States

Department of Materials Science and Engineering University of Washington Seattle Washington 98195 United States

Department of Mathematics and Physics North Carolina Central University Durham North Carolina 27707 United States

Department of Mechanical Engineering Columbia University New York New York 10027 United States

Department of Mechanical Engineering Vanderbilt University Nashville Tennessee 37235 United States

Department of Physics and Astronomy and the IQ Initiative University of Pittsburgh Pittsburgh Pennsylvania 15260 United States

Department of Physics and Astronomy Stony Brook University Stony Brook New York 11794 United States

Department of Physics and Astronomy University of Georgia Athens Georgia 30602 United States

Department of Physics Boston College Chestnut Hill Massachusetts 02467 3804 United States

Department of Physics Chalmers University of Technology Göteborg 41296 Sweden

Department of Physics City College of New York 160 Convent Ave New York New York 100031 United States

Department of Physics Columbia University 1150 Amsterdam Avenue New York New York 10027 United States

Department of Physics Harvard University Cambridge Massachusetts 02138 United States

Department of Physics MIT Cambridge Massachusetts 02139 United States

Department of Physics Stanford University Stanford California 94305 United States

Department of Physics The Graduate Center City University of New York New York New York 10016 United States

Department of Physics The Pennsylvania State University University Park Pennsylvania 16802 United States

Department of Physics University of Basel Klingelbergstrasse 82 4056 Basel Switzerland

Department of Physics University of Maryland College Park Maryland 20742 United States

Department of Physics University of Michigan Ann Arbor Michigan 48109 United States

Department of Physics University of Oviedo 33006 Oviedo Spain

Department of Physics University of Washington Seattle Washington 98195 United States

Dipartimento di Fisica dell'Università di Pisa Largo Bruno Pontecorvo 3 1 56127 Pisa Italy

Dipartimento di Scienze Fisiche e Chimiche Universitá degli Studi dell'Aquila L'Aquila 67100 Italy

Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University 637371 Singapore

Donostia International Physics Center Donostia San Sebastian 20018 Spain

Electrical and Systems Engineering University of Pennsylvania Philadelphia Pennsylvania 19104 United States

Elmore Family School of Electrical and Computer Engineering Birck Nanotechnology Center and Purdue Quantum Science and Engineering Institute Purdue University West Lafayette Indiana 47907 United States

Emerging Technologies Research Center XPANCEO Internet City Emmay Tower Dubai United Arab Emirates

Faculty of Engineering and Bar Ilan Institute for Nanotechnology and Advanced Materials Bar Ilan University 52900 Ramat Gan Israel

Faculty of Physics and Vienna Doctoral School in Physics University of Vienna Boltzmanngasse 5 1090 Vienna Austria

Faculty of Physics Vienna Center for Quantum Science and Technology University of Vienna Boltzmanngasse 5 1090 Vienna Austria

Fakultät für Physik Ludwig Maximilians Universität D 80799 München Germany

Fritz Haber Institut der Max Planck Gesellschaft Faradayweg 4 6 14195 Berlin Germany

Hefei National Research Center for Physical Sciences at the Microscale New Cornerstone Science Laboratory University of Science and Technology of China Hefei Anhui 230026 China

ICFO Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology 08860 Castelldefels Barcelona Spain

ICREA Institució Catalana de Recerca i Estudis Avançats Passeig Lluís Companys 23 08010 Barcelona Spain

IKERBASQUE Basque Foundation for Science Bilbao 48011 Spain

Institut für Festkörpertheorie Universität Münster 48149 Münster Germany

Institut für Physik Carl von Ossietzky Universität 26129 Oldenburg Germany

Institut für Physik Fakultät 5 Carl von Ossietzky Universität Oldenburg 26129 Oldenburg Germany

Institute for Functional Intelligent Materials National University of Singapore 117544 Singapore

Institute for Nanoelectronic Devices and Quantum Computing and Zhangjiang Fudan International Innovation Center Fudan University Shanghai 200433 China

Institute for Quantum Electronics ETH Zürich Auguste Piccard Hof 1 8093 Zürich Switzerland

Institute of Applied Physics and Würzburg Dresden Cluster of Excellence ct qmat TUD Dresden University of Technology 01062 Dresden Germany

Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Praha 6 CZ16000 Czech Republic

Institute of Physics Czech Academy of Sciences Praha 6 CZ16200 Czech Republic

Institute of Solid State Physics Friedrich Schiller University Jena Helmholtzweg 5 07743 Jena Germany

Institute of Theoretical Physics University of Regensburg 93053 Regensburg Germany

Instituto de Ciencia de Materiales de Madrid 28049 Madrid Spain

Instituto de Nanociencia y Materiales de Aragón CSIC Universidad de Zaragoza Zaragoza 50009 Spain

Instituto de Química Física Blas Cabrera CSIC 28006 Madrid Spain

International Iberian Nanotechnology Laboratory Av Mestre José Veiga 4715 330 Braga Portugal

Istituto Italiano di Tecnologia Center for Biomolecular Nanotechnologies Via Barsanti 14 73010 Arnesano Italy

Joint Quantum Institute University of Maryland College Park Maryland 20742 United States

Maryland Quantum Materials Center University of Maryland College Park Maryland 20742 United States

Max Born Institut 12489 Berlin Germany

Munich Center for Quantum Science and Technology D 80799 München Germany

National Synchrotron Light Source 2 Brookhaven National Laboratory Upton New York 11973 United States

NEST CNR Istituto Nanoscienze and Scuola Normale Superiore Piazza San Silvestro 12 Pisa 56127 Italy

NTT Research Inc Physics and Informatics Laboratories 940 Stewart Dr Sunnyvale California 94085 United States

Photonics Initiative Advanced Science Research Center City University of New York New York New York 10031 United States

Photonics Laboratory ETH Zurich Zurich 8093 Switzerland

Photonics Research Group Department of Information Technology Ghent University imec Gent 9052 Belgium

Physics Department University of Michigan 450 Church Street Ann Arbor Michigan 48109 United States

Physics Program Graduate Center City University of New York New York New York 10016 United States

POLIMACenter for Polariton driven Light Matter Interactions University of Southern Denmark Campusvej 55 DK 5230 Odense M Denmark

Politecnico di Milano Dipartimento di Fisica Piazza Leonardo da Vinci 32 Milano 20133 Italy

QTF Centre of Excellence Department of Electronics and Nanoengineering Aalto University Espoo 02150 Finland

Regensburg Center for Ultrafast Nanoscopy University of Regensburg 93040 Regensburg Germany

Research Network Quantum Aspects of Space Time and Christian Doppler Laboratory for Photonic Quantum Computer University of Vienna Boltzmanngasse 5 1090 Vienna Austria

School of Materials Engineering Purdue University West Lafayette Indiana 47907 United States

School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P R China

School of Physical Science and Technology Northwestern Polytechnical University Xi'an 710072 China

School of Physics and Astronomy University of Minnesota Minneapolis Minnesota 55455 United States

School of Physics and Astronomy University of Nottingham Nottingham NG7 2RD U K

Science Mathematics and Technology Singapore University of Technology and Design 8 Somapah Road 487372 Singapore

Scuola Normale Superiore Piazza dei Cavalieri 7 1 56126 Pisa Italy

SLAC National Accelerator Laboratory Menlo Park California 94025 United States

State Key Laboratory for Mesoscopic Physics Frontiers Science Center for Nano optoelectronics School of Physics Peking University Beijing 100871 China

State Key Laboratory of Surface Physics Key Laboratory of Micro and Nano Photonic Structures and Department of Physics Fudan University Shanghai 200433 China

The Institute of Optics University of Rochester Rochester New York 14627 United States

TUM School of Natural Sciences Physics Department Technical University of Munich 85748 Garching Germany

Université Paris Saclay CNRS Laboratoire de Physique des Solides 91405 Orsay France

Van der Waals Zeeman Institute Institute of Physics University of Amsterdam Amsterdam 1012 WX The Netherlands

See more in PubMed

Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A.. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI

Novoselov K. S., Mishchenko A., Carvalho A., Castro Neto A. H.. 2D Materials and van der Waals Heterostructures. Science. 2016;353:aac9439. doi: 10.1126/science.aac9439. PubMed DOI

Du L., Molas M. R., Huang Z., Zhang G., Wang F., Sun Z.. Moiré Photonics and Optoelectronics. Science. 2023;379:eadg0014. doi: 10.1126/science.adg0014. PubMed DOI

Woessner A., Lundeberg M. B., Gao Y., Principi A., Alonso-González P., Carrega M., Watanabe K., Taniguchi T., Vignale G., Polini M., Hone J., Hillenbrand R., Koppens F. H. L.. Highly Confined Low-Loss Plasmons in Graphene-Boron Nitride Heterostructures. Nat. Mater. 2015;14:421–425. doi: 10.1038/nmat4169. PubMed DOI

Ni G. X., McLeod A. S., Sun Z., Wang L., Xiong L., Post K. W., Sunku S. S., Jiang B. Y., Hone J., Dean C. R., Fogler M. M., Basov D. N.. Fundamental Limits to Graphene Plasmonics. Nature. 2018;557:530–533. doi: 10.1038/s41586-018-0136-9. PubMed DOI

Alfaro-Mozaz F. J., Rodrigo S. G., Alonso-González P., Vélez S., Dolado I., Casanova F., Hueso L. E., Martín-Moreno L., Hillenbrand R., Nikitin A. Y.. Deeply Subwavelength Phonon-Polaritonic Crystal Made of a van der Waals Material. Nat. Commun. 2019;10:42. doi: 10.1038/s41467-018-07795-6. PubMed DOI PMC

Autore M., D’Apuzzo F., Di Gaspare A., Giliberti V., Limaj O., Roy P., Brahlek M., Koirala N., Oh S., García de Abajo F. J., Lupi S.. Plasmon−Phonon Interactions in Topological Insulator Microrings. Adv. Opt. Mater. 2015;3:1257–1263. doi: 10.1002/adom.201400513. DOI

Hu F., Luan Y., Scott M. E., Yan J., Mandrus D. G., Xu X., Fei Z.. Imaging Exciton-Polariton Transport in MoSe2 Waveguides. Nat. Photonics. 2017;11:356–360. doi: 10.1038/nphoton.2017.65. DOI

Koppens F. H. L., Chang D. E., García de Abajo F. J.. Graphene Plasmonics: A Platform for Strong Light−Matter Interactions. Nano Lett. 2011;11:3370–3377. doi: 10.1021/nl201771h. PubMed DOI

Abd El-Fattah Z. M., Mkhitaryan V., Brede J., Fernández L., Li C., Guo Q., Ghosh A., Rodríguez Echarri A., Naveh D., Xia F., Ortega J. E., García de Abajo F. J.. Plasmonics in Atomically Thin Crystalline Silver Films. ACS Nano. 2019;13:7771–7779. doi: 10.1021/acsnano.9b01651. PubMed DOI

Caldwell J. D., Aharonovich I., Cassabois G., Edgar J. H., Gil B., Basov D. N.. Photonics with Hexagonal Boron Nitride. Nat. Rev. Mater. 2019;4:552–567. doi: 10.1038/s41578-019-0124-1. DOI

Ma W., Alonso-González P., Li S., Nikitin A. Y., Yuan J., Martín-Sánchez J., Taboada-Gutiérrez J., Amenabar I., Li P., Vélez S., Tollan C., Dai Z., Zhang Y., Sriram S., Kalantar-Zadeh K., Lee S.-T., Hillenbrand R., Bao Q.. In-Plane Anisotropic and Ultra-Low-Loss Polaritons in a Natural van der Waals Crystal. Nature. 2018;562:557–562. doi: 10.1038/s41586-018-0618-9. PubMed DOI

Parto K., Azzam S. I., Banerjee K., Moody G.. Defect and Strain Engineering of Monolayer WSe2 Enables Site-Controlled Single-Photon Emission up to 150 K. Nat. Commun. 2021;12:3585. doi: 10.1038/s41467-021-23709-5. PubMed DOI PMC

Thongrattanasiri S., García de Abajo F. J.. Optical Field Enhancement by Strong Plasmon Interaction in Graphene Nanostructures. Phys. Rev. Lett. 2013;110:187401. doi: 10.1103/PhysRevLett.110.187401. PubMed DOI

Chen J., Badioli M., Alonso-González P., Thongrattanasiri S., Huth F., Osmond J., Spasenović M., Centeno A., Pesquera A., Godignon P., Zurutuza Elorza A., Camara N., García de Abajo F. J., Hillenbrand R., Koppens F. H. L.. Optical Nano-Imaging of Gate-Tunable Graphene Plasmons. Nature. 2012;487:77–81. doi: 10.1038/nature11254. PubMed DOI

Fei Z., Rodin A. S., Andreev G. O., Bao W., McLeod A. S., Wagner M., Zhang L. M., Zhao Z., Thiemens M., Dominguez G., Fogler M. M., Castro Neto A. H., Lau C. N., Keilmann F., Basov D. N.. Gate-Tuning of Graphene Plasmons Revealed by Infrared Nano-Imaging. Nature. 2012;487:82–85. doi: 10.1038/nature11253. PubMed DOI

Epstein I., Terrés B., Chaves A. J., Pusapati V.-V., Rhodes D. A., Frank B., Zimmermann V., Qin Y., Watanabe K., Taniguchi T., Giessen H., Tongay S., Hone J. C., Peres N. M. R., Koppens F. H. L.. Near-Unity Light Absorption in a Monolayer WS2 van der Waals Heterostructure Cavity. Nano Lett. 2020;20:3545–3552. doi: 10.1021/acs.nanolett.0c00492. PubMed DOI

Ni G. X., Wang L., Goldflam M. D., Wagner M., Fei Z., McLeod A. S., Liu M. K., Keilmann F., Özyilmaz B., Castro Neto A. H., Hone J., Fogler M. M., Basov D. N.. Ultrafast Optical Switching of Infrared Plasmon Polaritons in High-Mobility Graphene. Nat. Photonics. 2016;10:244–247. doi: 10.1038/nphoton.2016.45. DOI

Hernández López P., Heeg S., Schattauer C., Kovalchuk S., Kumar A., Bock D. J., Kirchhof J. N., Höfer B., Greben K., Yagodkin D., Linhart L., Libisch F., Bolotin K.. Strain Control of Hybridization between Dark and Localized Excitons in a 2D Semiconductor. Nat. Commun. 2022;13:7691. doi: 10.1038/s41467-022-35352-9. PubMed DOI PMC

Crassee I., Orlita M., Potemski M., Walter A. L., Ostler M., Seyller T., Gaponenko I., Chen J., Kuzmenko A. B.. Intrinsic Terahertz Plasmons and Magnetoplasmons in Large Scale Monolayer Graphene. Nano Lett. 2012;12:2470–2474. doi: 10.1021/nl300572y. PubMed DOI

Hu H., Yang X., Guo X., Khaliji K., Biswas R., García de Abajo F. J., Low T., Sun Z., Dai Q.. Gas Identification with Graphene Plasmons. Nat. Commun. 2019;10:1131. doi: 10.1038/s41467-019-09008-0. PubMed DOI PMC

Calafell I. A., Rozema L. A., Iranzo D. A., Trenti A., Jenke P. K., Cox J. D., Kumar A., Bieliaiev H., Nanot S., Peng C., Efetov D. K., Hong J.-Y., Kong J., Englund D. R., García de Abajo F. J., Koppens F. H. L., Walther P.. Giant Enhancement of Third-Harmonic Generation in Graphene-Metal Heterostructures. Nat. Nanotechnol. 2021;16:318–324. doi: 10.1038/s41565-020-00808-w. PubMed DOI

Autere A., Jussila H., Marini A., Saavedra J. R. M., Dai Y., Säynätjoki A., Karvonen L., Yang H., Amirsolaimani B., Norwood R. A., Peyghambarian N., Lipsanen H., Kieu K., García de Abajo F. J., Sun Z.. Optical Harmonic Generation in Monolayer Group-VI Transition Metal Dichalcogenides. Phys. Rev. B. 2018;98:115426. doi: 10.1103/PhysRevB.98.115426. DOI

Zhao H., Pettes M. T., Zheng Y., Htoon H.. Site-Controlled Telecom-Wavelength Single-Photon Emitters in Atomically-Thin MoTe2 . Nat. Commun. 2021;12:6753. doi: 10.1038/s41467-021-27033-w. PubMed DOI PMC

Bistritzer R., MacDonald A. H.. Moiré Bands in Twisted Double-Layer Graphene. Proc. Natl. Acad. Sci. U. S. A. 2011;108:12233–12237. doi: 10.1073/pnas.1108174108. PubMed DOI PMC

Ding J., Xiang H., Zhou W., Liu N., Chen Q., Fang X., Wang K., Wu L., Watanabe K., Taniguchi T., Xin N., Xu X.. Engineering Band Structures of Two- Dimensional Materials with Remote Moiré Ferroelectricity. Nat. Commun. 2024;15:9087. doi: 10.1038/s41467-024-53440-w. PubMed DOI PMC

Kuznetsov A. I.. et al. Roadmap for Optical Metamaterials. ACS Photonics. 2024;11:816–865. doi: 10.1021/acsphotonics.3c00457. PubMed DOI PMC

Hopfield J. J.. Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals. Phys. Rev. 1958;112:1555–1567. doi: 10.1103/PhysRev.112.1555. DOI

Lundeberg M. B., Gao Y., Asgari R., Tan C., Van Duppen B., Autore M., Alonso-González P., Woessner A., Watanabe K., Taniguchi T., Hillenbrand R., Hone J., Polini M., Koppens F. H. L.. Tuning Quantum Nonlocal Effects in Graphene Plasmonics. Science. 2017;357:187–191. doi: 10.1126/science.aan2735. PubMed DOI

Silveiro I., Plaza Ortega J. M., García de Abajo F. J.. Quantum Nonlocal Effects in Individual and Interacting Graphene Nanoribbons. Light: Sci. & Appl. 2015;4:e241. doi: 10.1038/lsa.2015.14. DOI

Manjavacas A., Marchesin F., Thongrattanasiri S., Koval P., Nordlander P., Sánchez-Portal D., García de Abajo F. J.. Tunable Molecular Plasmons in Polycyclic Aromatic Hydrocarbons. ACS Nano. 2013;7:3635–3643. doi: 10.1021/nn4006297. PubMed DOI

García de Abajo F. J.. Graphene Plasmonics: Challenges and Opportunities. ACS Photonics. 2014;1:135–152. doi: 10.1021/ph400147y. DOI

Rudenko A. N., Mikhail I., Katsnelson M. I.. Anisotropic Effects in Two-Dimensional Materials. 2D Mater. 2024;11:042002. doi: 10.1088/2053-1583/ad64e1. DOI

Yu R., Cox J. D., Saavedra J. R. M., García de Abajo F. J.. Analytical Modeling of Graphene Plasmons. ACS Photonics. 2017;4:3106–3114. doi: 10.1021/acsphotonics.7b00740. DOI

Brar V. W., Jang M. S., Sherrott M., Kim S., Lopez J. J., Kim L. B., Choi M., Atwater H.. Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/Monolayer h-BN Heterostructures. Nano Lett. 2014;14:3876–3880. doi: 10.1021/nl501096s. PubMed DOI

Fukumoto H., Miyazaki M., Aoki Y., Nakatsuji K., Hirayama H.. Initial Stage of Ag Growth on Bi/Ag(111)√3×√3 Surfaces. Surf. Sci. 2013;611:49–53. doi: 10.1016/j.susc.2013.01.013. DOI

Mkhitaryan V., Weber A. P., Abdullah S., Fernández L., Abd El-Fattah Z. M., Piquero-Zulaica I., Agarwal H., García Díez K., Schiller F., Ortega J. E., García de Abajo F. J.. Ultraconfined Plasmons in Atomically Thin Crystalline Silver Nanostructures. Adv. Mater. 2024;36:2302520. doi: 10.1002/adma.202470065. PubMed DOI

Hu H., Yu R., Teng H., Hu D., Chen N., Qu Y., Yang X., Chen X., McLeod A. S., Alonso-González P., Guo X., Li C., Yao Z., Li Z., Chen J., Sun Z., Liu M., García de Abajo F. J., Dai Q.. Active Control of Micrometer Plasmon Propagation in Suspended Graphene. Nat. Commun. 2022;13:1465. doi: 10.1038/s41467-022-28786-8. PubMed DOI PMC

Bergman D. J., Stockman M. I.. Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems. Phys. Rev. Lett. 2003;90:027402. doi: 10.1103/PhysRevLett.90.027402. PubMed DOI

Fakonas J. S., Lee H., Kelaita Y. A., Atwater H. A.. Two-Plasmon Quantum Interference. Nat. Photonics. 2014;8:317–320. doi: 10.1038/nphoton.2014.40. DOI

Liu N., Xia F., Xiao D., García de Abajo F. J., Sun D.. Semimetals for High-Performance Photodetection. Nat. Mater. 2020;19:830–837. doi: 10.1038/s41563-020-0715-7. PubMed DOI

Fali A., White S. T., Folland T. G., He M., Aghamiri N. A., Liu S., Edgar J. H., Caldwell J. D., Haglund R. F., Abate Y.. Refractive Index-Based Control of Hyperbolic Phonon-Polariton Propagation. Nano Lett. 2019;19:7725–7734. doi: 10.1021/acs.nanolett.9b02651. PubMed DOI

Duan J., Capote-Robayna N., Taboada-Gutiérrez J., Álvarez-Pérez G., Prieto I., Martín-Sánchez J., Nikitin A. Y., Alonso-González P.. Twisted Nano-Optics: Manipulating Light at the Nanoscale with Twisted Phonon Polaritonic Slabs. Nano Lett. 2020;20:5323–5329. doi: 10.1021/acs.nanolett.0c01673. PubMed DOI

Hu G., Ou Q., Si G., Wu Y., Wu J., Dai Z., Krasnok A., Mazor Y., Zhang Q., Bao Q., Qiu C.-W., Alù A.. Topological Polaritons and Photonic Magic Angles in Twisted α-MoO3 Bilayers. Nature. 2020;582:209–213. doi: 10.1038/s41586-020-2359-9. PubMed DOI

Sternbach A. J., Moore S. L., Rikhter A., Zhang S., Jing R., Shao Y., Kim B. S. Y., Xu S., Liu S., Edgar J. H., Rubio A., Dean C., Hone J., Fogler M. M., Basov D. N.. Negative Refraction in Hyperbolic Hetero-Bicrystals. Science. 2023;379:555–557. doi: 10.1126/science.adf1065. PubMed DOI

Dai S., Ma Q., Liu M. K., Andersen T., Fei Z., Goldflam M. D., Wagner M., Watanabe K., Taniguchi T., Thiemens M., Keilmann F., Janssen G. C. a. M., Zhu S.-E., Jarillo-Herrero P., Fogler M. M., Basov D. N.. Graphene on Hexagonal Boron Nitride as a Tunable Hyperbolic Metamaterial. Nat. Nanotechnol. 2015;10:682–686. doi: 10.1038/nnano.2015.131. PubMed DOI

Alfaro-Mozaz F. J., Rodrigo S. G., Vélez S., Dolado I., Govyadinov A., Alonso-González P., Casanova F., Hueso L. E., Martín-Moreno L., Hillenbrand R., Nikitin A. Y.. Hyperspectral Nanoimaging of van der Waals Polaritonic Crystals. Nano Lett. 2021;21:7109–7115. doi: 10.1021/acs.nanolett.1c01452. PubMed DOI

Tamagnone, M. ; Chaudhary, K. ; Spaegele, C. M. ; Zhu, A. ; Meretska, M. ; Li, J. ; Edgar, J. H. ; Ambrosio, A. ; Capasso, F. . High Quality Factor Polariton Resonators Using van der Waals Materials. arXiv 2020, 1905.02177. 10.48550/arXiv.1905.02177 DOI

Autore M., Li P., Dolado I., Alfaro-Mozaz F. J., Esteban R., Atxabal A., Casanova F., Hueso L. E., Alonso-González P., Aizpurua J., Nikitin A. Y., Vélez S., Hillenbrand R.. Boron Nitride Nanoresonators for Phonon-Enhanced Molecular Vibrational Spectroscopy at the Strong Coupling Limit. Light Sci. Appl. 2018;7:17172–17178. doi: 10.1038/lsa.2017.172. PubMed DOI PMC

Duan J., Alfaro-Mozaz F. J., Taboada-Gutiérrez J., Dolado I., Álvarez-Pérez G., Titova E., Bylinkin A., Tresguerres-Mata A. I. F., Martín-Sánchez J., Liu S., Edgar J. H., Bandurin D. A., Jarillo-Herrero P., Hillenbrand R., Nikitin A. Y., Alonso-González P.. Active and Passive Tuning of Ultranarrow Resonances in Polaritonic Nanoantennas. Adv. Mater. 2022;34:2104954. doi: 10.1002/adma.202104954. PubMed DOI

Teng H., Chen N., Hu H., García de Abajo F. J., Dai Q.. Steering and Cloaking of Hyperbolic Polaritons at Deep-Subwavelength Scales. Nat. Commun. 2024;15:4463. doi: 10.1038/s41467-024-48318-w. PubMed DOI PMC

Chaudhary K., Tamagnone M., Yin X., Spägele C. M., Oscurato S. L., Li J., Persch C., Li R., Rubin N. A., Jauregui L. A., Watanabe K., Taniguchi T., Kim P., Wuttig M., Edgar J. H., Ambrosio A., Capasso F.. Polariton Nanophotonics Using Phase-Change Materials. Nat. Commun. 2019;10:4487. doi: 10.1038/s41467-019-12439-4. PubMed DOI PMC

Duan J., Álvarez-Pérez G., Tresguerres-Mata A. I. F., Taboada-Gutiérrez J., Voronin K. V., Bylinkin A., Chang B., Xiao S., Liu S., Edgar J. H., Martín J. I., Volkov V. S., Hillenbrand R., Martín-Sánchez J., Nikitin A. Y., Alonso-González P.. Planar Refraction and Lensing of Highly Confined Polaritons in Anisotropic Media. Nat. Commun. 2021;12:4325. doi: 10.1038/s41467-021-24599-3. PubMed DOI PMC

Álvarez-Pérez G., Duan J., Taboada-Gutiérrez J., Ou Q., Nikulina E., Liu S., Edgar J. H., Bao Q., Giannini V., Hillenbrand R., Martín-Sánchez J., Nikitin A. Y., Alonso-González P.. Negative Reflection of Nanoscale-Confined Polaritons in a Low-Loss Natural Medium. Sci. Adv. 2022;8:eabp8486. doi: 10.1126/sciadv.abp8486. PubMed DOI PMC

Qu Y., Chen N., Teng H., Hu H., Sun J., Yu R., Hu D., Xue M., Li C., Wu B., Chen J., Sun Z., Liu M., Liu Y., García de Abajo F. J., Dai Q.. Tunable Planar Focusing Based on Hyperbolic Phonon Polaritons in α-MoO3 . Adv. Mater. 2022;34:2105590. doi: 10.1002/adma.202105590. PubMed DOI

Lee I.-H. H., He M., Zhang X., Luo Y., Liu S., Edgar J. H., Wang K., Avouris P., Low T., Caldwell J. D., Oh S.-H. H.. Image Polaritons in Boron Nitride for Extreme Polariton Confinement with Low Losses. Nat. Commun. 2020;11:3649. doi: 10.1038/s41467-020-17424-w. PubMed DOI PMC

Xiong L., Forsythe C., Jung M., McLeod A. S., Sunku S. S., Shao Y. M., Ni G. X., Sternbach A. J., Liu S., Edgar J. H., Mele E. J., Fogler M. M., Shvets G., Dean C. R., Basov D. N.. Photonic Crystal for Graphene Plasmons. Nat. Commun. 2019;10:4780. doi: 10.1038/s41467-019-12778-2. PubMed DOI PMC

Herzig Sheinfux H., Jung M., Orsini L., Ceccanti M., Mahalanabish A., Martinez-Cercós D., Torre I., Barcons Ruiz D., Janzen E., Edgar J. H., Pruneri V., Shvets G., Koppens F. H. L.. Transverse Hypercrystals Formed by Periodically Modulated Phonon Polaritons. ACS Nano. 2023;17:7377–7383. doi: 10.1021/acsnano.2c11497. PubMed DOI

Herzig Sheinfux H., Orsini L., Jung M., Torre I., Ceccanti M., Marconi S., Maniyara R., Barcons Ruiz D., Hötger A., Bertini R., Castilla S., Hesp N. C. H., Janzen E., Holleitner A., Pruneri V., Edgar J. H., Shvets G., Koppens F. H. L.. High-Quality Nanocavities through Multimodal Confinement of Hyperbolic Polaritons in Hexagonal Boron Nitride. Nat. Mater. 2024;23:499–505. doi: 10.1038/s41563-023-01785-w. PubMed DOI

Orsini L., Herzig Sheinfux H., Li Y., Lee S., Andolina G. M., Scarlatella O., Ceccanti M., Soundarapandian K., Janzen E., Edgar J. H., Shvets G., Koppens F. H. L.. Deep Subwavelength Topological Edge State in a Hyperbolic Medium. Nat. Nanotechnol. 2024;19:1485–1490. doi: 10.1038/s41565-024-01737-8. PubMed DOI

Guo, Q. ; Esin, I. ; Li, C. ; Chen, C. ; Liu, S. ; Edgar, J. H. ; Zhou, S. ; Demler, E. ; Refael, G. ; Xia, F. . Hyperbolic Phonon-Polariton Electroluminescence in Graphene-hBN van der Waals Heterostructures. arXiv 2023, 2310.03926. 10.48550/arXiv.2310.03926 PubMed DOI

Castilla S., Agarwal H., Vangelidis I., Bludov Y. V., Iranzo D. A., Grabulosa A., Ceccanti M., Vasilevskiy M. I., Kumar R. K., Janzen E., Edgar J. H., Watanabe K., Taniguchi T., Peres N. M. R., Lidorikis E., Koppens F. H. L.. Electrical Spectroscopy of Polaritonic Nanoresonators. Nat. Commun. 2024;15:8635. doi: 10.1038/s41467-024-52838-w. PubMed DOI PMC

Basov D. N., Fogler M. M., García de Abajo F. J.. Polaritons in van der Waals Materials. Science. 2016;354:aag1992. doi: 10.1126/science.aag1992. PubMed DOI

Svendsen M. K., Kurman Y., Schmidt P., Koppens F., Kaminer I., Thygesen K. S.. Combining Density Functional Theory with Macroscopic QED for Quantum Light-Matter Interactions in 2D Materials. Nat. Commun. 2021;12:2778. doi: 10.1038/s41467-021-23012-3. PubMed DOI PMC

Rivera N., Kaminer I., Zhen B., Joannopoulos J. D., Soljačić M.. Shrinking Light to Allow Forbidden Transitions on the Atomic Scale. Science. 2016;353:263–269. doi: 10.1126/science.aaf6308. PubMed DOI

Arwas G., Ciuti C.. Quantum Electron Transport Controlled by Cavity Vacuum Fields. Phys. Rev. B. 2023;107:045425. doi: 10.1103/PhysRevB.107.045425. DOI

Nie S., Emory S. R.. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science. 1997;275:1102–1106. doi: 10.1126/science.275.5303.1102. PubMed DOI

Kneipp K., Wang Y., Kneipp H., Perelman L. T., Itzkan I., Dasari R. R., Feld M. S.. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) Phys. Rev. Lett. 1997;78:1667–1670. doi: 10.1103/PhysRevLett.78.1667. DOI

Atwater H. A., Polman A.. Plasmonics for Improved Photovoltaic Devices. Nat. Mater. 2010;9:205–213. doi: 10.1038/nmat2629. PubMed DOI

Brune M., Hagley E., Dreyer J., Maître X., Maali A., Wunderlich C., Raimond J. M., Haroche S.. Observing the Progressive Decoherence of the `̀Meter’’ in a Quantum Measurement. Phys. Rev. Lett. 1996;77:4887–4890. doi: 10.1103/PhysRevLett.77.4887. PubMed DOI

Frisk Kockum A., Miranowicz A., De Liberato S., Savasta S., Nori F.. Ultrastrong Coupling between Light and Matter. Nat. Rev. Phys. 2019;1:19–40. doi: 10.1038/s42254-018-0006-2. DOI

Appugliese F., Enkner J., Paravicini-Bagliani G. L., Beck M., Reichl C., Wegscheider W., Scalari G., Ciuti C., Faist J.. Breakdown of Topological Protection by Cavity Vacuum Fields in the Integer Quantum Hall Effect. Science. 2022;375:1030–1034. doi: 10.1126/science.abl5818. PubMed DOI

Thomas A., Devaux E., Nagarajan K., Rogez G., Seidel M., Richard F., Genet C., Drillon M., Ebbesen T. W.. Large Enhancement of Ferromagnetism under a Collective Strong Coupling of YBCO Nanoparticles. Nano Lett. 2021;21:4365–4370. doi: 10.1021/acs.nanolett.1c00973. PubMed DOI PMC

Bylinkin A., Calavalle F., Barra-Burillo M., Kirtaev R. V., Nikulina E., Modin E. B., Janzen E., Edgar J. H., Casanova F., Hueso L. E., Volkov V. S., Vavassori P., Aharonovich I., Alonso-Gonzalez P., Hillenbrand R., Nikitin A. Y.. Dual-Band Coupling between Nanoscale Polaritons and Vibrational and Electronic Excitations in Molecules. Nano Lett. 2023;23:3985–3993. doi: 10.1021/acs.nanolett.3c00768. PubMed DOI

Yoxall E., Schnell M., Nikitin A. Y., Txoperena O., Woessner A., Lundeberg M. B., Casanova F., Hueso L. E., Koppens F. H. L., Hillenbrand R.. Direct Observation of Ultraslow Hyperbolic Polariton Propagation with Negative Phase Velocity. Nat. Photonics. 2015;9:674–678. doi: 10.1038/nphoton.2015.166. DOI

Wehmeier L., Xu S., Mayer R. A., Vermilyea B., Tsuneto M., Dapolito M., Pu R., Du Z., Chen X., Zheng W., Jing R., Zhou Z., Watanabe K., Taniguchi T., Gozar A., Li Q., Kuzmenko A. B., Carr G. L., Du X., Fogler M. M., Basov D. N., Liu M.. Landau-Phonon Polaritons in Dirac Heterostructures. Sci. Adv. 2024;10:eadp3487. doi: 10.1126/sciadv.adp3487. PubMed DOI PMC

Ashida Y., İmamoǧlu A., Demler E.. Cavity Quantum Electrodynamics with Hyperbolic van der Waals Materials. Phys. Rev. Lett. 2023;130:216901. doi: 10.1103/PhysRevLett.130.216901. PubMed DOI

Riolo, R. ; Tomadin, A. ; Mazza, G. ; Asgari, R. ; MacDonald, A. H. ; Polini, M. . Tuning Fermi Liquids with Sub-Wavelength Cavities. arXiv 2024, 2403.20067. 10.48550/arXiv.2403.20067 DOI

Bloch J., Cavalleri A., Galitski V., Hafezi M., Rubio A.. Strongly Correlated Electron−Photon Systems. Nature. 2022;606:41–48. doi: 10.1038/s41586-022-04726-w. PubMed DOI

Andolina G. M., De Pasquale A., Pellegrino F. M. D., Torre I., Koppens F. H. L., Polini M.. Amperean Superconductivity Cannot Be Induced by Deep Subwavelength Cavities in a Two-Dimensional Material. Phys. Rev. B. 2024;109:104513. doi: 10.1103/PhysRevB.109.104513. DOI

Atwater H. A.. The Promise of Plasmonics. Sci. Am. 2007;296:56–63. doi: 10.1038/scientificamerican0407-56. PubMed DOI

Giuliani, G. F. ; Vignale, G. . Quantum Theory of the Electron Liquid; Cambridge University Press: Cambridge, 2005.

Chen X.. et al. Modern Scattering-Type Scanning Near-Field Optical Microscopy for Advanced Material Research. Adv. Mater. 2019;31:1804774. doi: 10.1002/adma.201804774. PubMed DOI

Geim A., Grigorieva I.. Van der Waals Heterostructures. Nature. 2013;499:419–425. doi: 10.1038/nature12385. PubMed DOI

Grigorenko A. N., Polini M., Novoselov K. S.. Graphene Plasmonics. Nat. Photonics. 2012;6:749–758. doi: 10.1038/nphoton.2012.262. DOI

Andrei E. Y., Efetov D. K., Jarillo-Herrero P., MacDonald A. H., Mak K. F., Senthil T., Tutuc E., Yazdani A., Young A. F.. The Marvels of Moiré Materials. Nat. Rev. Mater. 2021;6:201–206. doi: 10.1038/s41578-021-00284-1. DOI

Cao Y.. et al. Unconventional Superconductivity in Magic-Angle Graphene Superlattices. Nature. 2018;556:43–50. doi: 10.1038/nature26160. PubMed DOI

Cao Y.. et al. Correlated Insulator Behaviour at Half-Filling in Aagic-Angle Graphene Superlattices. Nature. 2018;556:80–84. doi: 10.1038/nature26154. PubMed DOI

Cao Y.. et al. Strange Metal in Magic-Angle Graphene with Near Planckian Dissipation. Phys. Rev. Lett. 2020;124:076801. doi: 10.1103/PhysRevLett.124.076801. PubMed DOI

Xie Y.. et al. Fractional Chern Insulators in Magic-Angle Twisted Bilayer Graphene. Nature. 2021;600:439–443. doi: 10.1038/s41586-021-04002-3. PubMed DOI PMC

Mak K. F., Shan J.. Semiconductor Moiré Materials. Nat. Nanotechnol. 2022;17:686–695. doi: 10.1038/s41565-022-01165-6. PubMed DOI

Xia Y., Han Z., Watanabe K., Taniguchi T., Shan J., Mak K. F.. Unconventional Superconductivity in Twisted Bilayer WSe2 . Nature. 2025;637:833–838. doi: 10.1038/s41586-024-08116-2. PubMed DOI

Cai J.. et al. Signatures of Fractional Quantum Anomalous Hall States in Twisted MoTe2 . Nature. 2023;622:63–68. doi: 10.1038/s41586-023-06289-w. PubMed DOI

Agarwal A.. et al. Plasmon Mass and Drude Weight in Strongly Spin-Orbit-Coupled Two-Dimensional Electron Gases. Phys. Rev. B. 2011;83:115135. doi: 10.1103/PhysRevB.83.115135. DOI

Tomadin A.. et al. Generation and Morphing of Plasmons in Graphene Superlattices. Phys. Rev. B. 2014;90:161406(R) doi: 10.1103/PhysRevB.90.161406. DOI

Stauber T., Kohler H.. Quasi-Flat Plasmonic Bands in Twisted Bilayer Graphene. Nano Lett. 2016;16:6844–6849. doi: 10.1021/acs.nanolett.6b02587. PubMed DOI

Hesp N. C. H., Torre I., Rodan-Legrain D., Novelli P., Cao Y., Carr S., Fang S., Stepanov P., Barcons-Ruiz D., Herzig Sheinfux H., Watanabe K., Taniguchi T., Efetov D. K., Kaxiras E., Jarillo-Herrero P., Polini M., Koppens F. H. L.. Observation of Interband Collective Excitations in Twisted Bilayer Graphene. Nat. Phys. 2021;17:1162–1168. doi: 10.1038/s41567-021-01327-8. DOI

Lewandowski C., Levitov L.. Intrinsically Undamped Plasmon Modes in Narrow Electron Bands. Proc. Natl. Acad. Sci. U. S. A. 2019;116:20869–20874. doi: 10.1073/pnas.1909069116. PubMed DOI PMC

Chakraborty A.. et al. Tunable Interband and Intraband Plasmons in Twisted Double Bilayer Graphene. Phys. Rev. B. 2022;106:155422. doi: 10.1103/PhysRevB.106.155422. DOI

Cavicchi L.. et al. Theory of Intrinsic Acoustic Plasmons in Twisted Bilayer Graphene. Phys. Rev. B. 2024;110:045431. doi: 10.1103/PhysRevB.110.045431. DOI

García-Vidal F. J.. et al. Manipulating Matter by Strong Coupling to Vacuum Fields. Science. 2021;373:eabd0336. doi: 10.1126/science.abd0336. PubMed DOI

Kim C.-J., Sánchez-Castillo A., Ziegler Z., Ogawa Y., Noguez C., Park J.. Chiral Atomically Thin Films. Nat. Nanotechnol. 2016;11:520–524. doi: 10.1038/nnano.2016.3. PubMed DOI

Stauber T.. et al. Chiral Response of Twisted Bilayer Graphene. Phys. Rev. Lett. 2018;120:046801. doi: 10.1103/PhysRevLett.120.046801. PubMed DOI

Moreno, A. ; Cavicchi, L. ; Wang, X. ; Peralta, M. ; Vergniory, M. ; Watanabe, K. ; Taniguchi, T. ; Jarillo-Herrero, P. ; Felser, C. ; Polini, M. ; Koppens, F. H. L. . Twisted Bilayer Graphene for Enantiomeric Sensing of chiral molecules. arXiv 2024, 2409.05178. 10.48550/arXiv.2409.05178 DOI

Song J. C. W., Rudner M. S.. Chiral Plasmons without Magnetic Field. Proc. Natl. Acad. Sci. U. S. A. 2016;113:4658. doi: 10.1073/pnas.1519086113. PubMed DOI PMC

Lu X.. et al. Superconductors, Orbital Magnets and Correlated States in Magic-Angle Bilayer Graphene. Nature. 2019;574:653–657. doi: 10.1038/s41586-019-1695-0. PubMed DOI

Liou S.-F.. et al. Chiral Gravitons in Fractional Quantum Hall Liquids. Phys. Rev. Lett. 2019;123:146801. doi: 10.1103/PhysRevLett.123.146801. PubMed DOI

Adak P. C.. et al. Tunable Moiré Materials for Probing Berry Physics and Topology. Nat. Rev. Mater. 2024;9:481–498. doi: 10.1038/s41578-024-00671-4. DOI

Papaj M., Lewandowski C.. Probing Correlated States with Plasmons. Sci. Adv. 2023;9:eadg3262. doi: 10.1126/sciadv.adg3262. PubMed DOI

Morales-Durán N.. et al. Magic Angles and Fractional Chern Insulators in Twisted Homobilayer TMDs. Phys. Rev. Lett. 2024;132:096602. doi: 10.1103/PhysRevLett.132.096602. PubMed DOI

Cavicchi, L. ; Reijnders, K. J. A. ; Katsnelson, M. I. ; Polini, M. . Optical Properties, Plasmons, and Orbital Skyrme Textures in Twisted TMDs. arXiv 2024, 2410.18025. 10.48550/arXiv.2410.18025 DOI

Basov D. N., Asenjo-Garcia A., Schuck P. J., Zhu X., Rubio A.. Polariton Panorama. Nanophotonics. 2020;10:549–577. doi: 10.1515/nanoph-2020-0449. DOI

Rivera N., Kaminer I.. Light−Matter Interactions with Photonic Quasiparticles. Nat. Rev. Phys. 2020;2:538–561. doi: 10.1038/s42254-020-0224-2. DOI

Gonçalves, P. A. D. ; Peres, N. M. R. . An Introduction to Graphene Plasmonics; World Scientific: Singapore, 2016.

Gonçalves P. A. D., Stenger N., Cox J. D., Mortensen N. A., Xiao S.. Strong Light−Matter Interactions Enabled by Polaritons in Atomically-Thin Materials. Adv. Opt. Mater. Mod. Phys. 2020;8:1901473. doi: 10.1002/adom.201901473. DOI

Xia F., Wang H., Xiao D., Dubey M., Ramasubramaniam A.. Two-Dimensional Material Nanophotonics. Nat. Photonics. 2014;8:899–907. doi: 10.1038/nphoton.2014.271. DOI

Alonso-González P.. et al. Acoustic Terahertz Graphene Plasmons Revealed by Photocurrent Nanoscopy. Nat. Nanotechnol. 2017;12:31–35. doi: 10.1038/nnano.2016.185. PubMed DOI

Alcaraz Iranzo D., Nanot S., Dias E. J. C., Epstein I., Peng C., Efetov D. K., Lundeberg M. B., Parret R., Osmond J., Hong J.-Y., Kong J., Englund D. R., Peres N. M. R., Koppens F. H. L.. Probing the Ultimate Plasmon Confinement Limits with a van der Waals Heterostructure. Science. 2018;360:291–295. doi: 10.1126/science.aar8438. PubMed DOI

Reserbat-Plantey A., Epstein I., Torre I., Costa A. T., Gonçalves P. A. D., Mortensen N. A., Polini M., Song J. C. W., Peres N. M. R., Koppens F. H. L.. Quantum Nanophotonics in Two-Dimensional Materials. ACS Photonics. 2021;8:85–101. doi: 10.1021/acsphotonics.0c01224. DOI

Gonçalves, P. A. D. Plasmonics and Light−Matter Interactions in Two-Dimensional Materials and in Metal Nanostructures: Classical and Quantum Considerations; Springer Nature, 2020.

Basov D. N., Averitt R. D., van der Marel D., Dressel M., Haule K.. Electrodynamics of Correlated Electron Materials. Rev. Mod. Phys. 2011;83:471–541. doi: 10.1103/RevModPhys.83.471. DOI

Costa A. T., Gonçalves P. A. D., Basov D. N., Koppens F. H. L., Mortensen N. A., Peres N. M. R.. Harnessing Ultraconfined Graphene Plasmons to Probe the Electrodynamics of Superconductors. Proc. Nat. Acad. Sci. 2021;118:e2012847118. doi: 10.1073/pnas.2012847118. PubMed DOI PMC

Berkowitz M. E., Kim B. S. Y., Ni G., McLeod A. S., Lo C. F. B., Sun Z., Gu G., Watanabe K., Taniguchi T., Millis A. J., Hone J. C., Fogler M. M., Averitt R. D., Basov D. N.. Hyperbolic Cooper-Pair Polaritons in Planar Graphene/Cuprate Plasmonic Cavities. Nano Lett. 2021;21:308–316. doi: 10.1021/acs.nanolett.0c03684. PubMed DOI

Costa A. T., Peres N. M. R.. Enhancing the Hybridization of Plasmons in Graphene with 2D Superconductor Collective Modes. J. Phys.: Cond. Matter. 2022;34:105304. doi: 10.1088/1361-648X/ac3e1d. PubMed DOI

Bludov Y. V., Gomes J. N., Farias G. A., Fernández-Rossier J., Vasilevskiy M. I., Peres N. M. R.. Hybrid Plasmon-Magnon Polaritons in Graphene-Antiferromagnet Heterostructures. 2D Mater. 2019;6:045003. doi: 10.1088/2053-1583/ab2513. DOI

Costa A. T., Vasilevskiy M. I., Fernández-Rossier J., Peres N. M. R.. Strongly Coupled Magnon−Plasmon Polaritons in Graphene-Two-Dimensional Ferromagnet Heterostructures. Nano Lett. 2023;23:4510–4515. doi: 10.1021/acs.nanolett.3c00907. PubMed DOI PMC

Falch V., Danon J., Qaiumzadeh A., Brataas A.. Impact of Spin Torques and Spin-Pumping Phenomena on Magnon-Plasmon Polaritons in Antiferromagnetic Insulator-Semiconductor Heterostructures. Phys. Rev. B. 2024;109:214436. doi: 10.1103/PhysRevB.109.214436. DOI

Yuan H. Y., Blanter Y. M.. Breaking Surface-Plasmon Excitation Constraint via Surface Spin Waves. Phys. Rev. Lett. 2024;133:156703. doi: 10.1103/PhysRevLett.133.156703. PubMed DOI

Keller O.. Electromagnetic Surface Waves on a Cooper-Paired Superconductor. J. Opt. Soc. Am. B. 1990;7:2229–2235. doi: 10.1364/JOSAB.7.002229. DOI

Sun Z., Fogler M. M., Basov D. N., Millis A. J.. Collective Modes and Terahertz Near-Field Response of Superconductors. Phys. Rev. Research. 2020;2:023413. doi: 10.1103/PhysRevResearch.2.023413. DOI

Matsunaga R., Hamada Y. I., Makise K., Uzawa Y., Terai H., Wang Z., Shimano R.. Higgs Amplitude Mode in the BCS Superconductors Nb1-xTi x N Induced by Terahertz Pulse Excitation. Phys. Rev. Lett. 2013;111:057002. doi: 10.1103/PhysRevLett.111.057002. PubMed DOI

Matsunaga R., Tsuji N., Fujita H., Sugioka A., Makise K., Uzawa Y., Terai H., Wang Z., Aoki H., Shimano R.. Light-Induced Collective Pseudospin Precession Resonating with Higgs Mode in a Superconductor. Science. 2014;345:1145–1149. doi: 10.1126/science.1254697. PubMed DOI

Dias E. J. C., Iranzo D. A., Gonçalves P. A. D., Hajati Y., Bludov Y. V., Jauho A.-P., Mortensen N. A., Koppens F. H. L., Peres N. M. R.. Probing Nonlocal Effects in Metals with Graphene Plasmons. Phys. Rev. B. 2018;97:245405. doi: 10.1103/PhysRevB.97.245405. DOI

Gonçalves P. A. D., Christensen T., Peres N. M. R., Jauho A.-P., Epstein I., Koppens F. H. L., Soljačić M., Mortensen N. A.. Quantum Surface-Response of Metals Revealed by Acoustic Graphene Plasmons. Nat. Commun. 2021;12:3271. doi: 10.1038/s41467-021-23061-8. PubMed DOI PMC

Feibelman P. J.. Surface Electromagnetic-Fields. Prog. Surf. Sci. 1982;12:287–407. doi: 10.1016/0079-6816(82)90001-6. DOI

Yang Y., Zhu D., Yan W., Agarwal A., Zheng M., Joannopoulos J. D., Lalanne P., Christensen T., Berggren K. K., Soljačić M.. A General Theoretical and Experimental Framework for Nanoscale Electromagnetism. Nature. 2019;576:248–252. doi: 10.1038/s41586-019-1803-1. PubMed DOI

Persson B. N. J., Zaremba E.. Reference-Plane Position for the Atom-Surface van der Waals Interaction. Phys. Rev. B. 1984;30:5669. doi: 10.1103/PhysRevB.30.5669. PubMed DOI

Dyrdal A., Qaiumzadeh A., Brataas A., Barnas J.. Magnon-Plasmon Hybridization Mediated by Spin-Orbit Interaction in Magnetic Materials. Phys. Rev. B. 2023;108:045414. doi: 10.1103/PhysRevB.108.045414. DOI

Zheng S., Wang Z., Wang Y., Sun F., He Q., Yan P., Yuan H. Y.. Tutorial: Nonlinear Magnonics. J. Appl. Phys. 2023;134:151101. doi: 10.1063/5.0152543. DOI

Zhang X., Bian C., Gong Z., Chen R., Low T., Chen H., Lin X.. Hybrid Surface Waves in Twisted Anisotropic Heterometasurfaces. Phys. Rev. Appl. 2024;21:064034. doi: 10.1103/PhysRevApplied.21.064034. DOI

Rizzo D. J.. et al. Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl3 Interfaces. Nano Lett. 2020;20:8438–8445. doi: 10.1021/acs.nanolett.0c03466. PubMed DOI PMC

Hesp N. C. H., Batlle-Porro S., Kumar R. K., Agarwal H., Ruiz D. B., Sheinfux H. H., Watanabe K., Taniguchi T., Stepanov P., Koppens F. H. L.. Cryogenic Nano-Imaging of Second-Order Moiré Superlattices. Nat. Mater. 2024;23:1664–1670. doi: 10.1038/s41563-024-01993-y. PubMed DOI

Kennes D. M., Claassen M., Xian L., Georges A., Millis A. J., Hone J., Dean C. R., Basov D. N., Pasupathy A. N., Rubio A.. Moiré Heterostructures as a Condensed-Matter Quantum Simulator. Nat. Phys. 2021;17:155–163. doi: 10.1038/s41567-020-01154-3. DOI

Costa A. T., Santos D. L. R., Peres N. M. R., Fernández-Rossier J.. Topological Magnons in CrI3 Monolayers: An Itinerant Fermion Description. 2D Mater. 2020;7:045031. doi: 10.1088/2053-1583/aba88f. DOI

Li S., Sun Z., McLaughlin N. J., Sharmin A., Agarwal N., Huang M., Sung S. H., Lu H., Yan S., Lei H., Hovden R., Wang H., Chen H., Zhao L., Du C. R.. Observation of Stacking Engineered Magnetic Phase Transitions within Moiré Supercells of Twisted van der Waals Magnets. Nat. Commun. 2024;15:5712. doi: 10.1038/s41467-024-49942-2. PubMed DOI PMC

Liu Y., Yu J., Liu C.-C.. Twisted Magnetic Van der Waals Bilayers: An Ideal Platform for Altermagnetism. Phys. Rev. Lett. 2024;133:206702. doi: 10.1103/PhysRevLett.133.206702. PubMed DOI

Lu L., Joannopoulos J. D., Soljačić M.. Topological Photonics. Nat. Photonics. 2014;8:821–829. doi: 10.1038/nphoton.2014.248. DOI

Oulton R. F., Sorger V. J., Genov D., Pile D., Zhang X.. A Hybrid Plasmonic Waveguide for Subwavelength Confinement and Long-Range Propagation. Nat. Photonics. 2008;2:496–500. doi: 10.1038/nphoton.2008.131. DOI

Luo C., Johnson S. G., Joannopoulos J., Pendry J.. Subwavelength Imaging in Photonic Crystals. Phys. Rev. B. 2003;68:045115. doi: 10.1103/PhysRevB.68.045115. DOI

Markel V. A.. Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A. 2016;33:1244–1256. doi: 10.1364/JOSAA.33.001244. PubMed DOI

Bregola, M. ; Marmo, G. ; Morandi, G. . Anomalies, Phases, Defects−Ferrara, June 1989; Bibliopolis, 1990.

Bharadwaj S., Van Mechelen T., Jacob Z.. Picophotonics: Anomalous Atomistic Waves in Silicon. Phys. Rev. Appl. 2022;18:044065. doi: 10.1103/PhysRevApplied.18.044065. DOI

Van Mechelen T., Jacob Z.. Nonlocal Topological Electromagnetic Phases of Matter. Physi. Rev. B. 2019;99:205146. doi: 10.1103/PhysRevB.99.205146. DOI

Haldane F. D. M.. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the Parity Anomaly. Phys. Rev. Lett. 1988;61:2015–2018. doi: 10.1103/PhysRevLett.61.2015. PubMed DOI

Kane C. L., Mele E. J.. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett. 2005;95:226801. doi: 10.1103/PhysRevLett.95.226801. PubMed DOI

Van Mechelen T., Jacob Z.. Unidirectional Maxwellian Spin Waves. Nanophotonics. 2019;8:1399–1416. doi: 10.1515/nanoph-2019-0092. DOI

Kim M., Jacob Z., Rho J.. Recent Advances in 2D, 3D and Higher-Order Topological Photonics. Light Sci. Appl. 2020;9:130. doi: 10.1038/s41377-020-0331-y. PubMed DOI PMC

Van Mechelen T., Sun W., Jacob Z.. Optical N-Invariant of Graphene’s Topological Viscous Hall Fluid. Nat. Commun. 2021;12:4729. doi: 10.1038/s41467-021-25097-2. PubMed DOI PMC

Bharadwaj, S. ; Jacob, Z. . Unraveling Optical Polarization at Deep Microscopic Scales in Crystalline Materials. arXiv 2024, 2407.15189. 10.48550/arXiv.2407.15189 DOI

Mun, J. ; Bharadwaj, S. ; Jacob, Z. . Visualization of Atomistic Optical Waves in Crystals. arXiv 2024, 2411.09876. 10.48550/arXiv.2411.09876 DOI

Van Mechelen T., Bharadwaj S., Jacob Z., Slager R.-J.. Optical -Insulators: Topological Obstructions to Optical Wannier Functions in the Atomistic Susceptibility Tensor. Phys. Rev. Research. 2022;4:023011. doi: 10.1103/PhysRevResearch.4.023011. DOI

Van Mechelen T., Jacob Z.. Viscous Maxwell-Chern-Simons Theory for Topological Electromagnetic Phases of Matter. Phys. Rev. B. 2020;102:155425. doi: 10.1103/PhysRevB.102.155425. DOI

Van Mechelen T., Jacob Z.. Photonic Dirac Monopoles and Skyrmions: Spin-1 Quantization. Opt. Mater. Express. 2019;9:95–111. doi: 10.1364/OME.9.000095. DOI

Sun W., Van Mechelen T. F., Bharadwaj S., Boddeti A. K., Jacob Z.. Optical N-Plasmon: Topological Hydrodynamic Excitations in Graphene from Repulsive Hall Viscosity. New J. Phys. 2023;25:113009. doi: 10.1088/1367-2630/ad04bc. DOI

Cocker T. L., Jelic V., Hillenbrand R., Hegmann F. A.. Nanoscale Terahertz Scanning Probe Microscopy. Nat. Photonics. 2021;15:558–569. doi: 10.1038/s41566-021-00835-6. DOI

Barber M. E., Ma E. Y., Shen Z.-X.. Microwave Impedance Microscopy and Its Application to Quantum Materials. Nat. Rev. Phys. 2022;4:61–74. doi: 10.1038/s42254-021-00386-3. DOI

Poursoti Z., Sun W., Bharadwaj S., Malac M., Iyer S., Khosravi F., Cui K., Qi L., Nazemifard N., Jagannath R.. Deep Ultra-Violet Plasmonics: Exploiting Momentum-Resolved Electron Energy Loss Spectroscopy to Probe Germanium. Opt. Express. 2022;30:12630–12638. doi: 10.1364/OE.447017. PubMed DOI

McLeod A. S., Zhang J., Gu M. Q., Jin F., Zhang G., Post K. W., Zhao X. G., Millis A. J., Wu W. B., Rondinelli J. M., Averitt R. D., Basov D. N.. Multi-Messenger Nanoprobes of Hidden Magnetism in a Strained Manganite. Nat. Mater. 2020;19:397–404. doi: 10.1038/s41563-019-0533-y. PubMed DOI

Dai S., Fei Z., Ma Q., Rodin A. S., Wagner M., McLeod A. S., Liu M. K., Gannett W., Regan W., Watanabe K., Taniguchi T., Thiemens M., Dominguez G., Castro Neto A. H., Zettl A., Keilmann F., Jarillo-Herrero P., Fogler M. M., Basov D. N.. Tunable Phonon Polaritons Inatomically Thin van der Waals Crystals of Boron Nitride. Science. 2014;343:1125–1129. doi: 10.1126/science.1246833. PubMed DOI

Ruta F. L., Zhang S., Shao Y., Moore S. L., Acharya S., Sun Z., Qiu S., Geurs J., Kim B. S. Y., Fu M., Chica D. G., Pashov D., Xu X., Xiao D., Delor M., Zhu X. Y., Millis A. J., Roy X., Hone J. C., Dean C. R., Katsnelson M. I., van Schilfgaarde M., Basov D. N.. Hyperbolic Exciton Polaritons in a van der Waals Magnet. Nat. Commun. 2023;14:8261. doi: 10.1038/s41467-023-44100-6. PubMed DOI PMC

Sunku S. S., Ni G. X., Jiang B. Y., Yoo H., Sternbach A., Mcleod A. S., Stauber T., Xiong L., Taniguchi T., Watanabe K., Kim P., Fogler M. M., Basov D. N.. Photonic Crystals for Nano-Light in Moiré Graphene Superlattices. Science. 2018;362:1153–1156. doi: 10.1126/science.aau5144. PubMed DOI

Lee K., Iqbal, Bakti Utama M., Kahn S., Samudrala A., Leconte N., Yang B., Wang S., Watanabe K., Taniguchi T., Altoé V. M. P., Zhang G., Weber-Bargioni A., Crommie M., Ashby P. D., Jung J., Wang F., Zettl A.. Ultrahigh-Resolution Scanning Microwave Impedance Microscopy of Moiré Lattices and Superstructures. Sci. Adv. 2020;6:50. doi: 10.1126/sciadv.abd1919. PubMed DOI PMC

Kerelsky A., McGilly L. J., Kennes D. M., Xian L., Yankowitz M., Chen S., Watanabe K., Taniguchi T., Hone J., Dean C., Rubio A., Pasupathy A. N.. Maximized Electron Interactions at the Magic Angle in Twisted Bilayer Graphene. Nature. 2019;572:95–100. doi: 10.1038/s41586-019-1431-9. PubMed DOI

Halbertal D., Finney N. R., Sunku S. S., Kerelsky A., Rubio-Verdú C., Shabani S., Xian L., Carr S., Chen S., Zhang C., Wang L., Gonzalez-Acevedo D., McLeod A. S., Rhodes D., Watanabe K., Taniguchi T., Kaxiras E., Dean C. R., Hone J. C., Pasupathy A. N., Kennes D. M., Rubio A., Basov D. N.. Moiré Metrology of Energy Landscapes in van der Waals Heterostructures. Nat. Commun. 2021;12:242. doi: 10.1038/s41467-020-20428-1. PubMed DOI PMC

McGilly L. J., Kerelsky A., Finney N. R., Shapovalov K., Shih E. M., Ghiotto A., Zeng Y., Moore S. L., Wu W., Bai Y., Watanabe K., Taniguchi T., Stengel M., Zhou L., Hone J., Zhu X., Basov D. N., Dean C., Dreyer C. E., Pasupathy A. N.. Visualization of Moiré Superlattices. Nat. Nanotechnol. 2020;15:580–584. doi: 10.1038/s41565-020-0708-3. PubMed DOI

Zhang S., Liu Y., Sun Z., Chen X., Li B., Moore S. L., Liu S., Wang Z., Rossi S. E., Jing R., Fonseca J., Yang B., Shao Y., Huang C. Y., Handa T., Xiong L., Fu M., Pan T. C., Halbertal D., Xu X., Zheng W., Schuck P. J., Pasupathy A. N., Dean C. R., Zhu X., Cobden D. H., Xu X., Liu M., Fogler M. M., Hone J. C., Basov D. N.. Visualizing Moiré Ferroelectricity Via Plasmons and Nano-Photocurrent in Graphene/Twisted-WSe2 Structures. Nat. Commun. 2023;14:6200. doi: 10.1038/s41467-023-41773-x. PubMed DOI PMC

Vizner Stern M., Waschitz Y., Cao W., Nevo I., Watanabe K., Taniguchi T., Sela E., Urbakh M., Hod O., Shalom M. B.. Interfacial Ferroelectricity by van der Waals Sliding. Science. 2021;372:1462–1466. doi: 10.1126/science.abe8177. PubMed DOI

Song T., Sun Q. C., Anderson E., Wang C., Qian J., Taniguchi T., Watanabe K., McGuire M. A., Stöhr R., Xiao D., Cao T., Wrachtrup J., Xu X.. Direct Visualization of Magnetic Domains and Moiré Magnetism in Twisted 2D Magnets. Science. 2021;374:1140–1144. doi: 10.1126/science.abj7478. PubMed DOI

Fali A., Zhang T., Terry J. P., Kahn E., Fujisawa K., Kabius B., Koirala S., Ghafouri Y., Zhou D., Song W., Yang L., Terrones M., Abate Y.. Photodegradation Protection in 2D In-Plane Heterostructures Revealed by Hyperspectral Nanoimaging: The Role of Nanointerface 2D Alloys. ACS Nano. 2021;15:2447–2457. doi: 10.1021/acsnano.0c06148. PubMed DOI

Schuler B., Cochrane K. A., Kastl C., Barnard E. S., Wong E., Borys N. J., Schwartzberg A. M., Ogletree D. F., García de Abajo F. J., Weber-Bargioni A.. Electrically Driven Photon Emission from Individual Atomic Defects in Monolayer WS2 . Sci. Adv. 2020;6:eabb5988. doi: 10.1126/sciadv.abb5988. PubMed DOI PMC

Luo W., Whetten B. G., Kravtsov V., Singh A., Yang Y., Huang D., Cheng X., Jiang T., Belyanin A., Raschke M. B.. Ultrafast Nanoimaging of Electronic Coherence of Monolayer WSe2 . Nano Lett. 2023;23:1767–1773. doi: 10.1021/acs.nanolett.2c04536. PubMed DOI

Yao K., Zhang S., Yanev E., McCreary K., Chuang H., Rosenberger M. R., Darlington T., Krayev A., Jonker B. T., Hone J. C., Basov D. N., Schuck P. J.. Nanoscale Optical Imaging of 2D Semiconductor Stacking Orders by Exciton-Enhanced Second Harmonic Generation. Adv. Opt. Mater. 2022;10:12. doi: 10.1002/adom.202200085. DOI

Dapolito M., Tsuneto M., Zheng W., Wehmeier L., Xu S., Chen X., Sun J., Du Z., Shao Y., Jing R., Zhang S., Bercher A., Dong Y., Halbertal D., Ravindran V., Zhou Z., Petrovic M., Gozar A., Carr G. L., Li Q., Kuzmenko A. B., Fogler M. M., Basov D. N., Du X., Liu M.. Infrared Nano-Imaging of Dirac Magnetoexcitons in Graphene. Nat. Nanotechnol. 2023;18:1409–1415. doi: 10.1038/s41565-023-01488-y. PubMed DOI

Huber M. A., Mooshammer F., Plankl M., Viti L., Sandner F., Kastner L. Z., Frank T., Fabian J., Vitiello M. S., Cocker T. L., Huber R.. Femtosecond Photo-Switching of Interface Polaritons in Black Phosphorus Heterostructures. Nat. Nanotechnol. 2017;12:207–211. doi: 10.1038/nnano.2016.261. PubMed DOI

Dong Y., Xiong L., Phinney I. Y., Sun Z., Jing R., McLeod A. S., Zhang S., Liu S., Ruta F. L., Gao H., Dong Z., Pan R., Edgar J. H., Jarillo-Herrero P., Levitov L. S., Millis A. J., Fogler M. M., Bandurin D. A., Basov D. N.. Fizeau Drag in Graphene Plasmonics. Nature. 2021;594:513–516. doi: 10.1038/s41586-021-03640-x. PubMed DOI

Zhao W., Zhao S., Li H., Wang S., Wang S., Utama M. I. B., Kahn S., Jiang Y., Xiao X., Yoo S. J., Watanabe K., Taniguchi T., Zettl A., Wang F.. Efficient Fizeau Drag from Dirac Electrons in Monolayer Graphene. Nature. 2021;594:517–521. doi: 10.1038/s41586-021-03574-4. PubMed DOI

Hesp N. C. H., Torre I., Barcons-Ruiz D., Herzig Sheinfux H., Watanabe K., Taniguchi T., Krishna, Kumar R., Koppens F. H. L.. Nano-Imaging Photoresponse in a Moiré Unit Cell of Minimally Twisted Bilayer Graphene. Nat. Commun. 2021;12:1640. doi: 10.1038/s41467-021-21862-5. PubMed DOI PMC

Wagner M., Fei Z., McLeod A. S., Rodin A. S., Bao W., Iwinski E. G., Zhao Z., Goldflam M., Liu M., Dominguez G., Thiemens M., Fogler M. M., Castro Neto A. H., Lau C. N., Amarie S., Keilmann F., Basov D. N.. Ultrafast and Nanoscale Plasmonic Phenomena in Exfoliated Graphene Revealed by Infrared Pump-Probe Nanoscopy. Nano Lett. 2014;14:894. doi: 10.1021/nl4042577. PubMed DOI

Mrejen M., Yadgarov L., Levanon A., Suchowski H.. Transient Exciton-Polariton Dynamics in WSe2 by Ultrafast Near-Field Imaging. Sci. Adv. 2019;5:2. doi: 10.1126/sciadv.aat9618. PubMed DOI PMC

Xu S., Li Y., Vitalone R. A., Jing R., Sternbach A. J., Zhang S., Ingham J., Delor M., McIver J. W., Yankowitz M., Queiroz R., Millis A. J., Fogler M. M., Dean C. R., Pasupathy A. N., Hone J., Liu M., Basov D. N.. Electronic Interactions in Dirac Fluids Visualized by Nano-Terahertz Spacetime Interference of Electron-Photon Quasiparticles. Sci. Adv. 2024;10:43. doi: 10.1126/sciadv.ado5553. PubMed DOI PMC

Siday T., Hayes J., Schiegl F., Sandner F., Menden P., Bergbauer V., Zizlsperger M., Nerreter S., Lingl S., Repp J., Wilhelm J., Huber M. A., Gerasimenko Y. A., Huber R.. All-Optical Subcycle Microscopy on Atomic Length Scales. Nature. 2024;629:329–334. doi: 10.1038/s41586-024-07355-7. PubMed DOI

Rizzo D. J., Shabani S., Jessen B. S., Zhang J., McLeod A. S., Rubio-Verdú C., Ruta F. L., Cothrine M., Yan J., Mandrus D. G., Nagler S. E., Rubio A., Hone J. C., Dean C. R., Pasupathy A. N., Basov D. N.. Nanometer-Scale Lateral p−n Junctions in Graphene/α-RuCl3 Heterostructures. Nano Lett. 2022;22:1946–1953. doi: 10.1021/acs.nanolett.1c04579. PubMed DOI PMC

Kim B. S. Y., Sternbach A. J., Choi M. S., Sun Z., Ruta F. L., Shao Y., McLeod A. S., Xiong L., Dong Y., Chung T. S., Rajendran A., Liu S., Nipane A., Chae S. H., Zangiabadi A., Xu X., Millis A. J., Schuck P. J., Dean C. R., Hone J. C., Basov D. N.. Ambipolar Charge-Transfer Graphene Plasmonic Cavities. Nat. Mater. 2023;22:828–843. doi: 10.1038/s41563-023-01520-5. PubMed DOI

Hu H., Chen N., Teng H., Yu R., Xue M., Chen K., Xiao Y., Qu Y., Hu D., Chen J., Sun Z., Li P., García de Abajo F. J., Dai Q.. Gate-Tunable Negative Refraction of Mid-Infrared Polaritons. Science. 2023;379:558–561. doi: 10.1126/science.adf1251. PubMed DOI

Ji Z., Park H., Barber M. E., Hu C., Watanabe K., Taniguchi T., Chu J.-H., Xu X., Shen Z.-X.. Local Probe of Bulk and Edge States in a Fractional Chern Insulator. Nature. 2024;635:578–583. doi: 10.1038/s41586-024-08092-7. PubMed DOI

Xiong L., Li Y., Halbertal D., Sammon M., Sun Z., Liu S., Edgar J. H., Low T., Fogler M. M., Dean C. R., Millis A. J., Basov D. N.. Polaritonic Vortices with a Half-Integer Charge. Nano Lett. 2021;21:9256–9261. doi: 10.1021/acs.nanolett.1c03175. PubMed DOI

Xie Q., Zhang Y., Janzen E., Edgar J. H., Xu X. G.. Atomic-Force-Microscopy-Based Time-Domain Two-Dimensional Infrared Nanospectroscopy. Nat. Nanotechnol. 2024;19:1108–1115. doi: 10.1038/s41565-024-01670-w. PubMed DOI

Yannai M., Haller M., Ruimy R., Gorlach A., Rivera N., Basov D. N., Kaminer I.. Opportunities in Nanoscale Probing of Laser-Driven Phase Transitions. Nat. Phys. 2024;20:1383–1388. doi: 10.1038/s41567-024-02603-z. DOI

Chen C., Chu P., Bobisch C. A., Mills D. L., Ho W.. Viewing the Interior of a Single Molecule: Vibronically Resolved Photon Imaging at Submolecular Resolution. Phys. Rev. Lett. 2010;105:217402. doi: 10.1103/PhysRevLett.105.217402. PubMed DOI

Chen X., Xu S., Shabani S., Zhao Y., Fu M., Millis A. J., Fogler M. M., Pasupathy A. N., Liu M., Basov D. N.. Machine Learning for Optical Scanning Probe Nanoscopy. Adv. Mater. 2023;35:2109171. doi: 10.1002/adma.202109171. PubMed DOI

Fu M., Xu S., Zhang S., Ruta F. L., Pack J., Mayer R. A., Chen X., Moore S. L., Rizzo D. J., Jessen B. S., Cothrine M., Mandrus D. G., Watanabe K., Taniguchi T., Dean C. R., Pasupathy A. N., Bisogni V., Schuck P. J., Millis A. J., Liu M., Basov D. N.. Accelerated Nano-Optical Imaging through Sparse Sampling. Nano Lett. 2024;24:2149–2156. doi: 10.1021/acs.nanolett.3c03733. PubMed DOI

Rizzo D. J., McLeod A. S., Carnahan C., Telford E. J., Dismukes A. H., Wiscons R. A., Dong Y., Nuckolls C., Dean C. R., Pasupathy A. N., Roy X., Xiao D., Basov D. N.. Visualizing Atomically Layered Magnetism in CrSBr. Adv. Mater. 2022;34:2201000. doi: 10.1002/adma.202201000. PubMed DOI

Sunku S. S., Halbertal D., Stauber T., Chen S., McLeod A. S., Rikhter A., Berkowitz M. E., Lo C. F. B., Gonzalez-Acevedo D. E., Hone J. C., Dean C. R., Fogler M. M., Basov D. N.. Hyperbolic Enhancement of Photocurrent Patterns in Minimally Twisted Bilayer Graphene. Nat. Commun. 2021;12:1641. doi: 10.1038/s41467-021-21792-2. PubMed DOI PMC

Jing R., Shao Y., Fei Z., Lo C. F. B., Vitalone R. A., Ruta F. L., Staunton J., Zheng W. J. C., Mcleod A. S., Sun Z., Jiang B. Y., Chen X., Fogler M. M., Millis A. J., Liu M., Cobden D. H., Xu X., Basov D. N.. Terahertz Tesponse of Monolayer and Few-Layer WTe2 at the Nanoscale. Nat. Commun. 2021;12:5594. doi: 10.1038/s41467-021-23933-z. PubMed DOI PMC

Halbertal D., Turkel S., Ciccarino C. J., Hauck J. B., Finney N., Hsieh V., Watanabe K., Taniguchi T., Hone J., Dean C., Narang P., Pasupathy A. N., Kennes D. M., Basov D. N.. Unconventional Non-Local Relaxation Dynamics in a Twisted Trilayer Graphene Moiré Superlattice. Nat. Commun. 2022;13:7587. doi: 10.1038/s41467-022-35213-5. PubMed DOI PMC

Darlington T. P., Carmesin C., Florian M., Yanev E., Ajayi O., Ardelean J., Rhodes D. A., Ghiotto A., Krayev A., Watanabe K., Taniguchi T., Kysar J. W., Pasupathy A. N., Hone J. C., Jahnke F., Borys N. J., Schuck P. J.. Imaging Strain-Localized Excitons in Nanoscale Bubbles of Monolayer WSe2 at Room Temperature. Nat. Nanotechnol. 2020;15:854–860. doi: 10.1038/s41565-020-0730-5. PubMed DOI

Darlington T. P., Krayev A., Venkatesh V., Saxena R., Kysar J. W., Borys N. J., Jariwala D., Schuck P. J.. Facile and Quantitative Estimation of Strain in Nanobubbles with Arbitrary Symmetry in 2D Semiconductors Verified Using Hyperspectral Nano-Optical Imaging. J. Chem. Phys. 2020;153:024702. doi: 10.1063/5.0012817. PubMed DOI

Li P., Dolado I., Alfaro-Mozaz F. J., Casanova F., Hueso L. E., Liu S., Edgar J. H., Nikitin A. Y., Vélez S., Hillenbrand R.. Infrared Hyperbolic Metasurface Based on Nanostructured van der Waals Materials. Science. 2018;359:892–896. doi: 10.1126/science.aaq1704. PubMed DOI

Gadelha A. C., Ohlberg D. A. A., Rabelo C., Neto E. G. S., Vasconcelos T. L., Campos J. L., Lemos J. S., Ornelas V., Miranda D., Nadas R., Santana F. C., Watanabe K., Taniguchi T., van Troeye B., Lamparski M., Meunier V., Nguyen V.-H., Paszko D., Charlier J.-C., Campos L. C., Cançado L. G., Medeiros-Ribeiro G., Jorio A.. Localization of Lattice Dynamics in Low-Angle Twisted Bilayer Graphene. Nature. 2021;590:405–409. doi: 10.1038/s41586-021-03252-5. PubMed DOI

Sousa F. B., Nadas R., Martins R., Barboza A. P. M., Soares J. S., Neves B. R. A., Silvestre I., Jorio A., Malard L. M.. Disentangling Doping and Strain Effects at Defects of Grown MoS2 Monolayers with Nano-Optical Spectroscopy. Nanoscale. 2024;16:12923–12933. doi: 10.1039/D4NR00837E. PubMed DOI

Rodriguez A., Krayev A., Velický M., Frank O., El-Khoury P. Z.. Nano-Optical Visualization of Interlayer Interactions in WSe2/WS2 Heterostructures. J. Phys. Chem. Lett. 2022;13:5854–5859. doi: 10.1021/acs.jpclett.2c01250. PubMed DOI PMC

Lamsaadi H., Beret D., Paradisanos I., Renucci P., Lagarde D., Marie X., Urbaszek B., Gan Z., George A., Watanabe K., Taniguchi T., Turchanin A., Lombez L., Combe N., Paillard V., Poumirol J.-M.. Kapitza-Resistance-like Exciton Dynamics in Atomically Flat MoSe2-WSe2 Lateral Heterojunction. Nat. Commun. 2023;14:5881. doi: 10.1038/s41467-023-41538-6. PubMed DOI PMC

Rodriguez A., Kalbáč M., Frank O.. Strong Localization Effects in the Photoluminescence of Transition Metal Dichalcogenide Heterobilayers. 2D Mater. 2021;8:025028. doi: 10.1088/2053-1583/abe363. DOI

de Campos Ferreira R. C., Sagwal A., Doležal J., Canola S., Merino P., Neuman T., Švec M.. Resonant Tip-Enhanced Raman Spectroscopy of a Single-Molecule Kondo System. ACS Nano. 2024;18:13164–13170. doi: 10.1021/acsnano.4c02105. PubMed DOI PMC

López L. E. P., Rosławska A., Scheurer F., Berciaud S., Schull G.. Tip-Induced Excitonic Luminescence Nanoscopy of an Atomically Resolved van der Waals Heterostructure. Nat. Mater. 2023;22:482–488. doi: 10.1038/s41563-023-01494-4. PubMed DOI

Geng H., Tang J., Wu Y., Yu Y., Guest J. R., Zhang R.. Imaging Valley Excitons in a 2D Semiconductor with Scanning Tunneling Microscope-Induced Luminescence. ACS Nano. 2024;18:8961–8970. doi: 10.1021/acsnano.3c12555. PubMed DOI

Rosławska A., Merino P., Leon C. C., Grewal A., Etzkorn M., Kuhnke K., Kern K.. Gigahertz Frame Rate Imaging of Charge-Injection Dynamics in a Molecular Light Source. Nano Lett. 2021;21:4577–4583. doi: 10.1021/acs.nanolett.1c00328. PubMed DOI PMC

Doležal J., Sagwal A., de Campos Ferreira R. C., Švec M.. Single-Molecule Time-Resolved Spectroscopy in a Tunable STM Nanocavity. Nano Lett. 2024;24:1629–1634. doi: 10.1021/acs.nanolett.3c04314. PubMed DOI PMC

Luo Y., Martin-Jimenez A., Gutzler R., Garg M., Kern K.. Ultrashort Pulse Excited Tip-Enhanced Raman Spectroscopy in Molecules. Nano Lett. 2022;22:5100–5106. doi: 10.1021/acs.nanolett.2c00485. PubMed DOI PMC

Cocker T. L., Jelic V., Gupta M., Molesky S. J., Burgess J. A. J., Reyes G. D. L., Titova L. V., Tsui Y. Y., Freeman M. R., Hegmann F. A.. An Ultrafast Terahertz Scanning Tunnelling Microscope. Nat. Photonics. 2013;7:620–625. doi: 10.1038/nphoton.2013.151. DOI

Kimura K., Morinaga Y., Imada H., Katayama I., Asakawa K., Yoshioka K., Kim Y., Takeda J.. Terahertz-Field-Driven Scanning Tunneling Luminescence Spectroscopy. ACS Photonics. 2021;8:982–987. doi: 10.1021/acsphotonics.0c01755. DOI

Arashida Y., Mogi H., Ishikawa M., Igarashi I., Hatanaka A., Umeda N., Peng J., Yoshida S., Takeuchi O., Shigekawa H.. Subcycle Mid-Infrared Electric-Field-Driven Scanning Tunneling Microscopy with a Time Resolution Higher Than 30 fs. ACS Photonics. 2022;9:3156–3164. doi: 10.1021/acsphotonics.2c00995. DOI

Garg M., Martin-Jimenez A., Pisarra M., Luo Y., Martín F., Kern K.. Real-Space Subfemtosecond Imaging of Quantum Electronic Coherences in Molecules. Nat. Photonics. 2022;16:196–202. doi: 10.1038/s41566-021-00929-1. DOI

Rosławska A., Leon C. C., Grewal A., Merino P., Kuhnke K., Kern K.. Atomic-Scale Dynamics Probed by Photon Correlations. ACS Nano. 2020;14:6366–6375. doi: 10.1021/acsnano.0c03704. PubMed DOI PMC

Kaiser, K. ; Rosławska, A. ; Romeo, M. ; Scheurer, F. ; Neuman, T. ; Schull, G. . Electrically Driven Cascaded Photon-Emission in a Single Molecule. arXiv 2024, 2402.17536. 10.48550/arXiv.2402.17536 DOI

Abdo M., Sheng S., Rolf-Pissarczyk S., Arnhold L., Burgess J. A. J., Isobe M., Malavolti L., Loth S.. Variable Repetition Rate THz Source for Ultrafast Scanning Tunneling Microscopy. ACS Photonics. 2021;8:702–708. doi: 10.1021/acsphotonics.0c01652. PubMed DOI PMC

Li H., Xiang Z., Naik M. H., Kim W., Li Z., Sailus R., Banerjee R., Taniguchi T., Watanabe K., Tongay S., Zettl A., da Jornada F. H., Louie S. G., Crommie M. F., Wang F.. Imaging Moiré Excited States with Photocurrent Tunnelling Microscopy. Nat. Mater. 2024;23:633–638. doi: 10.1038/s41563-023-01753-4. PubMed DOI

Xu S.-Y., Ma Q., Gao Y., Kogar A., Zong A., Mier Valdivia A. M., Dinh T. H., Huang S.-M., Singh B., Hsu C.-H., Chang T.-R., Ruff J. P. C., Watanabe K., Taniguchi T., Lin H., Karapetrov G., Xiao D., Jarillo-Herrero P., Gedik N.. Spontaneous Gyrotropic Electronic Order in a Transition-Metal Dichalcogenide. Nature. 2020;578:545–549. doi: 10.1038/s41586-020-2011-8. PubMed DOI

Cui J., Boström E. V., Ozerov M., Wu F., Jiang Q., Chu J.-H., Li C., Liu F., Xu X., Rubio A., Zhang Q.. Chirality Selective Magnon-Phonon Hybridization and Magnon-Induced Chiral Phonons in a Layered Zigzag Antiferromagnet. Nat. Commun. 2023;14:3396. doi: 10.1038/s41467-023-39123-y. PubMed DOI PMC

Kaiser K., Jiang S., Romeo M., Scheurer F., Schull G., Rosławska A.. Gating Single-Molecule Fluorescence with Electrons. Phys. Rev. Lett. 2024;133:156902. doi: 10.1103/PhysRevLett.133.156902. PubMed DOI

Luo Y., Chen G., Zhang Y., Zhang L., Yu Y., Kong F., Tian X., Zhang Y., Shan C., Luo Y., Yang J., Sandoghdar V., Dong Z., Hou J. G.. Electrically Driven Single-Photon Superradiance from Molecular Chains in a Plasmonic Nanocavity. Phys. Rev. Lett. 2019;122:233901. doi: 10.1103/PhysRevLett.122.233901. PubMed DOI

InCAEM - Planes Complementarios on Advanced Materials. ALBA (Indico). https://indico.cells.es/event/1320/page/272-the-incaem-project (accessed April 8, 2024).

Mateos D., Jover O., Varea M., Lauwaet K., Granados D., Miranda R., Fernandez-Dominguez A. I., Martin-Jimenez A., Otero R.. Directional Picoantenna Behavior of Tunnel Junctions Formed by an Atomic-Scale Surface Defect. Sci. Adv. 2024;10:eadn2295. doi: 10.1126/sciadv.adn2295. PubMed DOI PMC

Böckmann H., Liu S., Müller M., Hammud A., Wolf M., Kumagai T.. Near-Field Manipulation in a Scanning Tunneling Microscope Junction with Plasmonic Fabry-Pérot Tips. Nano Lett. 2019;19:3597–3602. doi: 10.1021/acs.nanolett.9b00558. PubMed DOI PMC

Zhang Y., Meng Q.-S., Zhang L., Luo Y., Yu Y.-J., Yang B., Zhang Y., Esteban R., Aizpurua J., Luo Y., Yang J.-L., Dong Z.-C., Hou J. G.. Sub-Nanometre Control of the Coherent Interaction between a Single Molecule and a Plasmonic Nanocavity. Nat. Commun. 2017;8:15225. doi: 10.1038/ncomms15225. PubMed DOI PMC

Merino P., Große C., Rosławska A., Kuhnke K., Kern K.. Exciton Dynamics of C60-Based Single-Photon Emitters Explored by Hanbury Brown−Twiss Scanning Tunnelling Microscopy. Nat. Commun. 2015;6:8461. doi: 10.1038/ncomms9461. PubMed DOI PMC

Peeters W., Toyouchi S., Fujita Y., Wolf M., Fortuni B., Fron E., Inose T., Hofkens J., Endo T., Miyata Y., Uji-i H.. Remote Excitation of Tip-Enhanced Photoluminescence with a Parallel AgNW Coupler. ACS Omega. 2023;8:38386–38393. doi: 10.1021/acsomega.3c04952. PubMed DOI PMC

Lee D. Y., Park C., Choi J., Koo Y., Kang M., Jeong M. S., Raschke M. B., Park K.-D.. Adaptive Tip-Enhanced Nano-Spectroscopy. Nat. Commun. 2021;12:3465. doi: 10.1038/s41467-021-23818-1. PubMed DOI PMC

Nam A. J., Teren A., Lusby T. A., Melmed A. J.. Benign Making of Sharp Tips for STM and FIM: Pt, Ir, Au, Pd, and Rh. J. Vac. Sci. Technol. B. 1995;13:1556–1559. doi: 10.1116/1.588186. DOI

Neto, A. R. ; Rabelo, C. ; Cancado, L. G. ; Engel, M. ; Steiner, M. ; Jorio, A. . Protocol and Reference Material for Measuring the Nanoantenna Enhancement Factor in Tip-Enhanced Raman Spectroscopy. In 2019 4th International Symposium on Instrumentation Systems, Circuits and Transducers (INSCIT); IEEE: Sao Paulo, Brazil, 2019; pp 1−6.

Xie S.. et al. Coherent, Atomically Thin Transition-Metal Dichalcogenide Superlattices with Engineered Strain. Science. 2018;359:1131–1136. doi: 10.1126/science.aao5360. PubMed DOI

Lin Y.-C.. et al. Structural and Chemical Dynamics of Pyridinic-Nitrogen Defects in Graphene. Nano Lett. 2015;15:7408–7413. doi: 10.1021/acs.nanolett.5b02831. PubMed DOI

Lovejoy T.. et al. Single Stom Identification by Energy Dispersive X-Ray Spectroscopy. Appl. Phys. Lett. 2012;100:154101. doi: 10.1063/1.3701598. DOI

Hage F. S.. et al. Single-Atom Vibrational Spectroscopy in the Scanning Transmission Electron Microscope. Science. 2020;367:1124–1127. doi: 10.1126/science.aba1136. PubMed DOI

Bonnet N.. et al. Nanoscale Modification of WS2 Trion Emission by Its Local Electromagnetic Environment. Nano Lett. 2021;21:10178–10185. doi: 10.1021/acs.nanolett.1c02600. PubMed DOI

Woo S. Y., Tizei L. H. G.. Nano-Optics of Transition Metal Dichalcogenides and Their van der Waals Heterostructures with Electron Spectroscopies. 2D Mater. 2025;12:012001. doi: 10.1088/2053-1583/ad97c8. DOI

Meyer J. C.. et al. The Structure of Suspended Graphene Sheets. Nature. 2007;446:60–63. doi: 10.1038/nature05545. PubMed DOI

Thomsen J. D.. et al. Suppression of Intrinsic Roughness in Encapsulated Graphene. Phys. Rev. B. 2017;96:014101. doi: 10.1103/PhysRevB.96.014101. DOI

Rooney A. P.. et al. Observing Imperfection in Atomic Interfaces for van der Waals Heterostructures. Nano Lett. 2017;17:5222–5228. doi: 10.1021/acs.nanolett.7b01248. PubMed DOI

Suenaga K.. et al. Core-Level Spectroscopy of Point Defects in Single Layer h-BN. Phys. Rev. Lett. 2012;108:075501. doi: 10.1103/PhysRevLett.108.075501. PubMed DOI

Ramasse Q.. et al. Probing the Bonding and Electronic Structure of Single Atom Dopants in Graphene with Electron Energy Loss Spectroscopy. Nano Lett. 2013;13:4989–4995. doi: 10.1021/nl304187e. PubMed DOI

Zachman M. J.. et al. 4D-STEM: Interferometric 4D-STEM for Lattice Distortion and Interlayer Spacing Measurements of Bilayer and Trilayer 2D Materials. Small. 2021;17:2100388. doi: 10.1002/smll.202170142. PubMed DOI

Linhart L., Paur M., Smejkal V., Burgdörfer J., Mueller T., Libisch F.. Localized Intervalley Defect Excitons as Single-Photon Emitters in WSe2 . Phys. Rev. Lett. 2019;123:146401. doi: 10.1103/PhysRevLett.123.146401. PubMed DOI

Zheng S.. et al. Giant Enhancement of Cathodoluminescence of Monolayer Transitional Metal Dichalcogenides Semiconductors. Nano Lett. 2017;17:6475–6480. doi: 10.1021/acs.nanolett.7b03585. PubMed DOI

Krivanek O.. et al. Vibrational Spectroscopy in the Electron Microscope. Nature. 2014;514:209–212. doi: 10.1038/nature13870. PubMed DOI

Bourrellier R., Meuret S., Tararan A., Stéphan O., Kociak M., Tizei L. H. G., Zobelli A.. Bright UV Single Photon Emission at Point Defects in h-BN. Nano Lett. 2016;16:4317–4321. doi: 10.1021/acs.nanolett.6b01368. PubMed DOI

Susarla S.. et al. Hyperspectral Imaging of Exciton Confinement within a Moiré Unit Cell with a Subnanometer Electron Probe. Science. 2022;378:1235–1239. doi: 10.1126/science.add9294. PubMed DOI

Merano M.. et al. Probing Carrier Dynamics in Nanostructures by Picosecond Cathodoluminescence. Nature. 2005;438:479–482. doi: 10.1038/nature04298. PubMed DOI

Mecklenburg M.. et al. Nanoscale Temperature Mapping in Operating Microelectronic Devices. Science. 2015;347:629–632. doi: 10.1126/science.aaa2433. PubMed DOI

Tizei L. H. G.. et al. Electron Energy Loss Spectroscopy of Excitons in Two-Dimensional-Semiconductors as a Function of Temperature. Appl. Phys. Lett. 2016;108:163107. doi: 10.1063/1.4947058. DOI

Castioni F.. et al. Nanosecond Nanothermometry in an Electron Microscope. Nano Lett. 2025;25:1601–1608. doi: 10.1021/acs.nanolett.4c05692. PubMed DOI

Feist A.. et al. Cavity-Mediated Electron-Photon Pairs. Science. 2022;377:777–780. doi: 10.1126/science.abo5037. PubMed DOI

Varkentina N.. et al. Cathodoluminescence Excitation Spectroscopy: Nanoscale Imaging of Excitation Pathways. Sci. Adv. 2022;8:abq4947. doi: 10.1126/sciadv.abq4947. PubMed DOI PMC

Barwick B., Flannigan D. J., Zewail A. H.. Photon-Induced Near-Field Electron Microscopy. Nature. 2009;462:902–906. doi: 10.1038/nature08662. PubMed DOI

Feist A.. et al. Nanoscale Diffractive Probing of Strain Dynamics in Ultrafast Transmission Electron Microscopy. Struct. Dyn. 2018;5:014302. doi: 10.1063/1.5009822. PubMed DOI PMC

Müller, N. ; et al. Spectrally Resolved Free Electron-Light Coupling Strength in a Transition Metal Dichalcogenide. arXiv 2024, 2405.12017. 10.48550/arXiv.2405.12017 DOI

García de Abajo F. J., Kociak M.. Electron Energy-Gain Spectroscopy. New J. Phys. 2008;10:073035. doi: 10.1088/1367-2630/10/7/073035. PubMed DOI

Lourenço-Martins H.. et al. Optical Polarization Analogue in Free Electron Beams. Nat. Phys. 2021;17:598–603. doi: 10.1038/s41567-021-01163-w. DOI

Garrigou, S. ; Lourenço-Martins, H. . Atomic-Like Selection Rules in Free Electron Scattering. arXiv 2024, 2411.11754. 10.48550/arXiv.2411.11754 PubMed DOI

Auad Y.. et al. Event-Based Hyperspectral EELS: Towards Nanosecond Temporal Resolution. Ultramicroscopy. 2022;239:113539. doi: 10.1016/j.ultramic.2022.113539. PubMed DOI

Velazco A.. et al. Reducing Electron Beam Damage through Alternative STEM Scanning Strategies, Part I: Experimental Findings. Ultramicroscopy. 2022;232:113398. doi: 10.1016/j.ultramic.2021.113398. PubMed DOI

Peters J. J. P.. et al. Event-Responsive Scanning Transmission Electron Microscopy. Science. 2024;385:549–553. doi: 10.1126/science.ado8579. PubMed DOI

Rosi P.. et al. Increasing the Resolution of Transmission Electron Microscopy by Computational Ghost Imaging. Phys. Rev. Lett. 2024;133:123801. doi: 10.1103/PhysRevLett.133.123801. PubMed DOI

Liu X.. et al. Strong Light−Matter Coupling in Two-Dimensional Atomic Crystals. Nat. Photonics. 2015;9:30–34. doi: 10.1038/nphoton.2014.304. DOI

Schneider C.. et al. Two-Dimensional Semiconductors in the Regime of Strong Light-Matter Coupling. Nat. Commun. 2018;9:2695. doi: 10.1038/s41467-018-04866-6. PubMed DOI PMC

Dufferwiel S.. et al. Exciton−Polaritons in van der Waals Heterostructures Embedded in Tunable Microcavities. Nat. Commun. 2015;6:8579. doi: 10.1038/ncomms9579. PubMed DOI PMC

Liu, W. ; Lee, B. ; Naylor, C. H. ; Ee, H.-S. ; Park, J. ; Johnson, A. T. C. ; Agarwal, R. . Strong Exciton−Plasmon Coupling in MoS PubMed DOI

Zhang L.. et al. Photonic-Crystal Exciton-Polaritons in Monolayer Semiconductors. Nat. Commun. 2018;9:713. doi: 10.1038/s41467-018-03188-x. PubMed DOI PMC

Tabataba-Vakili F., Krelle L., Husel L., Nguyen H. P. G., Li Z., Bilgin I., Watanabe K., Taniguchi T., Högele A.. Metasurface of Strongly Coupled Excitons and Nanoplasmonic Arrays. Nano Lett. 2024;24:10090–10097. doi: 10.1021/acs.nanolett.4c02043. PubMed DOI PMC

Chen Y., Miao S., Wang T., Zhong D., Saxena A., Chow C., Whitehead J., Gerace D., Xu X., Shi S. F., Majumdar A.. Metasurface Integrated Monolayer Exciton Polariton. Nano Lett. 2020;20:5292–5300. doi: 10.1021/acs.nanolett.0c01624. PubMed DOI

Canales A.. et al. Abundance of Cavity-Free Polaritonic States in Resonant Materials and Nanostructures. J. Chem. Phys. 2021;154:024701. doi: 10.1063/5.0033352. PubMed DOI

Lundt N.. Valley Polarized Relaxation and Upconversion Luminescence from Tamm-Plasmon Trion−Polaritons with a MoSe2 Monolayer. 2D Mater. 2017;4:025096. doi: 10.1088/2053-1583/aa6ef2. DOI

Sidler M., Back P., Cotlet O., Srivastava A., Fink T., Kroner M., Demler E., Imamoglu A.. Fermi Polaron-Polaritons in Charge-Tunable Atomically Thin Semiconductors. Nat. Phys. 2017;13:255–261. doi: 10.1038/nphys3949. DOI

Cotleţ O.. Transport of Neutral Optical Excitations Using Electric Fields. Phys. Rev. X. 2019;9:041019. doi: 10.1103/PhysRevX.9.041019. DOI

Zhang L., Wu F., Hou S., Zhang Z., Chou Y.-H., Watanabe K., Taniguchi T., Forrest S. R., Deng H.. Van der Waals Heterostructure Polaritons with moiré-Induced Nonlinearity. Nature. 2021;591:61–65. doi: 10.1038/s41586-021-03228-5. PubMed DOI

Han, B. ; et al. Infrared Magneto-Polaritons in MoTe DOI

Leisgang N., Shree S., Paradisanos I., Sponfeldner L., Robert C., Lagarde D., Balocchi A., Watanabe K., Taniguchi T., Marie X., Warburton R., Gerber I., Urbaszek B.. Giant Stark Splitting of an Exciton in Bilayer MoS2 . Nat. Nanotechnol. 2020;15:901–907. doi: 10.1038/s41565-020-0750-1. PubMed DOI

Lorchat E.. et al. Excitons in Bilayer MoS2 Displaying a Colossal Electric Field Splitting and Tunable Magnetic Response. Phys. Rev. Lett. 2021;126(3):037401. doi: 10.1103/PhysRevLett.126.037401. PubMed DOI

Datta B.. et al. Highly Nonlinear Dipolar Exciton-Polaritons in Bilayer MoS2 . Nat. Commun. 2022;13:6341. doi: 10.1038/s41467-022-33940-3. PubMed DOI PMC

Kang S.. et al. Coherent Many-Body Exciton in van der Waals Antiferromagnet NiPS3 . Nature. 2020;583:785–789. doi: 10.1038/s41586-020-2520-5. PubMed DOI

Dirnberger F.. et al. Spin-Correlated Exciton−Polaritons in a van der Waals Magnet. Nat. Nanotechnol. 2022;17:1060–1064. doi: 10.1038/s41565-022-01204-2. PubMed DOI

Telford E. J.. et al. Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the van der Waals Semiconductor CrSBr. Adv. Mater. 2020;32:2003240. doi: 10.1002/adma.202003240. PubMed DOI

Wilson N. P.. et al. Interlayer Electronic Coupling on Demand in a 2D Magnetic Semiconductor. Nat. Mater. 2021;20:1657–1662. doi: 10.1038/s41563-021-01070-8. PubMed DOI

Dirnberger F., Quan J., Bushati R., Diederich G. M., Florian M., Klein J., Mosina K., Sofer Z., Xu X., Kamra A., García-Vidal F. J., Alù A., Menon V. M.. Magneto-Optics in a van der Waals Magnet Tuned by Self-Hybridized Polaritons. Nature. 2023;620:533–537. doi: 10.1038/s41586-023-06275-2. PubMed DOI

Bae Y. J., Wang J., Scheie A., Xu J., Chica D. G., Diederich G. M., Cenker J., Ziebel M. E., Bai Y., Ren H., Dean C. R., Delor M., Xu X., Roy X., Kent A. D., Zhu X.. Exciton-Coupled Coherent Magnons in a 2D Semiconductor. Nature. 2022;609:282–286. doi: 10.1038/s41586-022-05024-1. PubMed DOI

Luo Y.. et al. Electrically Switchable Anisotropic Polariton Propagation in a Ferroelectric van der Waals Semiconductor. Nat. Nanotechnol. 2023;18:350–356. doi: 10.1038/s41565-022-01312-z. PubMed DOI

Deb S.. et al. Excitonic Signatures of Ferroelectric Order in Parallel-Stacked MoS2 . Nat. Commun. 2024;15:7595. doi: 10.1038/s41467-024-52011-3. PubMed DOI PMC

Syperek M.. et al. Observation of Room Temperature Excitons in an Atomically Thin Topological Insulator. Nat. Commun. 2022;13:6313. doi: 10.1038/s41467-022-33822-8. PubMed DOI PMC

Kyriienko O., Krizhanovskii D. N., Shelykh I. A.. Nonlinear Quantum Optics with Trion Polaritons in 2D Monolayers: Conventional and Unconventional Photon Blockade. Phys. Rev. Lett. 2020;125:197402. doi: 10.1103/PhysRevLett.125.197402. PubMed DOI

Gu J.. et al. Enhanced Nonlinear Interaction of Polaritons Via Excitonic Rydberg States in Monolayer WSe2 . Nat. Commun. 2021;12:2269. doi: 10.1038/s41467-021-22537-x. PubMed DOI PMC

Emmanuele R. P. A.. et al. Highly Nonlinear Trion-Polaritons in a Monolayer Semiconductor. Nat. Commun. 2020;11:3589. doi: 10.1038/s41467-020-17340-z. PubMed DOI PMC

Kavokin A.. et al. Polariton Condensates for Classical and Quantum Computing. Nat. Rev. Phys. 2022;4:435–451. doi: 10.1038/s42254-022-00447-1. DOI

Anton-Solanas C.. et al. Bosonic Condensation of Exciton−Polaritons in an Atomically Thin Crystal. Nat. Mater. 2021;20:1233–1239. doi: 10.1038/s41563-021-01000-8. PubMed DOI

JZhao J., Su R., Fieramosca A., Zhao W., Du Q., Liu X., Diederichs C., Sanvitto D., Liew T. C., Xiong Q.. Ultralow Threshold Polariton Condensate in a Monolayer Semiconductor Microcavity at Room Temperature. Nano Lett. 2021;21:3331–3339. doi: 10.1021/acs.nanolett.1c01162. PubMed DOI

Wurdack M., Estrecho E., Todd S., Schneider C., Truscott A., Ostrovskaya E.. Enhancing Ground-State Population and Macroscopic Coherence of Room-Temperature Polaritons through Engineered Confinement. Phys. Rev. Lett. 2022;129:147402. doi: 10.1103/PhysRevLett.129.147402. PubMed DOI

Dufferwiel S.. et al. Valley-Addressable Polaritons in Atomically Thin Semiconductors. Nat. Photonics. 2017;11:497–501. doi: 10.1038/nphoton.2017.125. DOI

Lundt N.. et al. Optical Valley Hall Effect for Highly Valley-Coherent Exciton-Polaritons in an Atomically Thin Semiconductor. Nat. Nanotechnol. 2019;14:770–775. doi: 10.1038/s41565-019-0492-0. PubMed DOI

Liu W.. et al. Generation of Helical Topological Exciton-Polaritons. Science. 2020;370:600–604. doi: 10.1126/science.abc4975. PubMed DOI

Li Q.. et al. Magnetic exciton-polariton with strongly coupled atomic and photonic anisotropies. Phys. Rev. Lett. 2024;133:266901. doi: 10.1103/PhysRevLett.133.266901. PubMed DOI

Li Q.. et al. Macroscopic Transition Metal Dichalcogenides Monolayers with Uniformly High Optical Quality. Nat. Commun. 2023;14:1837. doi: 10.1038/s41467-023-37500-1. PubMed DOI PMC

Cotleţ O.. et al. Superconductivity and Other Collective Phenomena in a Hybrid Bose-Fermi Mixture Formed by a Polariton Condensate and an Electron System in Two Dimensions. Phys. Rev. B. 2016;93:054510. doi: 10.1103/PhysRevB.93.054510. DOI

Hassan K.. et al. Functional Inks and Extrusion-Based 3D Printing of 2D Materials: A Review of Current Research and Applications. Nanoscale. 2020;12:19007–19042. doi: 10.1039/D0NR04933F. PubMed DOI

Wang G., Chernikov A., Glazov M. M., Heinz T. F., Marie X., Amand T., Urbaszek B.. Colloquium: Excitons in Atomically Thin Transition Metal Dichalcogenides. Rev. Mod. Phys. 2018;90:021001. doi: 10.1103/RevModPhys.90.021001. DOI

Mak K., He K., Lee C., Lee G., Hone J., Heinz T., Shan J.. Tightly Bound Trions in Monolayer MoS2 . Nat. Mater. 2013;12:207–211. doi: 10.1038/nmat3505. PubMed DOI

Berkelbach T., Hybertsen M., Reichman D.. Theory of Neutral and Charged Excitons in Monolayer Transition Metal Dichalcogenides. Phys. Rev. B. 2013;88:045318. doi: 10.1103/PhysRevB.88.045318. DOI

Glazov M.. Optical Properties of Charged Excitons in Two-Dimensional Semiconductors. J. Chem. Phys. 2020;153:034703. doi: 10.1063/5.0012475. PubMed DOI

Deilmann T., Rohlfing M., Thygesen K.. Optical Excitations in 2D Semiconductors. Electronic Struct. 2023;5:033002. doi: 10.1088/2516-1075/ace86c. DOI

Christiansen D., Selig M., Berghäuser G., Schmidt R., Niehues I., Schneider R., Arora A., de Vasconcellos S., Bratschitsch R., Malic E., Knorr A.. Phonon Sidebands in Monolayer Transition Metal Dichalcogenides. Phys. Rev. Lett. 2017;119:187402. doi: 10.1103/PhysRevLett.119.187402. PubMed DOI

Splendiani A., Sun L., Zhang Y., Li T., Kim J., Chim C., Galli G., Wang F.. Emerging Photoluminescence in Monolayer MoS2 . Nano Lett. 2010;10:1271–1275. doi: 10.1021/nl903868w. PubMed DOI

Mak K., Lee C., Hone J., Shan J., Heinz T.. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010;105:136805. doi: 10.1103/PhysRevLett.105.136805. PubMed DOI

Rytova N. S.. Screened Potential of a Point Charge in a Thin Film. Proc. MSU Phys. Astron. 1967;3:30.

Trolle M., Pedersen T., Véniard V.. Model Dielectric Function for 2D Semiconductors Including Substrate Screening. Sci. Rep. 2017;7:39844. doi: 10.1038/srep39844. PubMed DOI PMC

Drüppel M., Deilmann T., Krüger P., Rohlfing M.. Diversity of Trion States and Substrate Effects in the Optical Properties of an MoS2 Monolayer. Nat. Commun. 2017;8:2117. doi: 10.1038/s41467-017-02286-6. PubMed DOI PMC

Riis-Jensen A., Gjerding M., Russo S., Thygesen K.. Anomalous Exciton Rydberg Series in Two-Dimensional Semiconductors on High-κ Dielectric Substrates. Phys. Rev. B. 2020;102:201402. doi: 10.1103/PhysRevB.102.201402. DOI

Xu X., Yao W., Xiao D., Heinz T.. Spin and Pseudospins in Layered Transition Metal Dichalcogenides. Nat. Phys. 2014;10:343–350. doi: 10.1038/nphys2942. DOI

Goryca M., Li J., Stier A., Taniguchi T., Watanabe K., Courtade E., Shree S., Robert C., Urbaszek B., Marie X., Crooker S.. Revealing Exciton Masses and Dielectric Properties of Monolayer Semiconductors with High Magnetic Fields. Nat. Commun. 2019;10:4172. doi: 10.1038/s41467-019-12180-y. PubMed DOI PMC

Echeverry J., Urbaszek B., Amand T., Marie X., Gerber I.. Splitting between Bright and Dark Dxcitons in Transition Metal Dichalcogenide Monolayers. Phys. Rev. B. 2016;93:121107. doi: 10.1103/PhysRevB.93.121107. DOI

Deilmann T., Thygesen K.. Dark Excitations in Monolayer Transition Metal Dichalcogenides. Phys. Rev. B. 2017;96:201113. doi: 10.1103/PhysRevB.96.201113. DOI

Barré E., Karni O., Liu E., O’Beirne A., Chen X., Ribeiro H., Yu L., Kim B., Watanabe K., Taniguchi T., Barmak K., Lui C., Refaely-Abramson S., da Jornada F., Heinz T.. Optical Absorption of Interlayer Excitons in Transition-Metal Dichalcogenide Heterostructures. Science. 2022;376:406–410. doi: 10.1126/science.abm8511. PubMed DOI

Wietek E., Florian M., Göser J., Taniguchi T., Watanabe K., Högele A., Glazov M., Steinhoff A., Chernikov A.. Nonlinear and Negative Effective Diffusivity of Interlayer Excitons in Moiré-Free Heterobilayers. Phys. Rev. Lett. 2024;132:016202. doi: 10.1103/PhysRevLett.132.016202. PubMed DOI

Peimyoo N., Deilmann T., Withers F., Escolar J., Nutting D., Taniguchi T., Watanabe K., Taghizadeh A., Craciun M., Thygesen K., Russo S.. Electrical Tuning of Optically Active Interlayer Excitons in Bilayer MoS2 . Nat. Nanotechnol. 2021;16:888–893. doi: 10.1038/s41565-021-00916-1. PubMed DOI

Jauregui L. A., Joe A. Y., Pistunova K., Wild D. S., High A. A., Zhou Y., Scuri G., de Greve K., Sushko A., Yu C. H., Taniguchi T., Watanabe K., Needleman D. J., Lukin M. D., Park H., Kim P.. Electrical Control of Interlayer Exciton Dynamics in Atomically Thin Heterostructures. Science. 2019;366:870–875. doi: 10.1126/science.aaw4194. PubMed DOI

Calman E., Fowler-Gerace L., Choksy D., Butov L., Nikonov D., Young I., Hu S., Mishchenko A., Geim A.. Indirect Excitons and Trions in MoSe2/WSe2 van der Waals Heterostructures. Nano Lett. 2020;20:1869–1875. doi: 10.1021/acs.nanolett.9b05086. PubMed DOI

Deilmann T., Sommer Thygesen K.. Quadrupolar and Dipolar Excitons in Symmetric Trilayer Heterostructures: Insights from First Principles Theory. 2D Mater. 2024;11:035032. doi: 10.1088/2053-1583/ad5739. DOI

Zhao S., Li Z., Huang X., Rupp A., Göser J., Vovk I., Kruchinin S., Watanabe K., Taniguchi T., Bilgin I., Baimuratov A., Högele A.. Excitons in Mesoscopically Reconstructed Moiré Heterostructures. Nat. Nanotechnol. 2023;18:572–579. doi: 10.1038/s41565-023-01356-9. PubMed DOI PMC

Liu E., Barré E., van Baren J., Wilson M., Taniguchi T., Watanabe K., Cui Y., Gabor N., Heinz T., Chang Y., Lui C.. Signatures of Moiré Trions in WSe2/MoSe2 Heterobilayers. Nature. 2021;594:46–50. doi: 10.1038/s41586-021-03541-z. PubMed DOI

Wu F., Lovorn T., MacDonald A.. Topological Exciton Bands in Moiré Heterojunctions. Phys. Rev. Lett. 2017;118:147401. doi: 10.1103/PhysRevLett.118.147401. PubMed DOI

Smoleński T., Dolgirev P. E., Kuhlenkamp C., Popert A., Shimazaki Y., Back P., Lu X., Kroner M., Watanabe K., Taniguchi T., Esterlis I., Demler E., Imamoǧlu A.. Signatures of Wigner Crystal of Electrons in a Monolayer Semiconductor. Nature. 2021;595:53–57. doi: 10.1038/s41586-021-03590-4. PubMed DOI

Xu Y., Liu S., Rhodes D. A., Watanabe K., Taniguchi T., Hone J., Elser V., Mak K. F., Shan J.. Correlated Insulating States at Fractional Fillings of Moiré Superlattices. Nature. 2020;587:214–218. doi: 10.1038/s41586-020-2868-6. PubMed DOI

Xie T., Xu S., Dong Z., Cui Z., Ou Y., Erdi M., Watanabe K., Taniguchi T., Tongay S., Levitov L., Jin C.. Long-Lived Isospin Excitations in Magic-Angle Twisted Bilayer Graphene. Nature. 2024;633:77–82. doi: 10.1038/s41586-024-07880-5. PubMed DOI

Chen-Esterlit Z., Lifshitz E., Cohen E., Pfeiffer L.. Microwave Modulation of Circularly Polarized Exciton Photonluminescence in GaAs/AlAs Multiple Quantum Wells. Phys. Rev. B. 1996;53:10921–10927. doi: 10.1103/PhysRevB.53.10921. PubMed DOI

Rice W., Kono J., Zybell S., Winnerl S., Bhattacharyya J., Schneider H., Helm M., Ewers B., Chernikov A., Koch M., Chatterjee S., Khitrova G., Gibbs H., Schneebeli L., Breddermann B., Kira M., Koch S.. Observation of Forbidden Exciton Transitions Mediated by Coulomb Interactions in Photoexcited Semiconductor Quantum Wells. Phys. Rev. Lett. 2013;110:137404. doi: 10.1103/PhysRevLett.110.137404. PubMed DOI

Venanzi T., Cuccu M., Perea-Causin R., Sun X., Brem S., Erkensten D., Taniguchi T., Watanabe K., Malic E., Helm M., Winnerl S., Chernikov A.. Ultrafast Switching of Trions in 2D Materials by Terahertz Photons. Nat. Photonics. 2024;18:1344–1349. doi: 10.1038/s41566-024-01512-0. DOI

Zhang T., Fujisawa K., Zhang F., Liu M., Lucking M. C., Gontijo R. N., Lei Y., Liu H., Crust K., Granzier-Nakajima T., Terrones H., Elías A. L., Terrones M.. Universal In Situ Substitutional Doping of Transition Metal Dichalcogenides by Liquid-Phase Precursor-Assisted Synthesis. ACS Nano. 2020;14:4326–4335. doi: 10.1021/acsnano.9b09857. PubMed DOI

Lv R., Robinson J. A., Schaak R. E., Sun D., Sun Y., Mallouk T. E., Terrones M.. Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets. Acc. Chem. Res. 2015;48:56–64. doi: 10.1021/ar5002846. PubMed DOI

Coleman J. N., Lotya M., O’Neill A., Bergin S. D., King P. J., Khan U., Young K., Gaucher A., De S., Smith R. J., Shvets I. V., Arora S. K., Stanton G., Kim H.-Y., Lee K., Kim G. T., Duesberg G. S., Hallam T., Boland J. J., Wang J. J., Donegan J. F., Grunlan J. C., Moriarty G., Shmeliov A., Nicholls R. J., Perkins J. M., Grieveson E. M., Theuwissen K., McComb D. W., Nellist P. D., Nicolosi V.. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science. 2011;331:568–571. doi: 10.1126/science.1194975. PubMed DOI

Kang J., Sangwan V. K., Wood J. D., Hersam M. C.. Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials. Acc. Chem. Res. 2017;50:943–951. doi: 10.1021/acs.accounts.6b00643. PubMed DOI

Rajapakse M., Karki B., Abu U. O., Pishgar S., Musa M. R. K., Riyadh S. M. S., Yu M., Sumanasekera G., Jasinski J. B.. Intercalation as a Versatile Tool for Fabrication, Property Tuning, and Phase Transitions in 2D Materials. npj 2D Mater. Appl. 2021;5:30. doi: 10.1038/s41699-021-00211-6. DOI

Zhao M., Casiraghi C., Parvez K.. Electrochemical Exfoliation of 2D Materials Beyond Graphene. Chem. Soc. Rev. 2024;53:3036–3064. doi: 10.1039/D3CS00815K. PubMed DOI

Dresselhaus M. S., Dresselhaus G.. Intercalation Compounds of Graphite. Adv. Phys. 2002;51:1–186. doi: 10.1080/00018730110113644. DOI

Lin Z., Liu Y., Halim U., Ding M., Liu Y., Wang Y., Jia C., Chen P., Duan X., Wang C., Song F., Li M., Wan C., Huang Y., Duan X.. Solution-Processable 2D Semiconductors for High-Performance Large-Area Electronics. Nature. 2018;562:254–258. doi: 10.1038/s41586-018-0574-4. PubMed DOI

Wang C., He Q., Halim U., Liu Y., Zhu E., Lin Z., Xiao H., Duan X., Feng Z., Cheng R., Weiss N. O., Ye G., Huang Y.-C., Wu H., Cheng H.-C., Shakir I., Liao L., Chen X., Goddard W. A. Iii, Huang Y., Duan X.. Monolayer Atomic Crystal Molecular Superlattices. Nature. 2018;555:231–236. doi: 10.1038/nature25774. PubMed DOI

Pereira J. M., Tezze D., Ormaza M., Hueso L. E., Gobbi M.. Engineering Magnetism and Superconductivity in van der Waals Materials via Organic-Ion Intercalation. Adv. Phys. Res. 2023;2:2200084. doi: 10.1002/apxr.202200084. DOI

Zhu H., Gan X., McCreary A., Lv R., Lin Z., Terrones M.. Heteroatom Doping of Two-Dimensional Materials: From Graphene to Chalcogenides. Nano Today. 2020;30:100829. doi: 10.1016/j.nantod.2019.100829. DOI

Liu X., Hersam M. C.. Interface Characterization and Control of 2D Materials and Heterostructures. Adv. Mater. 2018;30:1801586. doi: 10.1002/adma.201801586. PubMed DOI

Ghafariasl M., Zhang T., Ward Z. D., Zhou D., Sanchez D., Swaminathan V., Terrones H., Terrones M., Abate Y.. Sulfur Vacancy Related Optical Transitions in Graded Alloys of MoxW1-xS2 Monolayers. Adv. Opt. Mater. 2024;12:2302326. doi: 10.1002/adom.202302326. DOI

Park K.-D., Khatib O., Kravtsov V., Clark G., Xu X., Raschke M. B.. Hybrid Tip-Enhanced Nanospectroscopy and Nanoimaging of Monolayer WSe2 with Local Strain Control. Nano Lett. 2016;16:2621–2627. doi: 10.1021/acs.nanolett.6b00238. PubMed DOI

He Z., Han Z., Yuan J., Sinyukov A. M., Eleuch H., Niu C., Zhang Z., Lou J., Hu J., Voronine D. V., Scully M. O.. Quantum Plasmonic Control of Trions in a Picocavity with Monolayer WS2 . Sci. Adv. 2019;5:eaau8763. doi: 10.1126/sciadv.aau8763. PubMed DOI PMC

Dolui K., Rungger I., Das Pemmaraju C., Sanvito S.. Possible Doping Strategies for MoS2 Monolayers: An ab initio Study. Phys. Rev. B. 2013;88:075420. doi: 10.1103/PhysRevB.88.075420. DOI

Karthikeyan J., Komsa H.-P., Batzill M., Krasheninnikov A. V.. Which Transition Metal Atoms Can Be Embedded into Two-Dimensional Molybdenum Dichalcogenides and Add Magnetism? Nano Lett. 2019;19:4581–4587. doi: 10.1021/acs.nanolett.9b01555. PubMed DOI

Zhang R., Waters J., Geim A. K., Grigorieva I. V.. Intercalant-Independent Transition Temperature in Superconducting Black Phosphorus. Nat. Commun. 2017;8:15036. doi: 10.1038/ncomms15036. PubMed DOI PMC

Yu Y., Yang F., Lu X. F., Yan Y. J., Cho Y. H., Ma L., Niu X., Kim S., Son Y. W., Feng D., Li S., Cheong S. W., Chen X. H., Zhang Y.. Gate-Tunable Phase Transitions in Thin Flakes of 1T-TaS2 . Nat. Nanotechnol. 2015;10:270–276. doi: 10.1038/nnano.2014.323. PubMed DOI

Wang M., Koski K. J.. Reversible Chemochromic MoO3 Nanoribbons through Zerovalent Metal Intercalation. ACS Nano. 2015;9:3226–3233. doi: 10.1021/acsnano.5b00336. PubMed DOI

Utama M. I. B., Zeng H., Sadhukhan T., Dasgupta A., Gavin S. C., Ananth R., Lebedev D., Wang W., Chen J.-S., Watanabe K., Taniguchi T., Marks T. J., Ma X., Weiss E. A., Schatz G. C., Stern N. P., Hersam M. C.. Chemomechanical Modification of Quantum Emission in Monolayer WSe2 . Nat. Commun. 2023;14:2193. doi: 10.1038/s41467-023-37892-0. PubMed DOI PMC

Singh A. K., Kumbhakar P., Krishnamoorthy A., Nakano A., Sadasivuni K. K., Vashishta P., Roy A. K., Kochat V., Tiwary C. S.. Review of Strategies Toward the Development of Alloy Two-Dimensional (2D) Transition Metal Dichalcogenides. iScience. 2021;24:103532. doi: 10.1016/j.isci.2021.103532. PubMed DOI PMC

Lien D.-H., Uddin S. Z., Yeh M., Amani M., Kim H., Ager J. W., Yablonovitch E., Javey A.. Electrical Suppression of All Nonradiative Recombination Pathways in Monolayer Semiconductors. Science. 2019;364:468–471. doi: 10.1126/science.aaw8053. PubMed DOI

Ansari S., Bianconi S., Kang C.-M., Mohseni H.. From Material to Cameras: Low-Dimensional Photodetector Arrays on CMOS. Small Meth. 2024;8:2300595. doi: 10.1002/smtd.202300595. PubMed DOI

Yang P., Zou X., Zhang Z., Hong M., Shi J., Chen S., Shu J., Zhao L., Jiang S., Zhou X., Huan Y., Xie C., Gao P., Chen Q., Zhang Q., Liu Z., Zhang Y.. Batch Production of 6-Inch Uniform Monolayer Molybdenum Disulfide Catalyzed by Sodium in Glass. Nat. Commun. 2018;9:979. doi: 10.1038/s41467-018-03388-5. PubMed DOI PMC

Lin Z., Carvalho B. R., Kahn E., Lv R., Rao R., Terrones H., Pimenta M. A., Terrones M.. Defect Engineering of Two-Dimensional Transition Metal Dichalcogenides. 2D Mater. 2016;3:022002. doi: 10.1088/2053-1583/3/2/022002. DOI

Kim I. S., Sangwan V. K., Jariwala D., Wood J. D., Park S., Chen K.-S., Shi F., Ruiz-Zepeda F., Ponce A., Jose-Yacaman M., Dravid V. P., Marks T. J., Hersam M. C., Lauhon L. J.. Influence of Stoichiometry on the Optical and Electrical Properties of Chemical Vapor Deposition Derived MoS2 . ACS Nano. 2014;8:10551–10558. doi: 10.1021/nn503988x. PubMed DOI PMC

Zhang T., Liu M., Fujisawa K., Lucking M., Beach K., Zhang F., Shanmugasundaram M., Krayev A., Murray W., Lei Y., Yu Z., Sanchez D., Liu Z., Terrones H., Elías A. L., Terrones M.. Spatial Control of Substitutional Dopants in Hexagonal Monolayer WS2: The Effect of Edge Termination. Small. 2023;19:2205800. doi: 10.1002/smll.202205800. PubMed DOI

Fujisawa K., Carvalho B. R., Zhang T., Perea-López N., Lin Z., Carozo V., Ramos S. L. L. M., Kahn E., Bolotsky A., Liu H., Elías A. L., Terrones M.. Quantification and Healing of Defects in Atomically Thin Molybdenum Disulfide: Beyond the Controlled Creation of Atomic Defects. ACS Nano. 2021;15:9658–9669. doi: 10.1021/acsnano.0c10897. PubMed DOI

Sangwan V. K., Hersam M. C.. Electronic Transport in Two-Dimensional Materials. Annu. Rev. Phys. Chem. 2018;69:299–325. doi: 10.1146/annurev-physchem-050317-021353. PubMed DOI

Liu X., Balla I., Bergeron H., Campbell G. P., Bedzyk M. J., Hersam M. C.. Rotationally Commensurate Growth of MoS2 on Epitaxial Graphene. ACS Nano. 2016;10:1067–1075. doi: 10.1021/acsnano.5b06398. PubMed DOI

Lam D., Lebedev D., Hersam M. C.. Morphotaxy of Layered van der Waals Materials. ACS Nano. 2022;16:7144–7167. doi: 10.1021/acsnano.2c00243. PubMed DOI

Pham Y. T. H., Liu M., Jimenez V. O., Yu Z., Kalappattil V., Zhang F., Wang K., Williams T., Terrones M., Phan M.-H.. Tunable Ferromagnetism and Thermally Induced Spin Flip in Vanadium-Doped Tungsten Diselenide Monolayers at Room Temperature. Adv. Mater. 2020;32:2003607. doi: 10.1002/adma.202003607. PubMed DOI

Ajayi T. M., Shirato N., Rojas T., Wieghold S., Cheng X., Latt K. Z., Trainer D. J., Dandu N. K., Li Y., Premarathna S., Sarkar S., Rosenmann D., Liu Y., Kyritsakas N., Wang S., Masson E., Rose V., Li X., Ngo A. T., Hla S.-W.. Characterization of Just One Atom using Synchrotron X-Rays. Nature. 2023;618:69–73. doi: 10.1038/s41586-023-06011-w. PubMed DOI

Qian Q., Ren H., Zhou J., Wan Z., Zhou J., Yan X., Cai J., Wang P., Li B., Sofer Z., Li B., Duan X., Pan X., Huang Y., Duan X.. Chiral Molecular Intercalation Superlattices. Nature. 2022;606:902–908. doi: 10.1038/s41586-022-04846-3. PubMed DOI

Gish J. T., Lebedev D., Song T. W., Sangwan V. K., Hersam M. C.. Van der Waals Opto-Spintronics. Nat. Elect. 2024;7:336–347. doi: 10.1038/s41928-024-01167-3. DOI

Kelly A. G., O’Suilleabhain D., Gabbett C., Coleman J. N.. The Electrical Conductivity of Solution-Processed Nanosheet Networks. Nat. Rev. Mater. 2022;7:217–234. doi: 10.1038/s41578-021-00386-w. DOI

Zhu J., Li F., Hou Y., Li H., Xu D., Tan J., Du J., Wang S., Liu Z., Wu H., Wang F., Su Y., Cheng H.-M.. Near-Room-Temperature Water-Mediated Densification of Bulk van der Waals Materials from Their Nanosheets. Nat. Mater. 2024;23:604–611. doi: 10.1038/s41563-024-01840-0. PubMed DOI

Pecunia V.. et al. Roadmap on Printable Electronic Materials for Next-Generation Sensors. Nano Futures. 2024;8:032001. doi: 10.1088/2399-1984/ad36ff. DOI

Rangnekar S. V., Sangwan V. K., Jin M., Khalaj M., Szydłowska B. M., Dasgupta A., Kuo L., Kurtz H. E., Marks T. J., Hersam M. C.. Electroluminescence from Megasonically Solution-Processed MoS2 Nanosheet Films. ACS Nano. 2023;17:17516–17526. doi: 10.1021/acsnano.3c06034. PubMed DOI

Li T., Guo W., Ma L., Li W., Yu Z., Han Z., Gao S., Liu L., Fan D., Wang Z., Yang Y., Lin W., Luo Z., Chen X., Dai N., Tu X., Pan D., Yao Y., Wang P., Nie Y., Wang J., Shi Y., Wang X.. Epitaxial Growth of Wafer-Scale Molybdenum Disulfide Semiconductor Single Crystals on Sapphire. Nat. Nanotechnol. 2021;16:1201–1207. doi: 10.1038/s41565-021-00963-8. PubMed DOI

Liu Y., Weiss N. O., Duan X., Cheng H.-C., Huang Y., Duan X.. Van der Waals Heterostructures and Devices. Nat. Rev. Mater. 2016;1:1–17. doi: 10.1038/natrevmats.2016.42. DOI

Scuri G., Zhou Y., High A. A., Wild D. S., Shu C., De Greve K., Jauregui L. A., Taniguchi T., Watanabe K., Kim P., Lukin M. D., Park H.. Large Excitonic Reflectivity of Monolayer MoSe2 Encapsulated in Hexagonal Boron Nitride. Phys. Phys. Lett. 2018;120:037402. doi: 10.1103/PhysRevLett.120.037402. PubMed DOI

Back P., Zeytinoglu S., Ijaz A., Kroner M., Imamoglu A.. Realization of an Electrically Tunable Narrow-Bandwidth Atomically Thin Mirror Using Monolayer MoSe2 . Phys. Phys. Lett. 2018;120:037401. doi: 10.1103/PhysRevLett.120.037401. PubMed DOI

Wang S., Li S., Chervy T., Shalabney A., Azzini S., Orgiu E., Hutchison J. A., Genet C., Samorì P., Ebbesen T. W.. Coherent Coupling of WS2 Monolayers with Metallic Photonic Nanostructures at Room Temperature. Nano Lett. 2016;16:4368–4374. doi: 10.1021/acs.nanolett.6b01475. PubMed DOI

Wei G., Czaplewski D. A., Lenferink E. J., Stanev T. K., Jung I. W., Stern N. P.. Size-Tunable Lateral Confinement in Monolayer Semiconductors. Sci. Rep. 2017;7:3324. doi: 10.1038/s41598-017-03594-z. PubMed DOI PMC

Klein J., Lorke M., Florian M., Sigger F., Sigl L., Rey S., Wierzbowski J., Cerne J., Müller K., Mitterreiter E., Zimmermann P., Taniguchi T., Watanabe K., Wurstbauer U., Kaniber M., Knap M., Schmidt R., Finley J. J., Holleitner A. W.. Site-Selectively Generated Photon Emitters in Monolayer MoS2 via Local Helium Ion Irradiation. Nat. Commun. 2019;10:2755. doi: 10.1038/s41467-019-10632-z. PubMed DOI PMC

Zhang L., Zhang Z., Wu F., Wang D., Gogna R., Hou S., Watanabe K., Taniguchi T., Kulkarni K., Kuo T., Forrest S. R., Deng H.. Twist-Angle Dependence of Moiré Excitons in WS2/MoSe2 Heterobilayers. Nat. Commun. 2020;11:5888. doi: 10.1038/s41467-020-19466-6. PubMed DOI PMC

Palacios-Berraquero C., Kara D. M., Montblanch A. R.-P., Barbone M., Latawiec P., Yoon D., Ott A. K., Loncar M., Ferrari A. C., Atatüre M.. Large-Scale Quantum-Emitter Arrays in Atomically Thin Semiconductors. Nat. Commun. 2017;8:15093. doi: 10.1038/ncomms15093. PubMed DOI PMC

Lenferink E. J., LaMountain T., Stanev T. K., Garvey E., Watanabe K., Taniguchi T., Stern N. P.. Tunable Emission from Localized Excitons Deterministically Positioned in Monolayer p−n Junctions. ACS Photonics. 2022;9:3067–3074. doi: 10.1021/acsphotonics.2c00811. DOI

Thureja D., Imamoglu A., Smoleński T., Amelio I., Popert A., Chervy T., Lu X., Liu S., Barmak K., Watanabe K., Taniguchi T., Norris D. J., Kroner M., Murthy P. A.. Electrically Tunable Quantum Confinement of Neutral Excitons. Nature. 2022;606:298–304. doi: 10.1038/s41586-022-04634-z. PubMed DOI

Hu J., Lorchat E., Chen X., Watanabe K., Taniguchi T., Heinz T. F., Murthy P. A., Chervy T.. Quantum Control of Exciton Wave Functions in 2D Semiconductors. Sci. Adv. 2024;10:eadk6369. doi: 10.1126/sciadv.adk6369. PubMed DOI PMC

Thureja D., Yazici F. E., Smolenski T., Kroner M., Norris D. J., Imamoglu A.. Electrically defined quantum dots for bosonic excitons. Phys. Rev. B. 2024;110:245425. doi: 10.1103/PhysRevB.110.245425. DOI

Branny A., Kumar S., Proux R., Gerardot B. D.. Deterministic Strain-Induced Arrays of Quantum Emitters in a Two-Dimensional Semiconductor. Nat. Commun. 2017;8:15053. doi: 10.1038/ncomms15053. PubMed DOI PMC

Rosenberger M. R., Dass C. K., Chuang H.-J., Sivaram S. V., McCreary K. M., Hendrickson J. R., Jonker B.. T Quantum Calligraphy: Writing Single-Photon Emitters in a Two-Dimensional Materials Platform. ACS Nano. 2019;13:904–912. doi: 10.1021/acsnano.8b08730. PubMed DOI

Yu L., Deng M., Zhang J. L., Borghardt S., Kardynal B., Vučković J., Heinz T. F.. Site-Controlled Quantum Emitters in Monolayer MoSe2 . Nano Lett. 2021;21:2376–2381. doi: 10.1021/acs.nanolett.0c04282. PubMed DOI

So J.-P., Kim H.-R., Baek H., Jeong K.-Y., Lee H.-C., Huh W., Kim Y. S., Watanabe K., Taniguchi T., Kim J., Lee C.-H., Park H.-G.. Electrically Driven Strain-Induced Deterministic Single-Photon Emitters in a van der Waals Heterostructure. Sci. Adv. 2021;7:eabj3176. doi: 10.1126/sciadv.abj3176. PubMed DOI PMC

Abramov A. N., Chestnov I. Y., Alimova E. S., Ivanova T., Mukhin I. S., Krizhanovskii D. N., Shelykh I. A., Iorsh I. V., Kravtsov V.. Photoluminescence Imaging of Single Photon Emitters within Nanoscale Strain Profiles in Monolayer WSe2 . Nat. Commun. 2023;14:5737. doi: 10.1038/s41467-023-41292-9. PubMed DOI PMC

Luo Y., Shepard G. D., Ardelean J. V., Rhodes D. A., Kim B., Barmak K., Hone J. C., Strauf S.. Deterministic Coupling of Site-Controlled Quantum Emitters in Monolayer WSe2 to Plasmonic Nanocavities. Nat. Nanotechnol. 2018;13:1137–1142. doi: 10.1038/s41565-018-0275-z. PubMed DOI

Sortino L., Zotev P. G., Phillips C. L., Brash A. J., Cambiasso J., Marensi E., Fox A. M., Maier S. A., Sapienza R., Tartakovskii A. I.. Bright Single Photon Emitters with Enhanced Quantum Efficiency in a Two-Dimensional Semiconductor Coupled with Dielectric Nano-Antennas. Nat. Commun. 2021;12:6063. doi: 10.1038/s41467-021-26262-3. PubMed DOI PMC

Li W., Lu X., Dubey S., Devenica L., Srivastava A.. Dipolar Interactions between Localized Interlayer Excitons in van der Waals Heterostructures. Nat. Mater. 2020;19:624–629. doi: 10.1038/s41563-020-0661-4. PubMed DOI

Zhao H., Zhu L., Li X., Chandrasekaran V., Baldwin J. K., Pettes M. T., Piryatinski A., Yang L., Htoon H.. Manipulating Interlayer Excitons for Near-Infrared Quantum Light Generation. Nano Lett. 2023;23:11006–11012. doi: 10.1021/acs.nanolett.3c03296. PubMed DOI

Unuchek D., Ciarrocchi A., Avsar A., Watanabe K., Taniguchi T., Kis A.. Room-Temperature Electrical Control of Exciton Flux in a van der Waals Heterostructure. Nature. 2018;560:340–344. doi: 10.1038/s41586-018-0357-y. PubMed DOI

Hotta T., Nakajima H., Chiashi S., Inoue T., Maruyama S., Watanabe K., Taniguchi T., Kitaura R.. Trion Confinement in Monolayer MoSe2 by Carbon Nanotube Local Gating. Appl. Phys. Express. 2023;16:015001. doi: 10.35848/1882-0786/aca642. DOI

Moon, H. ; Mennel, L. ; Chakraborty, C. ; Peng, C. ; Almutlaq, J. ; Taniguchi, T. ; Watanabe, K. ; Englund, D. . Nanoscale Confinement and Control of Excitonic Complexes in a Monolayer WSe2. arXiv 2023, 2311.18660. 10.48550/arXiv.2311.18660 DOI

Heithoff M., Moreno Á., Torre I., Feuer M. S. G., Purser C. M., Andolina G. M., Calajò G., Watanabe K., Taniguchi T., Kara D. M., Hays P., Tongay S. A., Fal’ko V. I., Chang D., Atatüre M., Reserbat-Plantey A., Koppens F. H. L.. Valley-Hybridized Gate-Tunable 1D Exciton Confinement in MoSe2 . ACS Nano. 2024;18:30283–30292. doi: 10.1021/acsnano.4c04786. PubMed DOI

Tabataba-Vakili F., Nguyen H. P. G., Rupp A., Mosina K., Papavasileiou A., Watanabe K., Taniguchi T., Maletinsky P., Glazov M. M., Sofer Z., Baimuratov A. S., Högele A.. Doping-Control of Excitons and Magnetism in Few-Layer CrSBr. Nat. Commun. 2024;15:4735. doi: 10.1038/s41467-024-49048-9. PubMed DOI PMC

Errando-Herranz C., Schöll E., Picard R., Laini M., Gyger S., Elshaari A. W., Branny A., Wennberg U., Barbat S., Renaud T., Sartison M., Brotons-Gisbert M., Bonato C., Gerardot B. D., Zwiller V., Jöns K. D.. Resonance Fluorescence from Waveguide-Coupled, Strain-Localized, Two-Dimensional Quantum Emitters. ACS Photonics. 2021;8:1069–1076. doi: 10.1021/acsphotonics.0c01653. PubMed DOI PMC

Mueller T., Malic E.. Exciton Physics and Device Application of Two-Dimensional Transition Metal Dichalcogenide Semiconductors. npj 2D Mater. Appl. 2018;2:29. doi: 10.1038/s41699-018-0074-2. DOI

Trovatello C., Katsch F., Li Q., Zhu X., Knorr A., Cerullo G., Dal Conte S.. Disentangling Many-Body Effects in the Coherent Optical Response of 2D Semiconductors. Nano Lett. 2022;22:5322–5329. doi: 10.1021/acs.nanolett.2c01309. PubMed DOI PMC

Dal Conte S., Trovatello C., Gadermaier C., Cerullo G.. Ultrafast Photophysics of 2D Semiconductors and Related Heterostructures. Trends in Chemistry. 2020;2:28–42. doi: 10.1016/j.trechm.2019.07.007. DOI

Hong X., Kim J., Shi S.-F., Zhang Y., Jin C., Sun Y., Tongay S., Wu J., Zhang Y., Wang F.. Ultrafast Charge Transfer in Atomically Thin MoS2/WS2 Heterostructures. Nat. Nanotechnol. 2014;9:682–686. doi: 10.1038/nnano.2014.167. PubMed DOI

Policht V. R., Russo M., Liu F., Trovatello C., Maiuri M., Bai Y., Zhu X., Dal Conte S., Cerullo G.. Dissecting Interlayer Hole and Electron Transfer in Transition Metal Dichalcogenide Heterostructures Via Two-Dimensional Electronic Spectroscopy. Nano Lett. 2021;21:4738–4743. doi: 10.1021/acs.nanolett.1c01098. PubMed DOI PMC

Kim J., Jin C., Chen B., Cai H., Zhao T., Lee P., Kahn S., Watanabe K., Taniguchi T., Tongay S., Crommie M. F., Wang F.. Observation of Ultralong Valley Lifetime in WSe2/MoS2 Heterostructures. Sci. Adv. 2017;3:e1700518. doi: 10.1126/sciadv.1700518. PubMed DOI PMC

Jiang Y., Chen S., Zheng W., Zheng B., Pan A.. Interlayer Exciton Formation, Relaxation, and Transport in TMD van der Waals Heterostructures. Light Sci. Appl. 2021;10:72. doi: 10.1038/s41377-021-00500-1. PubMed DOI PMC

Policht V. R., Mittenzwey H., Dogadov O., Katzer M., Villa A., Li Q., Kaiser B., Ross A. M., Scotognella F., Zhu X., Knorr A., Selig M., Cerullo G., Dal Conte S.. Time-Domain Observation of Interlayer Exciton Formation and Thermalization in a MoSe2/WSe2 Heterostructure. Nat. Commun. 2023;14:7273. doi: 10.1038/s41467-023-42915-x. PubMed DOI PMC

Karni O., Barré E., Pareek V., Georgaras J. D., Man M. K. L., Sahoo C., Bacon D. R., Zhu X., Ribeiro H. B., O’Beirne A. L., Hu J., Al-Mahboob A., Abdelrasoul M. M. M., Chan N. S., Karmakar A., Winchester A. J., Kim B., Watanabe K., Taniguchi T., Barmak K., Madéo J., da Jornada F. H., Heinz T. F., Dani K. M.. Structure of the Moiré Exciton Captured by Imaging Its Electron and Hole. Nature. 2022;603:247–252. doi: 10.1038/s41586-021-04360-y. PubMed DOI

Madéo J., Man M. K. L., Sahoo C., Campbell M., Pareek V., Wong E. L., Al-Mahboob A., Chan N. S., Karmakar A., Mariserla B. M. K., Li X., Heinz T. F., Cao T., Dani K. M.. Directly Visualizing the Momentum-Forbidden Dark Excitons and Their Dynamics in Atomically Thin Semiconductors. Science. 2020;370:1199–1204. doi: 10.1126/science.aba1029. PubMed DOI

Schmitt D., Bange J. P., Bennecke W., AlMutairi A., Meneghini G., Watanabe K., Taniguchi T., Steil D., Luke D. R., Weitz R. T., Steil S., Jansen G. S. M., Brem S., Malic E., Hofmann S., Reutzel M., Mathias S.. Formation of Moiré Interlayer Excitons in Space and Time. Nature. 2022;608:499–503. doi: 10.1038/s41586-022-04977-7. PubMed DOI

Bange J. P., Werner P., Schmitt D., Bennecke W., Meneghini G., AlMutairi A., Merboldt M., Watanabe K., Taniguchi T., Steil S., Steil D., Weitz R. T., Hofmann S., Jansen G. S. M., Brem S., Malic E., Reutzel M., Mathias S.. Ultrafast Dynamics of Bright and Dark Excitons in Monolayer WSe2 and Heterobilayer WSe2/MoS2 . 2D Mater. 2023;10:035039. doi: 10.1088/2053-1583/ace067. DOI

Huang D., Choi J., Shih C.-K., Li X.. Excitons in Semiconductor Moiré Superlattices. Nat. Nanotechnol. 2022;17:227–238. doi: 10.1038/s41565-021-01068-y. PubMed DOI

Choi J., Florian M., Steinhoff A., Erben D., Tran K., Kim D. S., Sun L., Quan J., Claassen R., Majumder S., Hollingsworth J. A., Taniguchi T., Watanabe K., Ueno K., Singh A., Moody G., Jahnke F., Li X.. Twist Angle-Dependent Interlayer Exciton Lifetimes in van der Waals Heterostructures. Phys. Rev. Lett. 2021;126:047401. doi: 10.1103/PhysRevLett.126.047401. PubMed DOI

Yuan L., Zheng B., Kunstmann J., Brumme T., Kuc A. B., Ma C., Deng S., Blach D., Pan A., Huang L.. Twist-Angle-Dependent Interlayer Exciton Diffusion in WS2−WSe2 Heterobilayers. Nat. Mater. 2020;19:617–623. doi: 10.1038/s41563-020-0670-3. PubMed DOI

Choi J., Hsu W.-T., Lu L.-S., Sun L., Cheng H.-Y., Lee M.-H., Quan J., Tran K., Wang C.-Y., Staab M., Jones K., Taniguchi T., Watanabe K., Chu M.-W., Gwo S., Kim S., Shih C.-K., Li X., Chang W.-H.. Moiré Potential Impedes Interlayer Exciton Diffusion in van der Waals Heterostructures. Sci. Adv. 2020;6:eaba8866. doi: 10.1126/sciadv.aba8866. PubMed DOI PMC

Andersen T. I., Scuri G., Sushko A., De Greve K., Sung J., Zhou Y., Wild D. S., Gelly R. J., Heo H., Bérubé D., Joe A. Y., Jauregui L. A., Watanabe K., Taniguchi T., Kim P., Park H., Lukin M. D.. Excitons in a Reconstructed Moiré Potential in Twisted WSe2/WSe2 Homobilayers. Nat. Mater. 2021;20:480–487. doi: 10.1038/s41563-020-00873-5. PubMed DOI

Hagel J., Brem S., Pineiro J. A., Malic E.. Impact of Atomic Reconstruction on Optical Spectra of Twisted TMD Homobilayers. Phys. Rev. Materials. 2024;8:034001. doi: 10.1103/PhysRevMaterials.8.034001. DOI

Arsenault E. A., Li Y., Yang B., Wang X., Park H., Mosconi E., Ronca E., Taniguchi T., Watanabe K., Gamelin D.. et al. Two-Dimensional Moiré Polaronic Electron Crystals. Phys. Rev. Lett. 2024;132:126501. doi: 10.1103/PhysRevLett.132.126501. PubMed DOI

Chen Y., Yu S., Jiang T., Liu X., Cheng X., Huang D.. Optical Two-Dimensional Coherent Spectroscopy of Excitons in Transition-Metal Dichalcogenides. Frontiers of Physics. 2024;19:23301. doi: 10.1007/s11467-023-1345-8. DOI

Silva R. E. F., Ivanov M., Jiménez-Galán Á.. All-Optical Valley Switch and Clock of Electronic Dephasing. Opt. Express. 2022;30:30347–30355. doi: 10.1364/OE.460291. PubMed DOI

Langer F., Schmid C. P., Schlauderer S., Gmitra M., Fabian J., Nagler P., Schüller C., Korn T., Hawkins P. G., Steiner J. T., Huttner U., Koch S. W., Kira M., Huber R.. Lightwave Valleytronics in a Monolayer of Tungsten Diselenide. Nature. 2018;557:76–80. doi: 10.1038/s41586-018-0013-6. PubMed DOI PMC

Wang Z., Altmann P., Gadermaier C., Yang Y., Li W., Ghirardini L., Trovatello C., Finazzi M., Duò L., Celebrano M., Long R., Akinwande D., Prezhdo O. V., Cerullo G., Dal Conte S.. Phonon-Mediated Interlayer Charge Separation and Recombination in a MoSe2/WSe2 Heterostructure. Nano Lett. 2021;21:2165–2173. doi: 10.1021/acs.nanolett.0c04955. PubMed DOI

Montblanch A. R.-P.. et al. Layered Materials as a Platform for Quantum Technologies. Nat. Nanotechnol. 2023;18:555–571. doi: 10.1038/s41565-023-01354-x. PubMed DOI

Drawer J.-C.. et al. Monolayer-Based Single-Photon Source in a Liquid-Helium-Free Open Cavity Featuring 65% Brightness and Quantum Coherence. Nano Lett. 2023;23:8683–8689. doi: 10.1021/acs.nanolett.3c02584. PubMed DOI PMC

Li, H. , et al. Optical Multidimensional Coherent Spectroscopy; Oxford University Press, 2023.

Fresch E.. et al. Two-Dimensional Electronic Spectroscopy. Nat. Rev. Meth- Primers. 2023;3:84. doi: 10.1038/s43586-023-00267-2. DOI

Timmer D.. et al. Plasmon Mediated Coherent Population Oscillations in Molecular Aggregates. Nat. Commun. 2023;14:8035. doi: 10.1038/s41467-023-43578-4. PubMed DOI PMC

Moody G.. et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun. 2015;6:8315. doi: 10.1038/ncomms9315. PubMed DOI PMC

Katsch F.. et al. Exciton-Scattering-Induced Dephasing in Two-Dimensional Semiconductors. Phys. Rev. Lett. 2020;124:257402. doi: 10.1103/PhysRevLett.124.257402. PubMed DOI

Hao K.. et al. Direct Measurement of Exciton Valley Coherence in Monolayer WSe2 . Nat. Phys. 2016;12:677–682. doi: 10.1038/nphys3674. DOI

Hao K.. et al. Coherent and Incoherent Coupling Dynamics between Neutral and Charged Excitons in Monolayer MoSe2 . Nano Lett. 2016;16:5109–5113. doi: 10.1021/acs.nanolett.6b02041. PubMed DOI PMC

Guo L.. et al. Exchange-Driven Intravalley Mixing of Excitons in Monolayer Transition Metal Dichalcogenides. Nat. Phys. 2019;15:228–232. doi: 10.1038/s41567-018-0362-y. DOI

Lloyd L. T.. et al. Sub-10 fs Intervalley Exciton Coupling in Monolayer MoS2 Revealed by Helicity-Resolved Two-Dimensional Electronic Spectroscopy. ACS Nano. 2021;15:10253–10263. doi: 10.1021/acsnano.1c02381. PubMed DOI

Timmer D.. et al. Ultrafast Coherent Exciton Couplings and Many-Body Interactions in Monolayer WS2 . Nano Lett. 2024;24:8117–8125. doi: 10.1021/acs.nanolett.4c01991. PubMed DOI PMC

Purz T.. et al. Imaging Dynamic Exciton Interactions and Coupling in Transition Metal Dichalcogenides. J. Chem. Phys. 2022;156:214704. doi: 10.1063/5.0087544. PubMed DOI

Conway M. A.. et al. Direct Measurement of Biexcitons in Monolayer WS2 . 2D Mater. 2022;9:021001. doi: 10.1088/2053-1583/ac4779. DOI

Huang D.. et al. Quantum Dynamics of Attractive and Repulsive Polarons in a Doped MoSe2 Monolayer. Phys. Rev. X. 2023;13:011029. doi: 10.1103/PhysRevX.13.011029. DOI

Li D.. et al. Exciton−Phonon Coupling Strength in Single-Layer MoSe2 at Room Temperature. Nat. Commun. 2021;12:954. doi: 10.1038/s41467-021-20895-0. PubMed DOI PMC

Li D.. et al. Hybridized Exciton-Photon-Phonon States in a Transition Metal Dichalcogenide van der Waals Heterostructure Microcavity. Phys. Rev. Lett. 2022;128:087401. doi: 10.1103/PhysRevLett.128.087401. PubMed DOI

Timmer D.. et al. Full Visible Range Two-Dimensional Electronic Spectroscopy with High Time Resolution. Opt. Express. 2024;32:835–847. doi: 10.1364/OE.511906. PubMed DOI

Pi Z.. et al. Petahertz-Scale Spectral Broadening and Few-Cycle Compression of Yb:KGW Laser Pulses in a Pressurized, Gas-Filled Hollow-Core Fiber. Opt. Lett. 2022;47:5865–5868. doi: 10.1364/OL.474872. PubMed DOI

Lomsadze B., Cundiff S. T.. Frequency Combs Enable Rapid and High-Resolution Multidimensional Coherent Spectroscopy. Science. 2017;357:1389–1391. doi: 10.1126/science.aao1090. PubMed DOI

Lomsadze B.. et al. Tri-Comb Spectroscopy. Nat. Photonics. 2018;12:676–680. doi: 10.1038/s41566-018-0267-4. DOI

Gruber, C. ; et al. High-Sensitivity Pump-Probe Spectroscopy with a Dual-Comb Laser and a PM-ANDi Supercontinuum. Opt. Lett. 2024, 49, 6445. 10.1364/OL.538105 PubMed DOI

Krumland J.. et al. Two-Dimensional Electronic Spectroscopy from First Principles. Appl. Phys. Rev. 2024;11:011305. doi: 10.1063/5.0172621. DOI

Kunin A.. et al. Momentum-Resolved Exciton Coupling and Valley Polarization Dynamics in Monolayer WS2 . Phys. Rev. Lett. 2023;130:046202. doi: 10.1103/PhysRevLett.130.046202. PubMed DOI

Aeschlimann M.. et al. Coherent Two-Dimensional Nanoscopy. Science. 2011;333:1723–1726. doi: 10.1126/science.1209206. PubMed DOI

Hong S. Y., Dadap J. I., Petrone N., Yeh P. C., Hone J., Osgood R. M.. Optical Third-Harmonic Generation in Graphene. Phys. Rev. X. 2013;3:021014. doi: 10.1103/PhysRevX.3.021014. DOI

Säynätjoki A., Karvonen L., Rostami H., Autere A., Mehravar S., Lombardo A., Norwood R. A., Hasan T., Peyghambarian N., Lipsanen H., Kieu K., Ferrari A. C., Polini M., Sun Z. P.. Ultra-Strong Nonlinear Optical Processes and Trigonal Warping in MoS2 Layers. Nat. Commun. 2017;8:893. doi: 10.1038/s41467-017-00749-4. PubMed DOI PMC

Autere A., Ryder C. R., Saynatjoki A., Karvonen L., Amirsolaimani B., Norwood R. A., Peyghambarian N., Kieu K., Lipsanen H., Hersam M. C.. Rapid and Large-Area Characterization of Exfoliated Black Phosphorus Using Third-Harmonic Generation Microscopy. J. Phys. Chem. Lett. 2017;8:1343–1350. doi: 10.1021/acs.jpclett.7b00140. PubMed DOI

Liang J., Tu T., Chen G. C., Sun Y. W., Qiao R. X., Ma H., Yu W. T., Zhou X., Ma C. J., Gao P., Peng H. L., Liu K. H., Yu D. P.. Unveiling the Fine Structural Distortion of Atomically Thin BiO2Se3 by Third-Harmonic Generation. Adv. Mater. 2020;32:2002831. doi: 10.1002/adma.202002831. PubMed DOI

Lv Y. Y., Xu J. L., Han S., Zhang C., Han Y. D.. et al. High-Harmonic Generation in Weyl Semimetal β-WP2 Crystals. Nat. Commun. 2021;12:6437. doi: 10.1038/s41467-021-26766-y. PubMed DOI PMC

Hendry E., Hale P. J., Moger J., Savchenko A. K., Mikhailov S. A.. Coherent Nonlinear Optical Response of Graphene. Phys. Rev. Lett. 2010;105:097401. doi: 10.1103/PhysRevLett.105.097401. PubMed DOI

Ji M. X., Cai H., Deng L. K., Huang Y., Huang Q. Z., Xia J. S., Li Z. Y., Yu J. Z., Wang Y.. Enhanced Parametric Frequency Conversion in a Compact Silicon-Graphene Microring Resonator. Opt. Express. 2015;23:18679–18685. doi: 10.1364/OE.23.018679. PubMed DOI

Wu Y., Yao B. C., Feng Q. Y., Cao X. L., Zhou X. Y., Rao Y. J., Gong Y., Zhang W. L., Wang Z. G., Chen Y. F., Chiang K. S.. Generation of Cascaded Four-Wave-Mixing with Graphene-Coated Microfiber. Photonics Research. 2015;3:A64–A68. doi: 10.1364/PRJ.3.000A64. DOI

Wang Y. C., Pelgrin V., Gyger S., Uddin G. M., Bai X. Y., Lafforgue C., Vivien L., Jöns K. D., Cassan E., Sun Z. P.. Enhancing Si3N4 Waveguide Nonlinearity with Heterogeneous Integration of Few-Layer WS2 . ACS Photonics. 2021;8:2713–2721. doi: 10.1021/acsphotonics.1c00767. PubMed DOI PMC

Das S., Uddin G. M., Li D., Wang Y. D., Dai Y. Y., Sun Z. P.. Nanoscale thickness Octave-spanning Coherent Supercontinuum Light Generation. Light Sci. Appl. 2025;14:41. doi: 10.1038/s41377-024-01660-6. PubMed DOI PMC

Gu T., Petrone N., McMillan J. F., van der Zande A., Yu M., Lo G. Q., Kwong D. L., Hone J., Wong C. W.. Regenerative Oscillation and Four-Wave Mixing in Graphene Optoelectronics. Nat. Photonics. 2012;6:554–559. doi: 10.1038/nphoton.2012.147. DOI

Autere A., Jussila H., Dai Y. Y., Wang Y. D., Lipsanen H., Sun Z. P.. Nonlinear Optics with 2D Layered Materials. Adv. Mater. 2018;30:1705963. doi: 10.1002/adma.201705963. PubMed DOI

Ye Z. L., Cao T., O’Brien K., Zhu H. Y., Yin X. B., Wang Y., Louie S. G., Zhang X.. Probing Excitonic Dark States in Single-Layer Tungsten Disulphide. Nature. 2014;513:214–218. doi: 10.1038/nature13734. PubMed DOI

Martinez A., Sun Z. P.. Nanotube and Graphene Saturable Absorbers for Fibre Lasers. Nat. Photonics. 2013;7:842–845. doi: 10.1038/nphoton.2013.304. DOI

Li W., Chen B. G., Meng C., Fang W., Xiao Y., Li X. Y., Hu Z. F., Xu Y. X., Tong L. M., Wang H. Q., Liu W. T., Bao J. M., Shen Y. R.. Ultrafast All-Optical Graphene Modulator. Nano Lett. 2014;14:955–959. doi: 10.1021/nl404356t. PubMed DOI

Yoshikawa N., Tamaya T., Tanaka K.. High-Harmonic Generation in Graphene Enhanced by Elliptically Polarized Light Excitation. Science. 2017;356:736–738. doi: 10.1126/science.aam8861. PubMed DOI

Liu H. Z., Li Y. L., You Y. S., Ghimire S., Heinz T. F., Reis D. A.. High-Harmonic Generation from an Atomically Thin Semiconductor. Nat. Phys. 2017;13:262–265. doi: 10.1038/nphys3946. DOI

Wang Y. D., Iyikanat F., Bai X. Y., Hu X. R., Das S., Dai Y. Y., Zhang Y., Du L. J., Li S. S., Lipsanen H., García de Abajo F. J., Sun Z. P.. Optical Control of High-Harmonic Generation at the Atomic Thickness. Nano Lett. 2022;22:8455–8462. doi: 10.1021/acs.nanolett.2c02711. PubMed DOI PMC

Langer F., Hohenleutner M., Schmid C. P., Poellmann C., Nagler P., Korn T., Schüller C., Sherwin M. S., Huttner U., Steiner J. T., Koch S. W., Kira M., Huber R.. Lightwave-Driven Quasiparticle Collisions on a Subcycle Timescale. Nature. 2016;533:225–229. doi: 10.1038/nature17958. PubMed DOI PMC

Seyler K. L., Schaibley J. R., Gong P., Rivera P., Jones A. M., Wu S. F., Yan J. Q., Mandrus D. G., Yao W., Xu X. D.. Electrical Control of Second-Harmonic Generation in a WSe2 Monolayer Transistor. Nat. Nanotechnol. 2015;10:407–411. doi: 10.1038/nnano.2015.73. PubMed DOI

Hong H., Wu C. C., Zhao Z. X., Zuo Y. G., Wang J. H.. et al. Giant Enhancement of Optical Nonlinearity in Two-Dimensional Materials by Multiphoton-Excitation Resonance Energy Transfer from Quantum Dots. Nat. Photonics. 2021;15:510–515. doi: 10.1038/s41566-021-00801-2. DOI

Du L. J., Huang Z. H., Zhang J., Ye F. W., Dai Q., Deng H., Zhang G. Y., Sun Z. P.. Nonlinear Physics of Moiré Superlattices. Nat. Mater. 2024;23:1179–1192. doi: 10.1038/s41563-024-01951-8. PubMed DOI

Dai Y. Y., Wang Y. D., Das S., Li S. S., Xue H., Mohsen A., Sun Z. P.. Broadband Plasmon-Enhanced Four-Wave Mixing in Monolayer MoS2 . Nano Lett. 2021;21:6321–6327. doi: 10.1021/acs.nanolett.1c02381. PubMed DOI PMC

Pelgrin V., Yoon H. H., Cassan E., Sun Z.. Hybrid Integration of 2D Materials for on-Chip Nonlinear Photonics. Light Adv. Manuf. 2023;4:168. doi: 10.37188/lam.2023.014. DOI

Chen K., Zhou X., Cheng X., Qiao R. X., Cheng Y., Liu C., Xie Y. D., Yu W. T., Yao F. R., Sun Z. P., Wang F., Liu K. H., Liu Z. F.. Graphene Photonic Crystal Fibre with Strong and Tunable Light-Matter Interaction. Nat. Photonics. 2019;13:754–759. doi: 10.1038/s41566-019-0492-5. DOI

Datta I., Chae S. H., Bhatt G. R., Tadayon M. A., Li B. C., Yu Y. L., Park C., Park J., Cao L. Y., Basov D. N., Hone J., Lipson M.. Low-Loss Composite Photonic Platform Based on 2D Semiconductor Monolayers. Nat. Photonics. 2020;14:256–262. doi: 10.1038/s41566-020-0590-4. DOI

Hong H., Huang C., Ma C. J., Qi J. J., Shi X. P., Liu C., Wu S. W., Sun Z. P., Wang E. G., Liu K. H.. Twist Phase Matching in Two-Dimensional Materials. Phys. Rev. Lett. 2023;131:233801. doi: 10.1103/PhysRevLett.131.233801. PubMed DOI

Higuchi T., Heide C., Ullmann K., Weber H. B., Hommelhoff P.. Light-Field-Driven Currents in Graphene. Nature. 2017;550:224–228. doi: 10.1038/nature23900. PubMed DOI

Heide C., Keathley P. D., Kling M. F.. Petahertz Electronics. Nat. Rev. Phys. 2024;6:648–662. doi: 10.1038/s42254-024-00764-7. DOI

Guo Q., Qi X.-Z., Zhang L., Gao M., Hu S., Zhou W., Zang W., Zhao X., Wang J., Yan B., Xu M., Wu Y.-K., Eda G., Xiao Z., Yang S. A., Gou H., Feng Y. P., Guo G.-C., Zhou W., Ren X.-F., Qiu C.-W., Pennycook S. J., Wee A. T. S.. Ultrathin Quantum Light Source with van der Waals NbOCl2 Crystal. Nature. 2023;613:53–59. doi: 10.1038/s41586-022-05393-7. PubMed DOI

Trovatello, C. ; Ferrante, C. ; Yang, B. ; Bajo, J. ; Braun, B. ; Xu, X. ; Peng, Z. H. ; Jenke, P. K. ; Ye, A. ; Delor, M. ; Basov, D. N. ; Park, J. ; Walther, P. ; Rozema, L. A. ; Dean, C. ; Marini, A. ; Cerullo, G. ; Schuck, P. J. . Quasi-Phase-Matched up- and down-Conversion in Periodically Poled Layered Semiconductors. Nat. Photon. 2025, 19, 291. 10.1038/s41566-024-01602-z DOI

Xu X., Trovatello C., Mooshammer F., Shao Y., Zhang S., Yao K., Basov D. N., Cerullo G., Schuck P. J.. Towards Compact Phase-Matched and Waveguided Nonlinear Optics in Atomically Layered Semiconductors. Nat. Photonics. 2022;16:698–706. doi: 10.1038/s41566-022-01053-4. DOI

Weissflog M. A., Fedotova A., Tang Y., Santos E. A., Laudert B., Shinde S., Abtahi F., Afsharnia M., Pérez I. P., Ritter S., Qin H., Janousek J., Shradha S., Staude I., Saravi S., Pertsch T., Setzpfandt F., Lu Y., Eilenberger F.. A Tunable Transition Metal Dichalcogenide Entangled Photon-Pair Source. Nat. Commun. 2024;15:7600. doi: 10.1038/s41467-024-51843-3. PubMed DOI PMC

Trovatello C., Marini A., Cotrufo M., Alù A., Schuck P. J., Cerullo G.. Tunable Optical Nonlinearities in Layered Materials. ACS Photonics. 2024;11:2860–2873. doi: 10.1021/acsphotonics.4c00521. DOI

Törmä P.. Essay: Where Can Quantum Geometry Lead Us? Phys. Rev. Lett. 2023;131:240001. doi: 10.1103/PhysRevLett.131.240001. PubMed DOI

Komissarov I., Holder T., Queiroz R.. The Quantum Geometric Origin of Capacitance in Insulators. Nat. Commun. 2024;15:4621. doi: 10.1038/s41467-024-48808-x. PubMed DOI PMC

Trovatello C., Marini A., Xu X., Lee C., Liu F., Curreli N., Manzoni C., Dal Conte S., Yao K., Ciattoni A., Hone J., Zhu X., Schuck P. J., Cerullo G.. Optical Parametric Amplification by Monolayer Transition Metal Dichalcogenides. Nat. Photonics. 2021;15:6–10. doi: 10.1038/s41566-020-00728-0. DOI

Ciattoni A., Marini A., Rizza C., Conti C.. Phase-Matching-Free Parametric Oscillators Based on Two-Dimensional Semiconductors. Light Sci. Appl. 2018;7:5. doi: 10.1038/s41377-018-0011-3. PubMed DOI PMC

You J., Luo Y., Yang J., Zhang J., Yin K., Wei K., Zheng X., Jiang T.. Hybrid/Integrated Silicon Photonics Based on 2D Materials in Optical Communication Nanosystems. Laser Photon. Rev. 2020;14:2000239. doi: 10.1002/lpor.202000239. DOI

Vyshnevyy A. A., Ermolaev G. A., Grudinin D. V., Voronin K. V., Kharichkin I., Mazitov A., Kruglov I. A., Yakubovsky D. I., Mishra P., Kirtaev R. V., Arsenin A. V., Novoselov K. S., Martin-Moreno L., Volkov V. S.. Van der Waals Materials for Overcoming Fundamental Limitations in Photonic Integrated Circuitry. Nano Lett. 2023;23:8057–8064. doi: 10.1021/acs.nanolett.3c02051. PubMed DOI

Datta I., Gil-Molina A., Chae S. H., Zhou V., Hone J., Lipson M.. 2D Material Platform for Overcoming the Amplitude−Phase Tradeoff in Ring Resonators. Optica. 2024;11:48–57. doi: 10.1364/OPTICA.498484. DOI

Abdelwahab I., Tilmann B., Wu Y., Giovanni D., Verzhbitskiy I., Zhu M., Berté R., Xuan F., Menezes L. de S., Eda G., Sum T. C., Quek S. Y., Maier S. A., Loh K. P.. Giant Second-Harmonic Generation in Ferroelectric NbOI2 . Nat. Photonics. 2022;16:644–650. doi: 10.1038/s41566-022-01021-y. DOI

Ye L., Zhou W., Huang D., Jiang X., Guo Q., Cao X., Yan S., Wang X., Jia D., Jiang D., Wang Y., Wu X., Zhang X., Li Y., Lei H., Gou H., Huang B.. Manipulation of Nonlinear Optical Responses in Layered Ferroelectric Niobium Oxide Dihalides. Nat. Commun. 2023;14:5911. doi: 10.1038/s41467-023-41383-7. PubMed DOI PMC

Veeralingam S., Durai L., Yadav P., Badhulika S.. Record-High Responsivity and Detectivity of a Flexible Deep-Ultraviolet Photodetector Based on Solid State-Assisted Synthesized hBN Nanosheets. ACS Appl. Electron. Mater. 2021;3:1162–1169. doi: 10.1021/acsaelm.0c01021. DOI

Fryett T. K., Seyler K. L., Zheng J., Liu C.-H., Xu X., Majumdar A.. Silicon Photonic Crystal Cavity Enhanced Second-Harmonic Generation from Monolayer WSe2 . 2D Mater. 2017;4:15031. doi: 10.1088/2053-1583/4/1/015031. DOI

Ngo G. Q., Najafidehaghani E., Gan Z., Khazaee S., Siems M. P., George A., Schartner E. P., Nolte S., Ebendorff-Heidepriem H., Pertsch T., Tuniz A., Schmidt M. A., Peschel U., Turchanin A., Eilenberger F.. In-Fibre Second-Harmonic Generation with Embedded Two-Dimensional Materials. Nat. Photonics. 2022;16:769–776. doi: 10.1038/s41566-022-01067-y. DOI

Zuo Y., Yu W., Liu C., Cheng X., Qiao R., Liang J., Zhou X., Wang J., Wu M., Zhao Y., Gao P., Wu S., Sun Z., Liu K., Bai X., Liu Z.. Optical Fibres with Embedded Two-Dimensional Materials for Ultrahigh Nonlinearity. Nat. Nanotechnol. 2020;15:987–991. doi: 10.1038/s41565-020-0770-x. PubMed DOI

Chen J.-H., Xiong Y.-F., Xu F., Lu Y.-Q.. Silica Optical Fiber Integrated with Two-Dimensional Materials: Towards Opto-Electro-Mechanical Technology. Light Sci. Appl. 2021;10:78. doi: 10.1038/s41377-021-00520-x. PubMed DOI PMC

Chen H., Corboliou V., Solntsev A. S., Choi D.-Y., Vincenti M. A., de Ceglia D., de Angelis C., Lu Y., Neshev D. N.. Enhanced Second-Harmonic Generation from Two-Dimensional MoSe2 on a Silicon Waveguide. Light Sci. Appl. 2017;6:e17060. doi: 10.1038/lsa.2017.60. PubMed DOI PMC

Liu N., Yang X., Zhu Z., Chen F., Zhou Y., Xu J., Liu K.. Silicon Nitride Waveguides with Directly Grown WS2 for Efficient Second-Harmonic Generation. Nanoscale. 2021;14:49–54. doi: 10.1039/D1NR06216F. PubMed DOI

Guo Q., Ou Z., Tang J., Zhang J., Lu F., Wu K., Zhang D., Zhang S., Xu H.. Efficient Frequency Mixing of Guided Surface Waves by Atomically Thin Nonlinear Crystals. Nano Lett. 2020;20:7956–7963. doi: 10.1021/acs.nanolett.0c02736. PubMed DOI

Ermolaev G. A., Grudinin D. V., Stebunov Y. V., Voronin K. V., Kravets V. G., Duan J., Mazitov A. B., Tselikov G. I., Bylinkin A., Yakubovsky D. I., Novikov S. M., Baranov D. G., Nikitin A. Y., Kruglov I. A., Shegai T., Alonso-González P., Grigorenko A. N., Arsenin A. V., Novoselov K. S., Volkov V. S.. Giant Optical Anisotropy in Transition Metal Dichalcogenides for Next-Generation Photonics. Nat. Commun. 2021;12:854. doi: 10.1038/s41467-021-21139-x. PubMed DOI PMC

Mooshammer F., Xu X., Trovatello C., Peng Z. H., Yang B., Amontree J., Zhang S., Hone J., Dean C. R., Schuck P. J., Basov D. N.. Enabling Waveguide Optics in Rhombohedral-Stacked Transition Metal Dichalcogenides with Laser-Patterned Grating Couplers. ACS Nano. 2024;18:4118–4130. doi: 10.1021/acsnano.3c08522. PubMed DOI

Sortino, L. ; Biechteler, J. ; Lafeta, L. ; Kühner, L. ; Hartschuh, A. ; Menezes, L. de S. ; Maier, S. A. ; Tittl, A. . Van der Waals Heterostructure Metasurfaces: Atomic-Layer Assembly of Ultrathin Optical Cavities. arXiv 2024, 2407.16480. 10.48550/arXiv.2407.16480 DOI

Zograf G., Polyakov A. Yu., Bancerek M., Antosiewicz T. J., Küçüköz B., Shegai T. O.. Combining Ultrahigh Index with Exceptional Nonlinearity in Resonant Transition Metal Dichalcogenide Nanodisks. Nat. Photonics. 2024;18:751–757. doi: 10.1038/s41566-024-01444-9. DOI

Lee J., Tymchenko M., Argyropoulos C., Chen P.-Y., Lu F., Demmerle F., Boehm G., Amann M.-C., Alù A., Belkin M. A.. Giant Nonlinear Response from Plasmonic Metasurfaces Coupled to Intersubband Transitions. Nature. 2014;511:65–69. doi: 10.1038/nature13455. PubMed DOI

Nefedkin N., Mekawy A., Krakofsky J., Wang Y., Belyanin A., Belkin M., Alù A.. Overcoming Intensity Saturation in Nonlinear Multiple-Quantum-Well Metasurfaces for High-Efficiency Frequency Upconversion. Adv. Mater. 2023;35:2106902. doi: 10.1002/adma.202106902. PubMed DOI

Munkhbat B., Baranov D. G., Stührenberg M., Wersäll M., Bisht A., Shegai T.. Self-Hybridized Exciton-Polaritons in Multilayers of Transition Metal Dichalcogenides for Efficient Light Absorption. ACS Photonics. 2019;6:139–147. doi: 10.1021/acsphotonics.8b01194. DOI

Weber T., Kühner L., Sortino L., Ben Mhenni A., Wilson N. P., Kühne J., Finley J. J., Maier S. A., Tittl A.. Intrinsic Strong Light-Matter Coupling with Self-Hybridized Bound States in the Continuum in van der Waals Metasurfaces. Nat. Mater. 2023;22:970–976. doi: 10.1038/s41563-023-01580-7. PubMed DOI PMC

Gaida J. H., Lourenço-Martins H., Sivis M., Rittmann T., Feist A., García de Abajo F. J., Ropers C.. Attosecond Electron Microscopy by Free-Electron Homodyne Detection. Nat. Photonics. 2024;18:509–515. doi: 10.1038/s41566-024-01380-8. DOI

Xu D., Mandal A., Baxter J. M., Cheng S.-W., Lee I., Su H., Liu S., Reichman D. R., Delor M.. Ultrafast Imaging of Polariton Propagation and Interactions. Nat. Commun. 2023;14:3881. doi: 10.1038/s41467-023-39550-x. PubMed DOI PMC

Busschaert S., Reimann R., Cavigelli M., Khelifa R., Jain A., Novotny L.. Transition Metal Dichalcogenide Resonators for Second Harmonic Signal Enhancement. ACS Photonics. 2020;7:2482–2488. doi: 10.1021/acsphotonics.0c00751. DOI

Karimi E., Schulz S. A., De Leon I., Qassim H., Upham J., Boyd R. W.. Generating Optical Orbital Angular Momentum at Visible Wavelengths Using a Plasmonic Metasurface. Light Sci. Appl. 2014;3:e167. doi: 10.1038/lsa.2014.48. DOI

Overvig A., Alù A.. Diffractive Nonlocal Metasurfaces. Laser Photon. Rev. 2022;16:2100633. doi: 10.1002/lpor.202100633. DOI

Nookala N., Lee J., Tymchenko M., Sebastian Gomez-Diaz J., Demmerle F., Boehm G., Lai K., Shvets G., Amann M.-C., Alu A., Belkin M.. Ultrathin Gradient Nonlinear Metasurface with a Giant Nonlinear Response. Optica. 2016;3:283. doi: 10.1364/OPTICA.3.000283. DOI

Graffitti F., D’Ambrosio V., Proietti M., Ho J., Piccirillo B., de Lisio C., Marrucci L., Fedrizzi A.. Hyperentanglement in Structured Quantum Light. Phys. Rev. Res. 2020;2:43350. doi: 10.1103/PhysRevResearch.2.043350. DOI

Dogadov O., Trovatello C., Yao B., Soavi B., Cerullo G.. Parametric Nonlinear Optics with Layered Materials and Related Heterostructures. Laser Photonic Rev. 2022;16:2100726. doi: 10.1002/lpor.202100726. DOI

Yao K., Finney N. R., Zhang J., Moore S. L., Xian L., Tancogne-Dejean N., Liu F., Ardelean J., Xu X., Halbertal D., Watanabe K., Taniguchi T., Ochoa H., Asenjo-Garcia A., Zhu X., Basov D. N., Rubio A., Dean C. R., Hone J., Schuck P. J.. Enhanced Tunable Second Harmonic Generation from Twistable Interfaces and Vertical Superlattices in Boron Nitride Homostructures. Sci. Adv. 2021;7:10. doi: 10.1126/sciadv.abe8691. PubMed DOI PMC

Masson S. J., Asenjo-Garcia A.. Universality of Dicke Superradiance in Arrays of Quantum Emitters. Nat. Commun. 2022;13:2285. doi: 10.1038/s41467-022-29805-4. PubMed DOI PMC

Rainò G., Becker M. A., Bodnarchuk M. I., Mahrt R. F., Kovalenko M. V., Stöferle T.. Superfluorescence from Lead Halide Perovskite Quantum Dot Superlattices. Nature. 2018;563:671–675. doi: 10.1038/s41586-018-0683-0. PubMed DOI

Kauranen M., Zayats A. V.. Nonlinear Plasmonics. Nat. Photonics. 2012;6:737–748. doi: 10.1038/nphoton.2012.244. DOI

Khurgin J. B.. Nonlinear Optics from the Viewpoint of Interaction Time. Nat. Photonics. 2023;17:545–551. doi: 10.1038/s41566-023-01191-3. DOI

Mikhailov S. A.. Quantum Theory of the Third-Order Nonlinear Electrodynamic Effects of Graphene. Phys. Rev. B. 2016;93:085403. doi: 10.1103/PhysRevB.93.085403. DOI

Mikhailov S. A.. Theory of the Giant Plasmon-Enhanced Second-Harmonic Generation in Graphene and Semiconductor Two-Dimensional Electron Systems. Phys. Rev. B. 2011;84:045432. doi: 10.1103/PhysRevB.84.045432. DOI

Cox J. D., García de Abajo F. J.. Nonlinear Graphene Nanoplasmonics. Acc. Chem. Res. 2019;52:2536–2547. doi: 10.1021/acs.accounts.9b00308. PubMed DOI

Kundys D., Van Duppen B., Marshall O. P., Rodriguez F., Torre I., Tomadin A., Polini M., Grigorenko A. N.. Nonlinear Light Mixing by Graphene Plasmons. Nano Lett. 2018;18:282–287. doi: 10.1021/acs.nanolett.7b04114. PubMed DOI

Constant T. J., Hornett S. M., Chang D. E., Hendry E.. All-Optical Generation of Surface Plasmons in Graphene. Nat. Phys. 2016;12:124–127. doi: 10.1038/nphys3545. DOI

Jadidi M. M., König-Otto J. C., Winnerl S., Sushkov A. B., Drew H. D., Murphy T. E., Mittendorff M.. Nonlinear Terahertz Absorption of Graphene Plasmons. Nano Lett. 2016;16:2734–2738. doi: 10.1021/acs.nanolett.6b00405. PubMed DOI

Dias E. J. C., Yu R., García de Abajo F. J.. Thermal Manipulation of Plasmons in Atomically Thin Films. Light Sci. Appl. 2020;9:87. doi: 10.1038/s41377-020-0322-z. PubMed DOI PMC

Iyikanat F., Konečná A., García de Abajo F. J.. Nonlinear Tunable Vibrational Response in Hexagonal Boron Nitride. ACS Nano. 2021;15:13415–13426. doi: 10.1021/acsnano.1c03775. PubMed DOI PMC

Ginsberg J. S., Jadidi M. M., Zhang J., Chen C. Y., Tancogne-Dejean N., Chae S. H., Patwardhan G. N., Xian L., Watanabe K., Taniguchi T., Hone J., Rubio A., Gaeta A. L.. Phonon-Enhanced Nonlinearities in Hexagonal Boron Nitride. Nat. Commun. 2023;14:7685. doi: 10.1038/s41467-023-43501-x. PubMed DOI PMC

Morozov S., Wolff C., Mortensen N. A.. Room-Temperature Low-Voltage Control of Excitonic Emission in Transition Metal Dichalcogenide Monolayers. Adv. Opt. Mater. 2021;9:2101305. doi: 10.1002/adom.202101305. DOI

Xu D., Peng Z. H., Trovatello C., Cheng S.-W., Xu X., Sternbach A., Basov D. N., Schuck P. J., Delor M.. Spatiotemporal imaging of nonlinear optics in van der Waals waveguides. Nat. Nanotechnol. 2025;20:374–380. doi: 10.1038/s41565-024-01849-1. PubMed DOI

Zhang Y., Wang Y., Dai Y., Bai X., Hu X., Du L., Hu H., Yang X., Li D., Dai Q., Hasan T., Sun Z.. Chirality Logic Gates. Sci. Adv. 2022;8:eabq8246. doi: 10.1126/sciadv.abq8246. PubMed DOI PMC

Qian H., Xiao Y., Liu Z.. Giant Kerr Response of Ultrathin Gold Films from Quantum Size Effect. Nat. Commun. 2016;7:13153. doi: 10.1038/ncomms13153. PubMed DOI PMC

Rodríguez Echarri Á., Cox J. D., Iyikanat F., García de Abajo F. J.. Nonlinear Plasmonic Response in Atomically Thin Metal Films. Nanophotonics. 2021;10:4149–4159. doi: 10.1515/nanoph-2021-0422. PubMed DOI PMC

Pan C., Tong Y., Qian H., Krasavin A. V., Li J., Zhu J., Zhang Y., Cui B., Li Z., Wu C., Liu L., Li L., Guo X., Zayats A. V., Tong L., Wang P.. Large Area Single Crystal Gold of Single Nanometer Thickness for Nanophotonics. Nat. Commun. 2024;15:2840. doi: 10.1038/s41467-024-47133-7. PubMed DOI PMC

Liu X., Yi J., Li Q., Yang S., Bao W., Ropp C., Lan S., Wang Y., Zhang X.. Nonlinear Optics at Excited States of Exciton Polaritons in Two-Dimensional Atomic Crystals. Nano Lett. 2020;20:1676–1685. doi: 10.1021/acs.nanolett.9b04811. PubMed DOI

Li Y., Kang M., Shi J., Wu K., Zhang S., Xu H.. Transversely Divergent Second Harmonic Generation by Surface Plasmon Polaritons on Single Metallic Nanowires. Nano Lett. 2017;17:7803–7808. doi: 10.1021/acs.nanolett.7b04016. PubMed DOI

Calajó G., Jenke P. K., Rozema L. A., Walther P., Chang D. E., Cox J. D.. Nonlinear Quantum Logic with Colliding Graphene Plasmons. Phys. Rev. Research. 2023;5:013188. doi: 10.1103/PhysRevResearch.5.013188. DOI

Jelver L., Cox J. D.. Nonlinear Thermoplasmonics in Graphene Nanostructures. Nano Lett. 2024;24:13775–13782. doi: 10.1021/acs.nanolett.4c04048. PubMed DOI

Menabde S. G., Heiden J. T., Cox J. D., Mortensen N. A., Jang M. S.. Image Polaritons in van der Waals Crystals. Nanophotonics. 2022;11:2433–2452. doi: 10.1515/nanoph-2021-0693. PubMed DOI PMC

Khestanova E., Shahnazaryan S., Kozin V. K., Kondratyev V. I., Krizhanovskii D. N., Skolnick M. S., Shelykh I. A., Iorsh I. V., Kravtsov V.. Electrostatic Control of Nonlinear Photonic-Crystal Polaritons in a Monolayer Semiconductor. Nano Lett. 2024;24:7350–7357. doi: 10.1021/acs.nanolett.4c01475. PubMed DOI

Sun Z., Basov D. N., Fogler M. M.. Graphene as a Source of Entangled Plasmons. Phys. Rev. Research. 2022;4:023208. doi: 10.1103/PhysRevResearch.4.023208. DOI

Rodríguez Echarri Á., Cox J. D., García de Abajo F. J.. Direct generation of entangled photon pairs in nonlinear optical waveguides. Nanophotonics. 2022;11:1021–1032. doi: 10.1515/nanoph-2021-0736. PubMed DOI PMC

Rasmussen T. P., Rodríguez Echarri Á., Cox J. D., García de Abajo F. J.. Generation of Entangled Waveguided Photon Pairs by Free Electrons. Sci. Adv. 2024;10:eadn6312. doi: 10.1126/sciadv.adn6312. PubMed DOI

Cox J. D., García de Abajo F. J.. Electrically Tunable Nonlinear Plasmonics in Graphene Nanoislands. Nat. Commun. 2014;5:5725. doi: 10.1038/ncomms6725. PubMed DOI

Cox J. D., Marini A., García de Abajo F. J.. Plasmon-Assisted High-Harmonic Generation in Graphene. Nat. Commun. 2017;8:14380. doi: 10.1038/ncomms14380. PubMed DOI PMC

Cox J. D., García de Abajo F. J.. Single-Plasmon Thermo-Optical Switching in Graphene. Nano Lett. 2019;19:3743–3750. doi: 10.1021/acs.nanolett.9b00879. PubMed DOI

Mak K. F.. et al. Light-Valley Interactions in 2D Semiconductors. Nat. Photon. 2018;12:451–460. doi: 10.1038/s41566-018-0204-6. DOI

Mak K. F.. et al. The Valley Hall Effect in MoS2 Transistors. Science. 2014;344:1489–1492. doi: 10.1126/science.1250140. PubMed DOI

Sie E.. et al. Large, Valley-Exclusive Bloch-Siegert Shift in Monolayer WS2 . Science. 2017;355:1066–1069. doi: 10.1126/science.aal2241. PubMed DOI

Mak K. F.. et al. Control of Valley Polarization in Monolayer MoS2 by Optical Helicity. Nat. Nanotechnol. 2012;7:494–498. doi: 10.1038/nnano.2012.96. PubMed DOI

Wang G.. et al. Giant Enhancement of the Optical Second-Harmonic Emission of WSe2 Monolayers by Excitation at Exciton Resonances. Phys. Rev. Lett. 2015;114:097403. doi: 10.1103/PhysRevLett.114.097403. PubMed DOI

Zhu C. R.. et al. Exciton Valley Dynamics Probed by Kerr Rotation in WSe2 Monolayers. Phys. Rev. B. 2014;90:161302. doi: 10.1103/PhysRevB.90.161302. DOI

LaMountain T.. et al. Valley-Selective Optical Stark Effect Probed by Kerr Rotation. Phys. Rev. B. 2018;97:045307. doi: 10.1103/PhysRevB.97.045307. DOI

Ho Y. W.. et al. Measuring Valley Polarization in Two-Dimensional Materials with Second-Harmonic Spectroscopy. ACS Photonics. 2020;7:925–931. doi: 10.1021/acsphotonics.0c00174. DOI

Herrmann P.. et al. Nonlinear All-Optical Coherent Generation and Read-Out of Valleys in Atomically Thin Semiconductors. Small. 2023;19:2301126. doi: 10.1002/smll.202301126. PubMed DOI

Wu S., Fei Z., Sun Z., Yi Y., Xia W., Yan D., Guo Y., Shi Y., Yan J., Cobden D. H.. et al. Extrinsic Nonlinear Kerr Rotation in Topological Materials under a Magnetic Field. ACS Nano. 2023;17:18905–18913. doi: 10.1021/acsnano.3c04153. PubMed DOI

Groot Koerkamp M., Rasing T.. Giant Nonlinear Kerr Effects. J. Magn. Magn. Mater. 1996;156:213–214. doi: 10.1016/0304-8853(95)00844-6. DOI

Herrmann P.. et al. Nonlinear valley selection rules and all-optical probe of broken time-reversal symmetry in monolayer WSe2 . Nat. Photonics. 2025;19:300–306. doi: 10.1038/s41566-024-01591-z. DOI

Ahn Y.. et al. Electric Quadrupole Second-Harmonic Generation Revealing Dual Magnetic Orders in a Magnetic Weyl Semimetal. Nat. Photonics. 2024;18:26–31. doi: 10.1038/s41566-023-01300-2. DOI

Tyulnev I.. et al. Valleytronics in Bulk MoS2 with a Topological Field. Nature. 2024;628:746–751. doi: 10.1038/s41586-024-07156-y. PubMed DOI

McIver J. W., Schulte B., Stein F.-U., Matsuyama T., Jotzu G., Meier G., Cavalleri A.. Light-Induced Anomalous Hall Effect in Graphene. Nat. Phys. 2020;16:38–41. doi: 10.1038/s41567-019-0698-y. PubMed DOI PMC

Haldane F. D. M., Raghu S.. Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry. Phys. Rev. Lett. 2008;100:013904. doi: 10.1103/PhysRevLett.100.013904. PubMed DOI

Morimoto T., Nagaosa N.. Topological Nature of Nonlinear Optical Effects in Solids. Sci. Adv. 2016;2:e1501524. doi: 10.1126/sciadv.1501524. PubMed DOI PMC

Matsubara M.. et al. Giant Third-Order Magneto-Optical Rotation in Ferromagnetic EuO. Phys. Rev. B. 2012;86:195127. doi: 10.1103/PhysRevB.86.195127. DOI

Xiao D.. et al. Berry Phase Effects on Electronic Properties. Rev. Mod. Phys. 2010;82:1959–2007. doi: 10.1103/RevModPhys.82.1959. DOI

Huang B., Clark G., Navarro-Moratalla E., Klein D. R., Cheng R., Seyler K. L., Zhong D., Schmidgall E., McGuire M. A., Cobden D. H., Yao W., Xiao D., Jarillo-Herrero P., Xu X.. Layer-Dependent Ferromagnetism in a Van der Waals Crystal Down to the Monolayer Limit. Nature. 2017;546:270–273. doi: 10.1038/nature22391. PubMed DOI

Gong C., Li L., Li Z., Ji H., Stern A., Xia Y., Cao T., Bao W., Wang C., Wang Y., Qiu Z. Q., Cava R. J., Louie S. G., Xia J., Zhang X.. Discovery of Intrinsic Ferromagnetism in Two-Dimensional Van der Waals Crystals. Nature. 2017;546:265–269. doi: 10.1038/nature22060. PubMed DOI

Fiebig M., Pavlov V. V., Pisarev R. V.. Second-Harmonic Generation as a Tool for Studying Electronic and Magnetic Structures of Crystals: Review. J. Opt. Soc. Am. B. 2005;22:96–118. doi: 10.1364/JOSAB.22.000096. DOI

Kirilyuk A., Rasing T.. Magnetization-Induced-Second-Harmonic Generation from Surfaces and Interfaces. J. Opt. Soc. Am. B. 2005;22:148–167. doi: 10.1364/JOSAB.22.000148. DOI

Reif J., Zink J. C., Schneider C.-M., Kirschner J.. Effects of Surface Magnetism on Optical Second Harmonic Generation. Phys. Rev. Lett. 1991;67:2878–2881. doi: 10.1103/PhysRevLett.67.2878. PubMed DOI

Pan R.-P., Wei H. D., Shen Y. R.. Optical Second-Harmonic Generation from Magnetized Surfaces. Phys. Rev. B. 1989;39:1229–1234. doi: 10.1103/PhysRevB.39.1229. PubMed DOI

Fiebig M., Fröhlich D., Krichevtsov B. B., Pisarev R. V.. Second Harmonic Generation and Magnetic-Dipole-Electric-Dipole Interference in Antiferromagnetic Cr2O3 . Phys. Rev. Lett. 1994;73:2127–2130. doi: 10.1103/PhysRevLett.73.2127. PubMed DOI

Sun Z., Yi Y., Song T., Clark G., Huang B., Shan Y., Wu S., Huang D., Gao C., Chen Z., McGuire M., Cao T., Xiao D., Liu W.-T., Yao W., Xu X., Wu S.. Giant Nonreciprocal Second-Harmonic Generation from Antiferromagnetic Bilayer CrI3 . Nature. 2019;572:497–501. doi: 10.1038/s41586-019-1445-3. PubMed DOI

Chu H., Roh C. J., Island J. O., Li C., Lee S., Chen J., Park J.-G., Young A. F., Lee J. S., Hsieh D.. Linear Magnetoelectric Phase in Ultrathin MnPS3 Probed by Optical Second Harmonic Generation. Phys. Rev. Lett. 2020;124:027601. doi: 10.1103/PhysRevLett.124.027601. PubMed DOI

Ni Z., Haglund A. V., Wang H., Xu B., Bernhard C., Mandrus D. G., Qian X., Mele E. J., Kane C. L., Wu L.. Imaging the Néel Vector Switching in the Monolayer Antiferromagnet MnPSe3 with Strain-Controlled Ising Order. Nat. Nanotechnol. 2021;16:782–787. doi: 10.1038/s41565-021-00885-5. PubMed DOI

Lee K., Dismukes A. H., Telford E. J., Wiscons R. A., Wang J., Xu X., Nuckolls C., Dean C. R., Roy X., Zhu X.. Magnetic Order and Symmetry in the 2D Semiconductor CrSBr. Nano Lett. 2021;21:3511–3517. doi: 10.1021/acs.nanolett.1c00219. PubMed DOI

Birss, R. R. Symmetry and Magnetism; North-Holland Publishing Company, 1964.

Kumar N., Najmaei S., Cui Q., Ceballos F., Ajayan P. M., Lou J., Zhao H.. Second Harmonic Microscopy of Monolayer MoS2 . Phys. Rev. B. 2013;87:161403. doi: 10.1103/PhysRevB.87.161403. DOI

Malard L. M., Alencar T. V., Barboza A. P. M., Mak K. F., de Paula A. M.. Observation of Intense Second Harmonic Generation from MoS2 Atomic Crystals. Phys. Rev. B. 2013;87:201401. doi: 10.1103/PhysRevB.87.201401. DOI

Zhou X., Cheng J., Zhou Y., Cao T., Hong H., Liao Z., Wu S., Peng H., Liu K., Yu D.. Strong Second-Harmonic Generation in Atomic Layered GaSe. J. Am. Chem. Soc. 2015;137:7994–997. doi: 10.1021/jacs.5b04305. PubMed DOI

Zur Y., Noah A., Boix-Constant C., Mañas-Valero S., Fridman N., Rama-Eiroa R., Huber M. E., Santos E. J. G., Coronado E., Anahory Y.. Magnetic Imaging and Domain Nucleation in CrSBr Down to the 2D Limit. Adv. Mater. 2023;35:2307195. doi: 10.1002/adma.202307195. PubMed DOI

Thiel L., Wang Z., Tschudin M., Rohner D., Gutiérrez-Lezama I., Ubrig N., Gibertini M., Giannini E., Morpurgo A., Maletinsky P.. Probing Magnetism in 2D Materials at the Nanoscale with Single-Spin Microscopy. Science. 2019;364:973–976. doi: 10.1126/science.aav6926. PubMed DOI

Wang Z., Hong C., Sun Z., Wu S., Liang B., Duan X., Liu W.-T., Wu S.. Contrast-Enhanced Phase-Resolved Second Harmonic Generation Microscopy. Opt. Lett. 2024;49:2117–2120. doi: 10.1364/OL.520814. PubMed DOI

Sun Z., Hong C., Chen Y., Sheng Z., Wu S., Wang Z., Liang B., Liu W.-T., Yuan Z., Wu Y.. et al. Resolving and Routing the Magnetic Polymorphs in 2D Layered Antiferromagnet. Nat. Mater. 2025;24:226–233. doi: 10.1038/s41563-024-02074-w. PubMed DOI

Koopmans B., Koerkamp M. G., Rasing T., van den Berg H.. Observation of Large Kerr Angles in the Nonlinear Optical Response from Magnetic Multilayers. Phys. Rev. Lett. 1995;74:3692–3695. doi: 10.1103/PhysRevLett.74.3692. PubMed DOI

Ogawa Y., Yamada H., Ogasawara T., Arima T., Okamoto H., Kawasaki M., Tokura Y.. Nonlinear Magneto-Optical Kerr Rotation of an Oxide Superlattice with Artificially Broken Symmetry. Phys. Rev. Lett. 2003;90:217403. doi: 10.1103/PhysRevLett.90.217403. PubMed DOI

Zhang Y., Huang D., Shan Y., Jiang T., Zhang Z., Liu K., Shi L., Cheng J., Sipe J. E., Liu W.-T.. et al. Doping-Induced Second-Harmonic Generation in Centrosymmetric Graphene from Quadrupole Response. Phys. Rev. Lett. 2019;122:047401. doi: 10.1103/PhysRevLett.122.047401. PubMed DOI

Yao W., Xiao D., Niu Q.. Valley-Dependent Optoelectronics from Inversion Symmetry Breaking. Phys. Rev. B. 2008;77:235406. doi: 10.1103/PhysRevB.77.235406. DOI

Arora A., Rudner M. S., Song J. C. W.. Quantum Plasmonic Nonreciprocity in Parity-Violating Magnets. Nano Lett. 2022;22:9351–9357. doi: 10.1021/acs.nanolett.2c03126. PubMed DOI

Xiong Y., Shi L.-K., Song J. C. W.. Atomic Configuration Controlled Photocurrent in van der Waals Homostructures. 2D Mater. 2021;8:035008. doi: 10.1088/2053-1583/abe762. DOI

Ahn J., Guo G.-Y., Nagaosa N., Vishwanath A.. Riemannian Geometry of Resonant Optical Responses. Nat. Phys. 2022;18:290–295. doi: 10.1038/s41567-021-01465-z. DOI

Akamatsu T.. et al. A van der Waals Interface that Creates In-Plane Polarization and a Spontaneous Photovoltaic Effect. Science. 2021;372:68–72. doi: 10.1126/science.aaz9146. PubMed DOI

Dong Y., Yang M.-M., Yoshii M., Matsuoka S., Kitamura S., Hasegawa T., Ogawa N., Morimoto T., Ideue T., Iwasa Y.. Giant Bulk Piezophotovoltaic Effect in 3R-MoS2 . Nat. Nanotechnol. 2023;18:36–41. doi: 10.1038/s41565-022-01252-8. PubMed DOI

Kumar, R. K. ; et al. Terahertz Photocurrent Probe of Quantum Geometry and Interactions in Magic-Angle Twisted Bilayer Graphene. Nat. Mater. 2025, 10.1038/s41563-025-02180-3. PubMed DOI

Sodemann I., Fu L.. Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials. Phys. Rev. Lett. 2015;115:216806. doi: 10.1103/PhysRevLett.115.216806. PubMed DOI

Ma Q.. et al. Observation of the Nonlinear Hall Effect under Time-Reversal-Symmetric Conditions. Nature. 2019;565:337–342. doi: 10.1038/s41586-018-0807-6. PubMed DOI

Gao Y., Yang S. A., Niu Q.. Field Induced Positional Shift of Bloch Electrons and Its Dynamical Implications. Phys. Rev. Lett. 2014;112:166601. doi: 10.1103/PhysRevLett.112.166601. PubMed DOI

Gao A.. et al. Quantum Metric Nonlinear Hall Effect in a Topological Antiferromagnetic Heterostructure. Science. 2023;381:181–186. doi: 10.1126/science.adf1506. PubMed DOI

Watanabe H., Yanase Y.. Chiral Photocurrent in Parity-Violating Magnet and Enhanced Response in Topological Antiferromagnet. Phys. Rev. X. 2021;11:011001. doi: 10.1103/PhysRevX.11.011001. DOI

König E. J., Dzero M., Levchenko A., Pesin D. A.. Gyrotropic Hall Effect in Berry-Curved Materials. Phys. Rev. B. 2019;99:155404. doi: 10.1103/PhysRevB.99.155404. DOI

Du Z. Z., Wang C. M., Li S., Lu H.-Z., Xie X. C.. Disorder-Induced Nonlinear Hall Effect with Time-Reversal Symmetry. Nat. Commun. 2019;10:3047. doi: 10.1038/s41467-019-10941-3. PubMed DOI PMC

He P., Koon G. K. W., Isobe H., Tan J. Y., Hu J., Castro Neto A. H., Fu L., Yang H.. Graphene Moiré Superlattices with Giant Quantum Nonlinearity of Chiral Bloch Electrons. Nat. Nanotechnol. 2022;17:378–383. doi: 10.1038/s41565-021-01060-6. PubMed DOI

Ma D., Arora A., Vignale G., Song J. C. W.. Anomalous Skew-Scattering Nonlinear Hall Effect and Chiral Photocurrents in PT-Symmetric Antiferromagnets. Phys. Rev. Lett. 2023;131:076601. doi: 10.1103/PhysRevLett.131.076601. PubMed DOI

Shi L.-K., Matsyshyn O., Song J. C. W., Villadiego I. S.. Berry-Dipole Photovoltaic Demon and the Thermodynamics of Photocurrent Generation within the Optical Gap of Metals. Phys. Rev. B. 2023;107:125151. doi: 10.1103/PhysRevB.107.125151. DOI

Rappoport T. G., Morgado T. A., Lannebère S., Silveirinha M. G.. Engineering Transistorlike Optical Gain in Two-Dimensional Materials with Berry Curvature Dipoles. Phys. Rev. Lett. 2023;130:076901. doi: 10.1103/PhysRevLett.130.076901. PubMed DOI

Ma D., Xiong Y., Song J. C. W.. Metallic Electro-Optic Effect in Gapped Bilayer Graphene. Nano Lett. 2025;25:1260–1265. doi: 10.1021/acs.nanolett.4c03771. PubMed DOI

Shi L.-K., Matsyshyn O., Song J. C. W., Villadiego I. S.. Floquet Fermi Liquid. Phys. Rev. Lett. 2024;132:146402. doi: 10.1103/PhysRevLett.132.146402. PubMed DOI

Gao Y., Zhang Y., Xiao D.. Tunable Layer Circular Photogalvanic Effect in Twisted Bilayers. Phys. Rev. Lett. 2020;124:077401. doi: 10.1103/PhysRevLett.124.077401. PubMed DOI

Matsyshyn O., Xiong Y., Arora A., Song J. C. W.. Layer Photovoltaic Effect in van der Waals Heterostructures. Phys. Rev. B. 2023;107:205306. doi: 10.1103/PhysRevB.107.205306. DOI

Gao, Y. ; Wang, C. ; Xiao, D. . Topological Inverse Faraday Effect in Weyl Semimetals. arXiv 2020, 2009.13392. 10.48550/arXiv.2009.13392 DOI

Xiong Y., Rudner M. S., Song J. C. W.. Antiscreening and Nonequilibrium Layer Electric Phases in Graphene Multilayers. Phys. Rev. Lett. 2024;133:136901. doi: 10.1103/PhysRevLett.133.136901. PubMed DOI

Rudner M. S., Song J. C. W.. Self-Induced Berry Flux and Spontaneous Non-Equilibrium Magnetism. Nat. Phys. 2019;15:1017–1021. doi: 10.1038/s41567-019-0578-5. DOI

Chaudhary S., Lewandowski C., Refael G.. Shift-Current Response as a Probe of Quantum Geometry and Electron-Electron Interactions in Twisted Bilayer Graphene. Phys. Rev. Research. 2022;4:013164. doi: 10.1103/PhysRevResearch.4.013164. DOI

Chan Y.-H., Qiu D. Y., da Jornada F. H., Louie S. G.. Giant Exciton-Enhanced Shift Currents and Direct Current Conduction with Subbandgap Photo Excitations Produced by Many-Electron Interactions. Proc. Natl. Acad. Sci. U. S. A. 2021;118:e1906938118. doi: 10.1073/pnas.1906938118. PubMed DOI PMC

Shi L.-K., Zhang D., Chang K., Song J. C. W.. Geometric Photon-Drag Effect and Nonlinear Shift Current in Centrosymmetric Crystals. Phys. Rev. Lett. 2021;126:197402. doi: 10.1103/PhysRevLett.126.197402. PubMed DOI

Xiong Y., Shi L.-K., Song J. C. W.. Polariton Drag Enabled Quantum Geometric Photocurrents in High-Symmetry Materials. Phys. Rev. B. 2022;106:205423. doi: 10.1103/PhysRevB.106.205423. DOI

Ji Z., Zhao Y., Chen Y., Zhu Z., Wang Y., Liu W., Modi G., Mele E. J., Jin S., Agarwal R.. Opto-Twistronic Hall Effect in a Three-Dimensional Spiral Lattice. Nature. 2024;634:69–73. doi: 10.1038/s41586-024-07949-1. PubMed DOI

Nye J. F., Berry M. V.. Dislocations in Wave Trains. Proc. R. Soc. London A. 1974;336:165–190. doi: 10.1098/rspa.1974.0012. DOI

Nye, J. F. Natural focusing and Fine Structure of Light: Caustics and Wave Dislocations. CRC Press, 1999.

Bauer F. T.. et al. Observation of Optical Polarization Möbius Strips. Science. 2015;347:964–966. doi: 10.1126/science.1260635. PubMed DOI

Dennis M. R.. et al. Isolated Optical Vortex Knots. Nat. Phys. 2010;6:118–121. doi: 10.1038/nphys1504. DOI

Donati S.. et al. Twist of Generalized Skyrmions and Spin Vortices in a Polariton Superfluid. Proc. Natl. Acad. Sci. U. S. A. 2016;113:14926–14931. doi: 10.1073/pnas.1610123114. PubMed DOI PMC

Sugic D.. et al. Particle-Like Topologies in Light. Nat. Commun. 2021;12:6785. doi: 10.1038/s41467-021-26171-5. PubMed DOI PMC

Allen L.. et al. Orbital Angular Momentum of Light and the Transformation of Laguerre-Gaussian Laser Modes. Phys. Rev. A. 1992;45:8185. doi: 10.1103/PhysRevA.45.8185. PubMed DOI

Berry M. V., Dennis M. R.. Polarization Singularities in Isotropic Random Vector Waves. Proc. R. Soc. London A. 2001;457:141–155. doi: 10.1098/rspa.2000.0660. DOI

Bazhenov V. Y., Vasnetsov M. V., Soskin M. S.. Laser Beams with Screw Dislocations in Their Wavefronts. JETP Lett. 52.8. 1990:429–431.

Andersen M. F.. et al. Quantized Rotation of Atoms from Photons with Orbital Angular Momentum. Phys. Rev. Lett. 2006;97:170406. doi: 10.1103/PhysRevLett.97.170406. PubMed DOI

Simpson N. B.. et al. Mechanical Equivalence of Spin and Orbital Angular Momentum of Light: An Optical Spanner. Opt. Lett. 1997;22:52–54. doi: 10.1364/OL.22.000052. PubMed DOI

Söllner I.. et al. Deterministic Photon−Emitter Coupling in Chiral Photonic Circuits. Nat. Nanotechnol. 2015;10:775–778. doi: 10.1038/nnano.2015.159. PubMed DOI

Vanacore G. M.. et al. Ultrafast Generation and Control of an Electron Vortex Beam Via Chiral Plasmonic Near Fields. Nat. Mater. 2019;18:573–579. doi: 10.1038/s41563-019-0336-1. PubMed DOI

Tsesses S.. et al. Tunable Photon-Induced Spatial Modulation of Free Electrons. Nat. Mater. 2023;22:345–352. doi: 10.1038/s41563-022-01449-1. PubMed DOI

Fang Y.. et al. Structured Electrons with Chiral Mass and Charge. Science. 2024;385:183–187. doi: 10.1126/science.adp9143. PubMed DOI

Willig K. I.. et al. STED Microscopy Reveals that Synaptotagmin Remains Clustered After Synaptic Vesicle Exocytosis. Nature. 2006;440:935–939. doi: 10.1038/nature04592. PubMed DOI

Gibson G.. et al. Free-Space Information Transfer Using Light Beams Carrying Orbital Angular Momentum. Opt. Express. 2004;12:5448–5456. doi: 10.1364/OPEX.12.005448. PubMed DOI

Mair A.. et al. Entanglement of the Orbital Angular Momentum States of Photons. Nature. 2001;412:313–316. doi: 10.1038/35085529. PubMed DOI

Ostrovsky E.. et al. Nanoscale Control over Optical Singularities. Optica. 2018;5:283–288. doi: 10.1364/OPTICA.5.000283. DOI

Machado F.. et al. Shaping Polaritons to Reshape Selection Rules. ACS Photonics. 2018;5:3064–3072. doi: 10.1021/acsphotonics.8b00325. DOI

Gorodetski Y.. et al. Observation of the Spin-Based Plasmonic Effect in Nanoscale Structures. Phys. Rev. Lett. 2008;101:043903. doi: 10.1103/PhysRevLett.101.043903. PubMed DOI

Tsesses S., Ostrovsky E., Cohen K., Gjonaj B., Lindner N. H., Bartal G.. Optical Skyrmion Lattice in Evanescent Electromagnetic Fields. Science. 2018;361:993–996. doi: 10.1126/science.aau0227. PubMed DOI

Davis T. J., Janoschka D., Dreher P., Frank B., Meyer zu Heringdorf F. J., Giessen H.. Ultrafast Vector Imaging of Plasmonic Skyrmion Dynamics with Deep Subwavelength Resolution. Science. 2020;368:eaba6415. doi: 10.1126/science.aba6415. PubMed DOI

Spektor G.. et al. Revealing the Subfemtosecond Dynamics of Orbital Angular Momentum in Nanoplasmonic Vortices. Science. 2017;355:1187–1191. doi: 10.1126/science.aaj1699. PubMed DOI

Wang M.. et al. Spin-Orbit-Locked Hyperbolic Polariton Vortices Carrying Reconfigurable Topological Charges. eLight. 2022;2:12. doi: 10.1186/s43593-022-00018-y. DOI

Gibertini M.. et al. Magnetic 2D Materials and Heterostructures. Nat. Nanotechnol. 2019;14:408–419. doi: 10.1038/s41565-019-0438-6. PubMed DOI

Kurman Y.. et al. Dynamics of Optical Vortices in van der Waals Materials. Optica. 2023;10:612–618. doi: 10.1364/OPTICA.485120. DOI

Berry M. V.. Disruption of Wavefronts: Statistics of Dislocations in Incoherent Gaussian Random Waves. J. Phys. A: Math. Gen. 1978;11:27. doi: 10.1088/0305-4470/11/1/007. DOI

Berry M. V., Dennis M. R.. Phase Singularities in Isotropic Random Waves. Proc. R. Soc. London A. 2000;456:2059–2079. doi: 10.1098/rspa.2000.0602. DOI

De Angelis L.. et al. Spatial Distribution of Phase Singularities in Optical Random Vector Waves. Phys. Rev. Lett. 2016;117:093901. doi: 10.1103/PhysRevLett.117.093901. PubMed DOI

De Angelis L.. et al. Persistence and Lifelong Fidelity of Phase Singularities in Optical Random Waves. Phys. Rev. Lett. 2017;119:203903. doi: 10.1103/PhysRevLett.119.203903. PubMed DOI

Bucher T.. et al. Coherently Amplified Ultrafast Imaging Using a Free-Electron Interferometer. Nat. Photonics. 2024;18:809–815. doi: 10.1038/s41566-024-01451-w. DOI

Kosterlitz, J. M. ; Thouless, D. J. . Ordering, Metastability and Phase Transitions in Two-Dimensional Systems. Basic Notions Of Condensed Matter Physics. CRC Press, 2018; pp 493−515.

Dai Y., Zhou Z., Ghosh A., Mong R. S. K., Kubo A., Huang C. B., Petek H.. Plasmonic Topological Quasiparticle on the Nanometre and Femtosecond Scales. Nature. 2020;588:616–619. doi: 10.1038/s41586-020-3030-1. PubMed DOI

Dreher P., Neuhaus A., Janoschka D., Roedl A., Meiler T., Frank B., Davis T. J., Giessen H., Meyer zu Heringdorf F.-J.. Spatio-Temporal Topology of Plasmonic Spin Meron Pairs Revealed by Polarimetric Photo-Emission Microscopy. Adv. Photonics. 2024;6:066007. doi: 10.1117/1.AP.6.6.066007. DOI

Skyrme T. H. R.. A Unified Field Theory of Mesons and Baryons. Nucl. Phys. 1962;31:556–569. doi: 10.1016/0029-5582(62)90775-7. DOI

Shen Y., Zhang Q., Shi P., Du L., Yuan X., Zayats A. V.. Optical Skyrmions and Other Topological Quasiparticles of Light. Nat. Photonics. 2024;18:15–25. doi: 10.1038/s41566-023-01325-7. DOI

Schwab J., Neuhaus A., Dreher P., Tsesses S., Cohen K., Mangold F., Mantha A., Frank B., Bartal G., Meyer zu Heringdorf F.-J., Davis T. J., Giessen H.. Skyrmion bags of light in plasmonic moiré superlattices. Nat. Phys. 2025 doi: 10.1038/s41567-025-02873-1. DOI

Rößler U. K., Bogdanov A. N., Pfleiderer C.. Spontaneous Skyrmion Ground States in Magnetic Metals. Nature. 2006;442:797–801. doi: 10.1038/nature05056. PubMed DOI

Chen, P. ; Lee, K. X. ; Meiler, T. C. ; Shen, Y. . Topological Momentum Skyrmions in Mie Scattering Fields. Nanophotonics 2025, 10.1515/nanoph-2025-0071. PubMed DOI PMC

Du L., Yang A., Zayats A. V., Yuan X.. Deep-Subwavelength Features of Photonic Skyrmions in a Confined Electromagnetic Field with Orbital Angular Momentum. Nat. Phys. 2019;15:650–654. doi: 10.1038/s41567-019-0487-7. DOI

Zheludev N. I., Yuan G.. Optical Superoscillation Technologies beyond the Diffraction Limit. Nat. Rev. Phys. 2022;4:16–32. doi: 10.1038/s42254-021-00382-7. DOI

Frank B., Kahl P., Podbiel D., Spektor G., Orenstein M., Fu L., Weiss T., Von Hoegen M. H., Davis T. J., Meyer zu Heringdorf F.-J., Giessen H.. Short-Range Surface Plasmonics: Localized Electron Emission Dynamics from a 60-nm Spot on an Atomically Flat Single-Crystalline Gold Surface. Sci. Adv. 2017;3:e1700721. doi: 10.1126/sciadv.1700721. PubMed DOI PMC

Low T., Chaves A., Caldwell J. D., Kumar A., Fang N. X., Avouris P., Heinz T. F., Guinea F., Martin-Moreno L., Koppens F. H. L.. Polaritons in Layered Two-Dimensional Materials. Nat. Mater. 2017;16:182–194. doi: 10.1038/nmat4792. PubMed DOI

Tian B., Jiang J., Zheng Z., Wang X., Liu S., Huang W., Jiang T., Chen H., Deng S.. Néel-Type Optical Target Skyrmions Inherited from Evanescent Electromagnetic Fields with Rotational Symmetry. Nanoscale. 2023;15:13224–13232. doi: 10.1039/D3NR02143B. PubMed DOI

Hillenbrand R., Taubner T., Keilmann F.. Phonon-Enhanced Light−Matter Interaction at the Nanometre Scale. Nature. 2002;418:159–162. doi: 10.1038/nature00899. PubMed DOI

Taubner T., Korobkin D., Urzhumov Y., Shvets G., Hillenbrand R.. Near-Field Microscopy Through a SiC Superlens. Science. 2006;313:1595. doi: 10.1126/science.1131025. PubMed DOI

Caldwell J. D., Glembocki O. J., Francescato Y., Sharac N., Giannini V., Bezares F. J., Long J. P., Owrutsky J. C., Vurgaftman I., Tischler J. G., Wheeler V. D., Bassim N. D., Shirey L. M., Kasica R., Maier S. A.. Low-Loss, Extreme Subdiffraction Photon Confinement via Silicon Carbide Localized Surface Phonon Polariton Resonators. Nano Lett. 2013;13:3690–3697. doi: 10.1021/nl401590g. PubMed DOI

Mancini A., Nan L., Wendisch F. J., Berté R., Ren H., Cortés E., Maier S. A.. Near-Field Retrieval of the Surface Phonon Polariton Dispersion in Free-Standing Silicon Carbide Thin Films. ACS Photonics. 2022;9:3696–3704. doi: 10.1021/acsphotonics.2c01270. DOI

Mancini A., Nan L., Berté R., Cortés E., Ren H., Maier S. A.. Multiplication of the Orbital Angular Momentum of Phonon Polaritons via Sublinear Dispersion. Nat. Photonics. 2024;18:677–684. doi: 10.1038/s41566-024-01410-5. DOI

Hillenbrand, R. Private communication.

Andrei E. Y., MacDonald A. H.. Graphene Bilayers with a Twist. Nat. Mater. 2020;19:1265–1275. doi: 10.1038/s41563-020-00840-0. PubMed DOI

Suárez Morell E., Chico L., Brey L.. Twisting dirac fermions: circular dichroism in bilayer graphene. 2D Mater. 2017;4:035015. doi: 10.1088/2053-1583/aa7eb6. DOI

Stauber T., Low T., Gómez-Santos G.. Linear Response of Twisted Bilayer Graphene: Continuum Versus Tight-Binding Models. Phys. Rev. B. 2018;98:195414. doi: 10.1103/PhysRevB.98.195414. PubMed DOI

Khaliji K., Martín-Moreno L., Avouris P., Oh S. H., Low T.. Twisted Two-Dimensional Material Stacks for Polarization Optics. Phys. Rev. Lett. 2022;128:193902. doi: 10.1103/PhysRevLett.128.193902. PubMed DOI

Ma C., Yuan S., Cheung P., Watanabe K., Taniguchi T., Zhang F., Xia F.. Intelligent Infrared Sensing Enabled by Tunable Moiré Quantum Geometry. Nature. 2022;604:266–272. doi: 10.1038/s41586-022-04548-w. PubMed DOI

Stauber T., González J., Gómez-Santos G.. Change of Chirality at Magic Angles of Twisted Bilayer Graphene. Phys. Rev. B. 2020;102:081404(R) doi: 10.1103/PhysRevB.102.081404. DOI

Lin X., Liu Z., Stauber T., Gómez-Santos T., Gao F., Chen H., Zhang G., Low T.. Chiral Plasmons with Twisted Atomic Bilayers. Phys. Rev. Lett. 2020;125:077401. doi: 10.1103/PhysRevLett.125.077401. PubMed DOI

Margetis D., Stauber T.. Theory of Plasmonic Edge States in Chiral Bilayer System. Phys. Rev. B. 2021;104:115422. doi: 10.1103/PhysRevB.104.115422. DOI

Stauber T., Low T., Gómez-Santos G.. Plasmon-Enhanced Near-Field Chirality in Twisted van der Waals Heterostructures. Nano Lett. 2020;20:8711–8718. doi: 10.1021/acs.nanolett.0c03519. PubMed DOI

Yu Y., Zhang K., Parks H., Babar M., Carr S., Craig I. M., Van Winkle M., Lyssenko A., Taniguchi T., Watanabe K., Viswanathan V., Bediako D. K.. Tunable Angle-Dependent Electrochemistry at Twisted Bilayer Graphene with Moiré Flat Bands. Nat. Chem. 2022;14:267–273. doi: 10.1038/s41557-021-00865-1. PubMed DOI

Stauber T., Wackerl M., Wenk P., Margetis D., González J., Gómez-Santos G., Schliemann J.. Neutral Magic-Angle Bilayer Graphene: Condon Instability and Chiral Resonances. Small Sci. 2023;3:2200080. doi: 10.1002/smsc.202200080. PubMed DOI PMC

Zhu H., Yakobson B. I.. Creating Chirality in the Nearly Two Dimensions. Nat. Mater. 2024;23:316–322. doi: 10.1038/s41563-024-01814-2. PubMed DOI

Park J. M., Cao Y., Xia L.-Q., Sun S., Watanabe K., Taniguchi T., Jarillo-Herrero P.. Robust Superconductivity in Magic-Angle Multilayer Graphene Family. Nat. Mater. 2022;21:877–883. doi: 10.1038/s41563-022-01287-1. PubMed DOI

Bahamon D. A., Gómez-Santos G., Efetov D. K., Stauber T.. Chirality Probe of Twisted Bilayer Graphene in the Linear Transport Regime. Nano Lett. 2024;24:4478–4484. doi: 10.1021/acs.nanolett.4c00371. PubMed DOI PMC

Mannix A. J., Ye A., Sung S. H., Ray A., Mujid F., Park C., Lee M., Kang J.-H., Shreiner R., High A. A., Muller D. A., Hovden R., Park J.. Robotic Four-Dimensional Pixel Assembly of van der Waals Solids. Nat. Nanotechnol. 2022;17:361–366. doi: 10.1038/s41565-021-01061-5. PubMed DOI

Ji Z., Zhao Y., Chen Y., Zhu Z., Wang Y., Liu W., Modi G., Mele E. J., Jin S., Agarwal R.. Opto-Twistronic Hall Effect in a Three-Dimensional Spiral Lattice. Nature. 2024;634:69–73. doi: 10.1038/s41586-024-07949-1. PubMed DOI

de Sousa D. J. P., Ascencio C. O., Low T.. Linear Magnetoelectric Electro-Optical Effect. Phys. Rev. B. 2024;110:115421. doi: 10.1103/PhysRevB.110.115421. DOI

Huang T., Tu X., Shen C., Zheng B., Wang J., Wang H., Khaliji K., Park S. H., Liu Z., Yang T., Zhang Z., Shao L., Li X., Low T., Shi Y., Wang X.. Observation of Chiral and Slow Plasmons in Twisted Bilayer Graphene. Nature. 2022;605:63–68. doi: 10.1038/s41586-022-04520-8. PubMed DOI

Zheng Z.. et al. Phonon Polaritons in Twisted Double-Layers of Hyperbolic van der Waals Crystals. Nano Lett. 2020;20:5301–5308. doi: 10.1021/acs.nanolett.0c01627. PubMed DOI

Chen M., Lin X., Dinh T. H., Zheng Z., Shen J., Ma Q., Chen H., Jarillo-Herrero P., Dai S.. Configurable Phonon Polaritons in Twisted α-MoO3 . Nat. Mater. 2020;19:1307–1311. doi: 10.1038/s41563-020-0732-6. PubMed DOI

Hu G.. et al. Moiré Hyperbolic Metasurfaces. Nano Lett. 2020;20:3217–3224. doi: 10.1021/acs.nanolett.9b05319. PubMed DOI

Duan J.. et al. Multiple and Spectrally Robust Photonic Magic Angles in Reconfigurable α-MoO3 Trilayers. Nat. Mater. 2023;22:867–872. doi: 10.1038/s41563-023-01582-5. PubMed DOI

Matveeva O.. et al. Twist-Tunable Polaritonic Nanoresonators in a van der Waals Crystal. npj 2D Mater. Appl. 2023;7:31. doi: 10.1038/s41699-023-00387-z. PubMed DOI PMC

Capote-Robayna, N. ; et al. Low-Loss Twist-Tunable in-Plane Anisotropic Polaritonic Crystals. arXiv 2024, 2409.07861. 10.48550/arXiv.2409.07861 DOI

Yin, Y. ; et al. Selective Excitation of Bloch Modes in Canalized Polaritonic Crystals. Advanced Optical Materials 2025, 10.1002/adom.202403536. DOI

Capote-Robayna N.. et al. Twisted Polaritonic Crystals in Thin van der Waals Slabs. Laser Photonics Rev. 2022;16:2200428. doi: 10.1002/lpor.202270045. DOI

Sahoo N. R.. et al. Polaritons in Photonic Hypercrystals of van der Waals Materials. Adv. Funct. Mater. 2024;34:2316863. doi: 10.1002/adfm.202470240. DOI

Du L.. et al. Moiré Photonics and Optoelectronics. Science. 2023;379:eadg0014. doi: 10.1126/science.adg0014. PubMed DOI

Yao K.. et al. Enhanced Tunable Second Harmonic Generation from Twistable Interfaces and Vertical Superlattices in Boron Nitride Homostructures. Sci. Adv. 2021;7:eabe8691. doi: 10.1126/sciadv.abe8691. PubMed DOI PMC

Álvarez-Pérez G.. et al. Active Tuning of Highly Anisotropic Phonon Polaritons in van der Waals Crystal Slabs by Gated Graphene. ACS Photonics. 2022;9:383–390. doi: 10.1021/acsphotonics.1c01549. DOI

Zhou Z.. et al. Gate-Tuning Hybrid Polaritons in Twisted α-MoO3/Graphene Heterostructures. Nano Lett. 2023;23:11252–11259. doi: 10.1021/acs.nanolett.3c03769. PubMed DOI

Kapfer M.. et al. Programming Twist Angle and Strain Profiles in 2D Materials. Science. 2023;381:677–681. doi: 10.1126/science.ade9995. PubMed DOI

Tang H.. et al. On-Chip Multi-Degree-of-Freedom Control of Two-Dimensional Materials. Nature. 2024;632:1038–1044. doi: 10.1038/s41586-024-07826-x. PubMed DOI

Obst M.. et al. Terahertz Twistoptics−Engineering Canalized Phonon Polaritons. ACS Nano. 2023;17:19313–19322. doi: 10.1021/acsnano.3c06477. PubMed DOI

Álvarez-Cuervo J.. et al. Unidirectional Ray Polaritons in Twisted Asymmetric Stacks. Nat. Commun. 2024;15:9042. doi: 10.1038/s41467-024-52750-3. PubMed DOI PMC

Lou B.. et al. Free-Space Beam Steering with Twisted Bilayer Photonic Crystal Slabs. ACS Photonics. 2024;11:3636–3643. doi: 10.1021/acsphotonics.4c00736. DOI

Enders, M. T. ; et al. Intrinsic Mid-IR Chirality and Chiral Thermal Emission from Twisted Bilayers. arXiv 2024, 2409.02641. 10.48550/arXiv.2409.02641 DOI

Galiffi E., Carini G., Ni X., Álvarez-Pérez G., Yves S., Renzi E. M., Nolen R., Wasserroth S., Wolf M., Alonso-Gonzalez P., Paarmann A., Alù A.. Extreme Light Confinement and Control in Low-Symmetry Phonon-Polaritonic Crystals. Nat. Rev. Mater. 2024;9:9–28. doi: 10.1038/s41578-023-00620-7. DOI

Wang H.. et al. Planar Hyperbolic Polaritons in 2D van der Waals Materials. Nat. Commun. 2024;15:69. doi: 10.1038/s41467-023-43992-8. PubMed DOI PMC

Wu Y., Duan J., Ma W., Ou Q., Li P., Alonso-González P., Caldwell J. D., Bao Q.. Manipulating Polaritons at the Extreme Scale in van der Waals Materials. Nat. Rev. Phys. 2022;4:578–594. doi: 10.1038/s42254-022-00472-0. DOI

Li X.. et al. Review of Anisotropic 2D Materials: Controlled Growth, Optical Anisotropy Modulation, and Photonic Applications. Laser Phot. Rev. 2021;15:2100322. doi: 10.1002/lpor.202100322. DOI

Slavich A. S.. et al. Exploring van der Waals Materials with High Anisotropy: Geometrical and Optical Approaches. Light Sci. Appl. 2024;13:68. doi: 10.1038/s41377-024-01407-3. PubMed DOI PMC

Guo Q.. et al. Colossal in-Plane Optical Anisotropy in a Two-Dimensional van der Waals Crystal. Nat. Photonics. 2024;18:1170–1175. doi: 10.1038/s41566-024-01501-3. DOI

Nemilentsau A.. et al. Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics. Phys. Rev. Lett. 2016;116:066804. doi: 10.1103/PhysRevLett.116.066804. PubMed DOI

Ermolaev G. A.. et al. Wandering Principal Optical Axes in van der Waals Triclinic Materials. Nat. Commun. 2024;15:1552. doi: 10.1038/s41467-024-45266-3. PubMed DOI PMC

Venturi G.. et al. Visible-Frequency Hyperbolic Plasmon Polaritons in a Natural van der Waals Crystal. Nat. Commun. 2024;15:9727. doi: 10.1038/s41467-024-53988-7. PubMed DOI PMC

Li L.. et al. Emerging in-Plane Anisotropic Two-Dimensional Materials. InfoMat. 2019;1:54–73. doi: 10.1002/inf2.12005. DOI

Mounet N.. et al. Two-Dimensional Materials from High-Throughput Computational Exfoliation of Experimentally Known Compounds. Nat. Nanotechnol. 2018;13:246–252. doi: 10.1038/s41565-017-0035-5. PubMed DOI

Zhang T.. et al. Spatiotemporal Beating and Vortices of van der Waals Hyperbolic Polaritons. Proc. Natl. Acad. Sci. U. S. A. 2024;121:e2319465121. doi: 10.1073/pnas.2319465121. PubMed DOI PMC

Sternbach A. J., Chae S. H., Latini S., Rikhter A. A., Shao Y., Li B., Rhodes D., Kim B., Schuck P. J., Xu X., Zhu X.-Y., Averitt R. D., Hone J., Fogler M. M., Rubio A., Basov D. N.. Programmable Hyperbolic Polaritons in van der Waals Semiconductors. Science. 2021;371:617–620. doi: 10.1126/science.abe9163. PubMed DOI

McKeown-Green A. S.. et al. Millimeter-Scale Exfoliation of hBN with Tunable Flake Thickness for Scalable Encapsulation. ACS Appl. Nano Mater. 2024;7:6574–6582. doi: 10.1021/acsanm.4c00412. DOI

Calandrini E.. et al. Near- and Far-Field Observation of Phonon Polaritons in Wafer-Scale Multilayer Hexagonal Boron Nitride Prepared by Chemical Vapor Deposition. Adv. Mater. 2023;35:2302045. doi: 10.1002/adma.202302045. PubMed DOI

Herzig Sheinfux H.. et al. High-Quality Nanocavities Through Multimodal Confinement of Hyperbolic Polaritons in Hexagonal Boron Nitride. Nat. Mater. 2024;23:499–505. doi: 10.1038/s41563-023-01785-w. PubMed DOI

Wang H.. et al. Strain-Tunable Hyperbolic Exciton Polaritons in Monolayer Black Arsenic with Two Exciton Resonances. Nano Lett. 2024;24:2057–2062. doi: 10.1021/acs.nanolett.3c04730. PubMed DOI

Vázquez-Lozano J. E., Liberal I.. Review on the Scientific and Technological Breakthroughs in Thermal Emission Engineering. ACS Appl. Opt. Mater. 2024;2:898–927. doi: 10.1021/acsaom.4c00030. PubMed DOI PMC

Lu G.. et al. Engineering the Spectral and Spatial Dispersion of Thermal Emission Via Polariton−Phonon Strong Coupling. Nano Lett. 2021;21:1831–1838. doi: 10.1021/acs.nanolett.0c04767. PubMed DOI

Sarkar M.. et al. Lithography-Free Directional Control of Thermal Emission. Nanophotonics. 2024;13:763–771. doi: 10.1515/nanoph-2023-0595. PubMed DOI PMC

Pan Z.. et al. Remarkable Heat Conduction Mediated by Non-Equilibrium Phonon Polaritons. Nature. 2023;623:307–312. doi: 10.1038/s41586-023-06598-0. PubMed DOI

Hutchins, W. ; et al. Ultrafast Evanescent Heat Transfer Across Solid Interfaces Via Hyperbolic Phonon-Polaritons in Hexagonal Boron Nitride. Nat. Mater. 2025, 24, 698 10.1038/s41563-025-02154-5. PubMed DOI PMC

Sun T.. et al. Van der Waals Quaternary Oxides for Tunable Low-Loss Anisotropic Polaritonics. Nat. Nanotechnol. 2024;19:758–765. doi: 10.1038/s41565-024-01628-y. PubMed DOI

Nguyen H. M. D., Bouteyre P., Trippé-Allard G., Chevalier C., Deleporte E., Drouard E., Seassal C., Nguyen H. S.. Nanoimprinted Exciton-Polaritons Metasurfaces: Cost-Effective, Large-Scale, High Homogeneity, and Room Temperature Operation. Opt. Mater. Expr. 2024;14:1655–1669. doi: 10.1364/OME.512255. DOI

Guddala S., Komissarenko F., Kiriushechkina S., Vakulenko A., Li M., Menon V. M., Alù A., Khanikaev A. B.. Topological Phonon-Polariton Funneling in Midinfrared Metasurfaces. Science. 2021;374:225–227. doi: 10.1126/science.abj5488. PubMed DOI

Zhang Q., Hu G., Ma W., Li P., Krasnok A., Hillenbrand R., Alù A., Qiu C. W.. Interface Nano-Optics with van der Waals Polaritons. Nature. 2021;597:187–195. doi: 10.1038/s41586-021-03581-5. PubMed DOI

Tymchenko M., Gomez-Diaz J. S., Lee J., Belkin M. A., Alù A.. Gradient Nonlinear Pancharatnam-Berry Metasurfaces. Phys. Rev. Lett. 2015;115:207403. doi: 10.1103/PhysRevLett.115.207403. PubMed DOI

Lynch J., Guarneri L., Jariwala D., van de Groep J.. Exciton Resonances for Atomically-Thin Optics. J. Appl. Phys. 2022;132:091102. doi: 10.1063/5.0101317. DOI

Verre G., Baranov D. G., Munkhbat B., Cuadra J., Käll M., Shegai T.. Transition Metal Dichalcogenide Nanodisks as High-Index Dielectric Mie Nanoresonators. Nat. Nanotechnol. 2019;14:679–683. doi: 10.1038/s41565-019-0442-x. PubMed DOI

Munkhbat B., Küçüköz B., Baranov D. G., Antosiewicz T. J., Shegai T. O.. Nanostructured Transition Metal Dichalcogenide Multilayers for Advanced Nanophotonics. Laser Photonics Rev. 2023;17:2200057. doi: 10.1002/lpor.202200057. DOI

Zhang H., Abhiraman B., Zhang Q., Miao J., Jo K., Roccasecca S., Knight M. W., Davoyan A., Jariwala D.. Hybrid Exciton-Plasmon-Polaritons in van der Waals Semiconductor Gratings. Nat. Commun. 2020;11:3552. doi: 10.1038/s41467-020-17313-2. PubMed DOI PMC

Munkhbat B., Yankovich A. B., Baranov D. G., Verre R., Olsson E., Shegai T. O.. Transition Metal Dichalcogenide Metamaterials with Atomic Precision. Nat. Commun. 2020;11:4604. doi: 10.1038/s41467-020-18428-2. PubMed DOI PMC

Kumar P., Lynch J., Song B., Ling H., Barrera F., Kisslinger K., Zhang H., Anantharaman S., Digani J., Zhu H., Choudhury T., McAleese C., Wang X., Conran B., Whear O., Motala M., Snure M., Muratore C., Redwing J., Glavin N., Stach E., Davoyan A., Jariwala D.. Light−Matter Coupling in Large-Area van der Waals Superlattices. Nat. Nanotechnol. 2022;17:182–189. doi: 10.1038/s41565-021-01023-x. PubMed DOI

Feng J., Wu Y. K., Duan R., Wang J., Chen W., Qin J., Liu Z., Guo G. C., Ren X. F., Qiu C. W.. Polarization-Entangled Photon-Pair Source with van der Waals 3R-WS2 Crystal. eLight. 2024;4:16. doi: 10.1186/s43593-024-00074-6. DOI

Chernikov A., Berkelback T. C., Hill H. M., Rigosi A., Li Y., Aslon B., Reichman D. R., Hybertsen M. S., Heinz T.. Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2 . Phys. Rev. Lett. 2014;113:076802. doi: 10.1103/PhysRevLett.113.076802. PubMed DOI

Van de Groep J., Song J. H., Celano U., Li Q., Kik P., Brongersma M. L.. Exciton Resonance Tuning of an Atomically Thin Lens. Nat. Photonics. 2020;14:426–430. doi: 10.1038/s41566-020-0624-y. DOI

Guarneri L., Li Q., Bauer T., Song J. H., Saunders A. P., Liu F., Brongersma M. L., Van de Groep J.. Temperature-Dependent Excitonic Light Manipulation with Atomically Thin Optical Elements. Nano Lett. 2024;24:6240–6246. doi: 10.1021/acs.nanolett.4c00694. PubMed DOI PMC

Li M., Hail C., Biswas S., Atwater H.. Excitonic Beam Steering in an Active van der Waals Metasurface. Nano Lett. 2023;23:2771–2777. doi: 10.1021/acs.nanolett.3c00032. PubMed DOI

Lynch J., Kumar P., Chen C., Trainor N., Kumari S., Peng T. Y., Chen C. Y., Lu Y. J., Redwing J., Jariwala D.. >2π Phase Modulation using Exciton-Polaritons in a Two-Dimensional Superlattice. Device. 2025;3:100639. doi: 10.1016/j.device.2024.100639. DOI

Liu F., Wu W., Bai Y., Chae S. H., Li Q., Wang J., Hone J., Zhu X. Y.. Disassembling 2D van der Waals Crystals Into Macroscopic Monolayers and Reassembling Into Artificial Lattices. Science. 2020;367:903–906. doi: 10.1126/science.aba1416. PubMed DOI

Qin B., Ma C., Guo Q., Li X., Wei W., Ma C., Wang Q., Liu F., Zhao M., Xue G., Qi J., Wu M., Hong H., Du L., Zhao Q., Gao P., Wang X., Wang E., Zhang G., Liu C., Liu K.. Interfacial Epitaxy of Multilayer Rhombohedral Transition-Metal Dichalcogenide Single Crystals. Science. 2024;385:99–104. doi: 10.1126/science.ado6038. PubMed DOI

Ling H., Li R., Davoyan A. R.. All van der Waals Integrated Nanophotonics with Bulk Transition Metal Dichalcogenides. ACS Photonics. 2021;8:721–730. doi: 10.1021/acsphotonics.0c01964. DOI

Masubuchi S., Morimoto M., Morikawa S., Onodera S., Asakawa Y., Watanabe K., Taniguchi T., Machida T.. Autonomous Robotic Searching and Assembly of Two-Dimensional Crystals to Build van der Waals Superlattices. Nat. Commun. 2018;9:1413. doi: 10.1038/s41467-018-03723-w. PubMed DOI PMC

Xiong F., Wang H., Liu X., Sun J., Brongersma M. L., Pop E., Cui Y.. Li Intercalation in MoS2: In Situ Observation of Its Dynamics and Tuning Optical and Electrical Properties. Nano Lett. 2015;15:6777–6784. doi: 10.1021/acs.nanolett.5b02619. PubMed DOI

Ling H., Manna A., Shen J., Tung H. T., Sharp D., Fröch J., Dai S., Majumdar A., Davoyan A. R.. Deeply Subwavelength Integrated Excitonic van der Waals Nanophotonics. Optica. 2023;10:1345–1352. doi: 10.1364/OPTICA.499059. DOI

Funke S., Miller B., Parzinger E., Thiesen P., Holleitner A. W., Wurstbauer U.. Imaging Spectroscopic Ellipsometry of MoS2 . J. Phys. Cond. Matter. 2016;28:385301. doi: 10.1088/0953-8984/28/38/385301. PubMed DOI

Li M., Biswas S., Hail C. L., Atwater H. A.. Refractive Index Modulation in Monolayer Molybdenum Diselenide. Nano Lett. 2021;21:7602–7608. doi: 10.1021/acs.nanolett.1c02199. PubMed DOI

Munkhbat B., Wróbel P., Antosiewicz T. J., Shegai T. O.. Optical Constants of Several Multilayer Transition Metal Dichalcogenides Measured by Spectroscopic Ellipsometry in the 300−1700 nm Range: High Index, Anisotropy, and Hyperbolicity. ACS Photonics. 2022;9:2398–2407. doi: 10.1021/acsphotonics.2c00433. PubMed DOI PMC

Schinke C., Peest P. C., Schmidt J., Brendel R., Bothe K., Vogt M. R., Kröger I., Winter S., Schirmacher A., Lim S., Nguyen T., MacDonald D.. Uncertainty Analysis for the Coefficient of Band-to-Band Absorption of Crystalline Silicon. AIP Adv. 2015;5:067168. doi: 10.1063/1.4923379. DOI

Papatryfonos K., Angelova T., Brimont A., Reid B., Guldin S., Smith P. R., Tang M., Li K., Seeds A. J., Liu H., Selviah D. R.. Refractive Indices of MBE-Grown AlxGa(1−x) as Ternary Alloys in the Transparent Wavelength Region. AIP Adv. 2021;11:025327. doi: 10.1063/5.0039631. DOI

Hsu C., Frisenda R., Schimdt R., Arora A., Michaelis de Vasconcellos S., Bratschitsch R., van der Zant H. S. J., Castellanos-Gomez A.. Thickness-Dependent Refractive Index of 1L, 2L, and 3L MoS2, MoSe2, WS2, and WSe2 . Adv. Opt. Mater. 2019;7:1900239. doi: 10.1002/adom.201900239. DOI

Yu Y., Yu Y., Huang L., Peng H., Xiong L., Cao L. A.. Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers. Nano Lett. 2017;17:3613–1618. doi: 10.1021/acs.nanolett.7b00768. PubMed DOI

Marquezini M. V., Tignon J., Hasche T., Chemia D. S.. Refractive Index and Absorption of GaAs Quantum Wells Across Excitonic Resonances. Appl. Phys. Lett. 1998;73:2313–2315. doi: 10.1063/1.121808. DOI

Wigner E.. On the Interaction of Electrons in Metals. Phys. Rev. 1934;46:1002–1011. doi: 10.1103/PhysRev.46.1002. DOI

Goldman V., Santos M., Shayegan M., Cunningham J.. Evidence for Two-Dimensional Quantum Wigner crystal. Phys. Rev. Lett. 1990;65:2189–2192. doi: 10.1103/PhysRevLett.65.2189. PubMed DOI

Jang J., Hunt B. M., Pfeiffer L. N., West K. W., Ashoori R. C.. Sharp Tunnelling Resonance from the Vibrations of an Electronic Wigner Crystal. Nat. Phys. 2017;13:340–344. doi: 10.1038/nphys3979. DOI

Zhou H., Zhou H., Polshyn H., Taniguchi T., Watanabe K., Young A. F.. Solids of Quantum Hall Skyrmions in Graphene. Nat. Phys. 2020;16:154–158. doi: 10.1038/s41567-019-0729-8. DOI

Shapir I., Hamo A., Pecker S., Moca C. P., Legeza Ö., Zarand G., Ilani S.. Imaging the Electronic Wigner Crystal in One Dimension. Science. 2019;364:870–875. doi: 10.1126/science.aat0905. PubMed DOI

Regan E. C., Wang D., Jin C. M., Utama I. B., Gao B., Wei X., Zhao S., Zhao W., Zhang Z., Yumigeta K., Blei M., Carlström J. D., Watanabe K., Taniguchi T., Tongay S., Crommie M., Zettl A., Wang F.. Mott and Generalized Wigner Crystal States in WSe2/WS2 Moiré Superlattices. Nature. 2020;579:359–363. doi: 10.1038/s41586-020-2092-4. PubMed DOI

Jin C., Tao Z., Li T., Xu Y., Tang Y., Zhu J., Liu S., Watanabe K., Taniguchi T., Hone J. C., Fu L., Shan J., Mak K. F.. Stripe Phases in WSe2/WS2 Moiré Superlattices. Nat. Mater. 2021;20:940–944. doi: 10.1038/s41563-021-00959-8. PubMed DOI

Huang X., Wang T., Miao S., Wang C., Li Z., Lian Z., Taniguchi T., Watanabe K., Okamoto S., Xiao D., Shi S.-F., Cui Y.-T.. Correlated Insulating States at Fractional Fillings of the WS2/WSe2 Moiré Lattice. Nat. Phys. 2021;17:715–719. doi: 10.1038/s41567-021-01171-w. DOI

Deshpande V. V., Bockrath M.. The One-Dimensional Wigner Crystal in Carbon Nanotubes. Nat. Phys. 2008;4:314–318. doi: 10.1038/nphys895. DOI

Crandall R., Williams R.. Crystallization of Electrons on the Surface of Liquid Helium. Phys. Lett. A. 1971;34:404–405. doi: 10.1016/0375-9601(71)90938-8. DOI

Williams R., Crandall R., Willis A.. Surface States of Electrons on Liquid Helium. Phys. Rev. Lett. 1971;26:7–9. doi: 10.1103/PhysRevLett.26.7. DOI

Grimes C., Adams G.. Evidence for a Liquid-to-Crystal Phase Transition in a Classical, Two-Dimensional Sheet of Electrons. Phys. Rev. Lett. 1979;42:795–798. doi: 10.1103/PhysRevLett.42.795. DOI

Williams F.. Collective Aspects of Charged-Particle Systems at Helium Interfaces. Surf. Sci. 1982;113:371–378. doi: 10.1016/0039-6028(82)90619-7. DOI

Li H., Li S., Regan E. C., Wang D., Zhao W., Kahn S., Yumigeta K., Blei M., Taniguchi T., Watanabe K., Tongay S., Zettl A., Crommie M. F., Wang F.. Imaging Two-Dimensional Generalized Wigner Crystals. Nature. 2021;597:650–654. doi: 10.1038/s41586-021-03874-9. PubMed DOI

Li H., Xiang Z., Regan E. C., Zhao W., Sailus R., Banerjee R., Taniguchi T., Watanabe K., Tongay S., Zettl A., Crommie M. F., Wang F.. Mapping Charge Excitations in Generalized Wigner Crystals. Nat. Nanotechnol. 2024;19:618–623. doi: 10.1038/s41565-023-01594-x. PubMed DOI

Zhou Y., Sung J., Brutschea E., Esterlis I., Wang Y., Scuri G., Gelly R. J., Heo H., Taniguchi T., Watanabe K., Zaránd G., Lukin M. D., Kim P., Demler E., Park H.. Bilayer Wigner Crystals in a Transition Metal Dichalcogenide Heterostructure. Nature. 2021;595:48–52. doi: 10.1038/s41586-021-03560-w. PubMed DOI

Joglekar Y. N., Balatsky A. V., Das Sarma S.. Wigner Supersolid of Excitons in Electron-Hole Bilayers. Phys. Rev. B. 2006;74:233302. doi: 10.1103/PhysRevB.74.233302. DOI

Bondarev I. V., Berman O. L., Kezerashvili R. Y., Lozovik Y. E.. Crystal Phases of Charged Interlayer Excitons in van der Waals Heterostructures. Commun. Phys. 2021;4:134. doi: 10.1038/s42005-021-00624-1. DOI

Ma L., Nguyen P. X., Wang Z., Zeng Y., Watanabe K., Taniguchi T., MacDonald A. H., Mak K. F., Shan J.. Strongly Correlated Excitonic Insulator in Atomic Double Layers. Nature. 2021;598:585–589. doi: 10.1038/s41586-021-03947-9. PubMed DOI

Bondarev I. V., Lozovik Y. E.. Magnetic-Field-Induced Wigner Crystallization of Charged Interlayer Excitons in van der Waals Heterostructures. Commun. Phys. 2022;5:315. doi: 10.1038/s42005-022-01095-8. DOI

Dai D. D., Fu L.. Strong-Coupling Phases of Trions and Excitons in Electron-Hole Bilayers at Commensurate Densities. Phys. Rev. Lett. 2024;132:196202. doi: 10.1103/PhysRevLett.132.196202. PubMed DOI

Boltasseva A., Shalaev V. M.. Transdimensional Photonics. ACS Photonics. 2019;6:1–3. doi: 10.1021/acsphotonics.8b01570. DOI

Maniyara R. A., Rodrigo D., Yu R., Canet-Ferrer J., Ghosh D. S., Yongsunthon R., Baker D. E., Rezikyan A., García de Abajo F. J., Pruneri V.. Tunable Plasmons in Ultrathin Metal Films. Nat. Photonics. 2019;13:328–333. doi: 10.1038/s41566-019-0366-x. DOI

Manjavacas A., García de Abajo F. J.. Tunable Plasmons in Atomically Thin Gold Nanodisks. Nat. Commun. 2014;5:3548. doi: 10.1038/ncomms4548. PubMed DOI

Maier S. A., Atwater H. A.. Plasmonics: Localization and Guiding of Electromagnetic Energy in Metal/Dielectric Structures. J. Appl. Phys. 2005;98:011101. doi: 10.1063/1.1951057. DOI

Naik G. V., Shalaev V. M., Boltasseva A.. Alternative Plasmonic Materials: Beyond Gold and Silver. Adv. Mater. 2013;25:3264–3294. doi: 10.1002/adma.201205076. PubMed DOI

Bondarev I. V., Shalaev V. M.. Universal Features of the Optical Properties of Ultrathin Plasmonic Films. Opt. Mater. Express. 2017;7:3731–3740. doi: 10.1364/OME.7.003731. DOI

Shah D., Yang M., Kudyshev Z., Xu X., Shalaev V. M., Bondarev I. V., Boltasseva A.. Thickness-Dependent Drude Plasma Frequency in Transdimensional Plasmonic TiN. Nano Lett. 2022;22:4622–4629. doi: 10.1021/acs.nanolett.1c04692. PubMed DOI

Salihoglu H., Shi J., Li Z., Wang Z., Luo X., Bondarev I. V., Biehs S.-A., Shen S.. Nonlocal Near-Field Radiative Heat Transfer by Transdimensional Plasmonics. Phys. Rev. Lett. 2023;131:086901. doi: 10.1103/PhysRevLett.131.086901. PubMed DOI

Das P., Rudra S., Rao D., Banerjee S., Kamalasanan Pillai A. I., Garbrecht M., Boltasseva A., Bondarev I. V., Shalaev V. M., Saha B.. Electron Confinement-Induced Plasmonic Breakdown in Metals. Sci. Adv. 2024;10:eadr2596. doi: 10.1126/sciadv.adr2596. PubMed DOI

Platzman P. M., Fukuyama H.. Phase Diagram of the Two-Dimensional Electron Liquid. Phys. Rev. B. 1974;10:3150–3158. doi: 10.1103/PhysRevB.10.3150. DOI

Keldysh L. V.. Coulomb Interaction in Thin Semiconductor and Semimetal Films. Pis’ma Zh. Eksp. Teor. Fiz. 1979, 29, 716−719 [Engl. translation: JETP Lett. 1979, 29, 658−661]; Rytova, N.S. Screened Potential of a Point Charge in a Thin Film. Moscow University Physics Bulletin. 1967;3:30.

Qi Y., Sadi M. A., Hu D., Zheng M., Wu Z., Jiang Y., Chen Y. P.. Recent Progress in Strain Engineering on Van der Waals 2D Materials: Tunable Electrical, Electrochemical, Magnetic, and Optical Properties. Adv. Mater. 2023;35:2205714. doi: 10.1002/adma.202205714. PubMed DOI

Fukuyama H., Platzman P. M., Anderson P. W.. Two-Dimensional Electron Gas in a Strong Magnetic Field. Phys. Rev. B. 1979;19:5211–5217. doi: 10.1103/PhysRevB.19.5211. DOI

Lozovik Yu.E., Farztdinov V. M., Abdullaev B.. 2D Electron Crystal in Quantized Magnetic Field: Melting Induced by Zero-Point Oscillations. J. Phys. C. 1985;18:L807–L811. doi: 10.1088/0022-3719/18/26/007. DOI

Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M. W.. Two-Dimensional Nanocrystals: Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 . Adv. Mater. 2011;23:4207. doi: 10.1002/adma.201190147. PubMed DOI

Vahid Mohammadi A., Rosen J., Gogotsi Y.. The World of Two-Dimensional Carbides and Nitrides (MXenes) J. Sci. 2021;372:eabf1581. doi: 10.1126/science.abf1581. PubMed DOI

Mauchamp V., Bugnet M., Bellido E. P., Botton G. A., Moreau P., Magne D., Naguib M., Cabioc’h T., Barsoum M. W.. Enhanced and Tunable Surface Plasmons in Two-Dimensional Ti3C2 Stacks: Electronic Structure Versus Boundary Effects. Phys. Rev. B. 2014;89:235428. doi: 10.1103/PhysRevB.89.235428. DOI

El-Demellawi J. K., Lopatin S., Yin J., Mohammed O. F., Alshareef H. N.. Tunable Multipolar Surface Plasmons in 2D Ti3C2Tx MXene Flakes. ACS Nano. 2018;12:8485–8493. doi: 10.1021/acsnano.8b04029. PubMed DOI

Jiang X., Liu S., Liang W., Luo S., He Z., Ge Y., Wang H., Cao R., Zhang F., Wen Q., Li J.. Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH) Laser Photon. Rev. 2018;12:1700229. doi: 10.1002/lpor.201700229. DOI

Jhon Y. I., Koo J., Anasori B., Seo M., Lee J. H., Gogotsi Y., Jhon Y. M.. Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers. Adv. Mater. 2017;29:1702496. doi: 10.1002/adma.201702496. PubMed DOI

Li H., Chen S., Boukhvalov D. W., Yu Z., Humphrey M. G., Huang Z., Zhang C.. Switching the Nonlinear Optical Absorption of Titanium Carbide MXene by Modulation of the Surface Terminations. ACS Nano. 2022;16:394–404. doi: 10.1021/acsnano.1c07060. PubMed DOI

Wang G., Bennett D., Zhang C., ÓCoileáin C., Liang M., McEvoy N., Wang J. J., Wang J., Wang K., Nicolosi V., Blau W. J.. Two-Photon Absorption in Monolayer MXenes. Adv. Opt. Mater. 2020;8:1902021. doi: 10.1002/adom.201902021. DOI

Nemani S. K., Zhang B., Wyatt B. C., Hood Z. D., Manna S., Khaledialidusti R., Hong W., Sternberg M. G., Sankaranarayanan S. K., Anasori B.. High-Entropy 2D Carbide MXenes: TiVNbMoC3 and TiVCrMoC3 . ACS Nano. 2021;15:12815–12825. doi: 10.1021/acsnano.1c02775. PubMed DOI

Zhang D., Shah D., Boltasseva A., Gogotsi Y.. MXenes for Photonics. ACS Photonics. 2022;9:1108–1116. doi: 10.1021/acsphotonics.2c00040. DOI

Jiang X., Kuklin A. V., Baev A., Ge Y., Ågren H., Zhang H., Prasad P. N.. Two-Dimensional MXenes: From Morphological to Optical, Electric, and Magnetic Properties and Applications. Phys. Rep. 2020;848:1–58. doi: 10.1016/j.physrep.2019.12.006. DOI

Frey N. C., Bandyopadhyay A., Kumar H., Anasori B., Gogotsi Y., Shenoy V. B.. Surface-Engineered MXenes: Electric Field Control of Magnetism and Enhanced Magnetic Anisotropy. ACS Nano. 2019;13:2831–2839. doi: 10.1021/acsnano.8b09201. PubMed DOI

Kim H., Wang Z., Alshareef H. N.. MXetronics: Electronic and Photonic Applications of MXenes. Nano Energy. 2019;60:179–197. doi: 10.1016/j.nanoen.2019.03.020. DOI

Zhou C., Wang D., Lagunas F., Atterberry B., Lei M., Hu H., Zhou Z., Filatov A. S., Jiang D. E., Rossini A. J., Klie R. F.. Hybrid Organic−Inorganic Two-Dimensional Metal Carbide MXenes with Amido-and Imido-Terminated Surfaces. Nat. Chem. 2023;15:1722–1729. doi: 10.1038/s41557-023-01288-w. PubMed DOI

Valurouthu G., Maleski K., Kurra N., Han M., Hantanasirisakul K., Sarycheva A., Gogotsi Y.. Tunable Electrochromic Behavior of Titanium-Based MXenes. Nanoscale. 2020;12:14204–14212. doi: 10.1039/D0NR02673E. PubMed DOI

Aftab S., Abbas A., Iqbal M. Z., Hussain S., Kabir F., Hegazy H. H., Xu F., Kim J. H., Goud B. S.. 2D MXene Incorporating for Electron and Hole Transport in High-Performance Perovskite Solar Cells. Mater. Today Energy. 2023;36:101366. doi: 10.1016/j.mtener.2023.101366. DOI

Chaudhuri K., Alhabeb M., Wang Z., Shalaev V. M., Gogotsi Y., Boltasseva A.. Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene) ACS Photonics. 2018;5:1115–1122. doi: 10.1021/acsphotonics.7b01439. DOI

Reshef O., De Leon I., Alam M. Z., Boyd R. W.. Nonlinear Optical Effects in Epsilon-Near-Zero Media. Nat. Rev. Mater. 2019;4:535–551. doi: 10.1038/s41578-019-0120-5. DOI

Han M., Maleski K., Shuck C. E., Yang Y., Glazar J. T., Foucher A. C., Hantanasirisakul K., Sarycheva A., Frey N. C., May S. J., Shenoy V. B., Stach E. A., Gogotsi Y.. Tailoring Electronic and Optical Properties of MXenes Through Forming Solid Solutions. J. Am. Chem. Soc. 2020;142:19110–19118. doi: 10.1021/jacs.0c07395. PubMed DOI

Simon, J. ; Reigle, B. ; Fruhling, C. ; Zhang, D. ; Ippolito, S. ; Kim, H. ; Shalaev, V. ; Gogotsi, Y. ; Boltasseva, A. . Anisotropic and Nonlinear Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes). Proceedings of CLEO: Science and Innovations, May 5−10, 2024; Charolette, NC, 2024; pp SF2R-7.

Talapin, D. Inorganic, Organic, and Organometallic Surface Chemistry of MXenes. In Book of Abstracts, 2024 MXene Conference, Philadelphia, PA, August 5−7, 2024; pp 14.

Wu Z.. et al. Anisotropic Plasmon Resonance in Ti3C2Tx MXene Enables Site-Selective Plasmonic Catalysis. ACS Nano. 2025;19:1832–1844. doi: 10.1021/acsnano.4c17316. PubMed DOI

Simon, J. ; Choi, K. R. ; Ippolito, S. ; Prokopeva, L. ; Fruhling, C. ; Shalaev, V. M. ; Kildishev, A. V. ; Gogotsi, Y. ; Boltasseva, A. . Tailoring Optical Response of MXene Thin Films. Nanophotonics 2025, 10.1515/nanoph-2024-0769. DOI

Yan L., Xu Y., Si J., Li Y., Hou X.. Enhanced Optical Nonlinearity of Mxene Ti3C2Tx Nanosheets Decorated with Silver Nanoparticles. Opt. Mater. Express. 2021;11:1401–1409. doi: 10.1364/OME.422189. DOI

Little J., Chen A., Kamali A., Akash T., Park C. S., Liu D., Das S., Woehl T. J., Chen P. Y.. Drying Controlled Synthesis of Catalytic Metal Nanocrystals Within 2D-Material Nanoconfinements. Adv. Funct. Mater. 2025;35:241746. doi: 10.1002/adfm.202414746. DOI

Cao F., Zhang Y., Wang H., Khan K., Tareen A. K., Qian W., Zhang H., Ågren H.. Recent Advances in Oxidation Stable Chemistry of 2D MXenes. Adv. Mater. 2022;34:2107554. doi: 10.1002/adma.202107554. PubMed DOI

Zhang L., Su W., Shu H., Lü T., Fu L., Song K., Huang X., Yu J., Lin C. T., Tang Y.. Tuning the Photoluminescence of Large Ti3C2Tx MXene Flakes. Ceram. Int. 2019;45:11468–11474. doi: 10.1016/j.ceramint.2019.03.014. DOI

Thakur A., Chandran B. S. N., Davidson K., Bedford A., Fang H., Im Y., Kanduri V., Wyatt B. C., Nemani S. K., Poliukhova V., Kumar R.. Step-by-Step Guide for Synthesis and Delamination of Ti3C2Tx MXene. Small Meth. 2023;7:2300030. doi: 10.1002/smtd.202370045. PubMed DOI

Thakur A.. et al. Synthesis of a 2D Tungsten MXene for Electrocatalysis. Nat. Synth. 2025:1–13. doi: 10.1038/s44160-025-00773-z. DOI

Wang D., Zhou C., Filatov A. S., Cho W., Lagunas F., Wang M., Vaikuntanathan S., Liu C., Klie R. F., Talapin D. V.. Direct Synthesis and Chemical Vapor Deposition of 2D Carbide and Nitride MXenes. Science. 2023;379:1242–1247. doi: 10.1126/science.add9204. PubMed DOI

Chen Y., Ge Y., Huang W., Li Z., Wu L., Zhang H., Li X.. Refractive Index Sensors Based on Ti3C2Tx MXene Fibers. ACS Appl. Nano Mater. 2020;3:303–311. doi: 10.1021/acsanm.9b01889. DOI

Anasori B., Gogotsi Y.. MXenes: Trends, Growth, and Future Directions. Graphene 2D Mater. 2022;7:75–79. doi: 10.1007/s41127-022-00053-z. DOI

Simon J., Fruhling C., Kim H., Gogotsi Y., Boltasseva A.. MXenes for Optics and Photonics. Opt. Photonics News. 2023;34:42–49. doi: 10.1364/OPN.34.11.000042. DOI

Yuan C., Chen C., Yang Z., Cheng J., Weng J., Tan S., Hou R., Cao T., Tang Z., Chen W., Xu B., Wang X., Tang J.. Acidic “Water-in-Salt” Electrolyte Enables a High-Energy Symmetric Supercapacitor Based on Titanium Carbide MXene. ACS Nano. 2024;18:16027–16040. doi: 10.1021/acsami.4c08094. PubMed DOI

Alhabeb M., Maleski K., Anasori B., Lelyukh P., Clark L., Sin S., Gogotsi Y.. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2T x MXene) Chem. Mater. 2017;29:7633–7644. doi: 10.1021/acs.chemmater.7b02847. DOI

Salles P., Quain E., Kurra N., Sarycheva A., Gogotsi Y.. Automated Scalpel Patterning of Solution Processed Thin Films for Fabrication of Transparent MXene Microsupercapacitors. Small. 2018;14:1802864. doi: 10.1002/smll.201802864. PubMed DOI

Dillon A. D., Ghidiu M. J., Krick A. L., Griggs J., May S. J., Gogotsi Y., Barsoum M. W., Fafarman A. T.. Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide. Adv. Funct. Mater. 2016;26:4162–4168. doi: 10.1002/adfm.201600357. DOI

Zhang G., Huang S., Wang F., Yan H.. Layer-Dependent Electronic and Optical Properties of 2D Black Phosphorus: Fundamentals and Engineering. Laser Phot. Rev. 2021;15:2000399. doi: 10.1002/lpor.202000399. DOI

Carvalho A., Wang M., Zhu X., Rodin A. S., Su H., Castro Neto A. H.. Phosphorene: From Theory to Applications. Nat. Rev. Mater. 2016;1:16061. doi: 10.1038/natrevmats.2016.61. DOI

Wu J., Koon G. K. W., Xiang D., Han C., Toh C. T., Kulkarni E. S., Verzhbitskiy I., Carvalho A., Rodin A. S., Koenig S. P., Eda G., Chen W., Castro Neto A. H., Özyilmaz B.. Colossal Ultraviolet Photoresponsivity of Few-Layer Black Phosphorus. ACS Nano. 2015;9:8070–8077. doi: 10.1021/acsnano.5b01922. PubMed DOI

Tran V., Fei R., Yang L.. Quasiparticle Energies, Excitons, and Optical Spectra of Few-Layer Black Phosphorus. 2D Mater. 2015;2:044014. doi: 10.1088/2053-1583/2/4/044014. DOI

Zhou S., Bao C., Fan B., Zhou H., Gao Q., Zhong H., Lin T., Liu H., Yu P., Tang P., Meng S., Duan W., Zhou S.. Pseudospin-Selective Floquet Band Engineering in Black Phosphorus. Nature. 2023;614:75–80. doi: 10.1038/s41586-022-05610-3. PubMed DOI

Shen G., Tian X., Cao L., Guo H., Li X., Tian Y., Cui X., Feng M., Zhao J., Wang B., Petek H., Tan S.. Ultrafast Energizing the Parity-Forbidden Dark Exciton in Black Phosphorus. Nat. Commun. 2025;16:3992. doi: 10.1038/s41467-025-58930-z. PubMed DOI PMC

Cudazzo P., Tokatly I. V., Rubio A.. Dielectric Screening in Two-Dimensional Insulators: Implications for Excitonic and Impurity States in Graphane. Phys. Rev. B. 2011;84:085406. doi: 10.1103/PhysRevB.84.085406. DOI

Rodin A., Trushin M., Carvalho A., Castro Neto A. H.. Collective Excitations in 2D Materials. Nat. Rev. Phys. 2020;2:524–537. doi: 10.1038/s42254-020-0214-4. DOI

Carvalho A., Ribeiro R. M., Castro Neto A. H.. Band Nesting and the Optical Response of Two-Dimensional Semiconducting Transition Metal Dichalcogenides. Phys. Rev. B. 2013;88:115205. doi: 10.1103/PhysRevB.88.115205. DOI

Kamandi M., Guclu C., Luk T. S., Wang G. T., Capolino F.. Giant Field Enhancement in Longitudinal Epsilon-Near-Zero Films. Phys. Rev. B. 2017;95:161105. doi: 10.1103/PhysRevB.95.161105. DOI

van Veen E., Nemilentsau A., Kumar A., Roldán R., Katsnelson M. I., Low T., Yuan S.. Tuning Two-Dimensional Hyperbolic Plasmons in Black Phosphorus. Phys. Rev. Applied. 2019;12:014011. doi: 10.1103/PhysRevApplied.12.014011. DOI

Novko D., Lyon K., Mowbray D. J., Despoja V.. Ab Initio Study of Electromagnetic Modes in Two-Dimensional Semiconductors: Application to Doped Phosphorene. Phys. Rev. B. 2021;104:115421. doi: 10.1103/PhysRevB.104.115421. DOI

Tzoar N., Klein A.. Absorption of Electromagnetic Radiation by an Electron Gas. Phys. Rev. 1961;124:1297–1306. doi: 10.1103/PhysRev.124.1297. DOI

Holstein T.. Theory of Transport Phenomena in an Electron-Phonon Gas. Ann. Phys. 1964;29:410–535. doi: 10.1016/0003-4916(64)90008-9. DOI

Allen P. B.. Electron-Phonon Effects in the Infrared Properties of Metals. Phys. Rev. B. 1971;3:305–320. doi: 10.1103/PhysRevB.3.305. DOI

Götze W., Wölfle P.. Homogeneous Dynamical Conductivity of Simple Metals. Phys. Rev. B. 1972;6:1226. doi: 10.1103/PhysRevB.6.1226. DOI

Mahan, G. D. Many Particle Physics; Plenum Press: New York and London, 1981; pp 1−781.

Awa K., Yasuhara H.. Many-Body Effect on the Interband Optical Absorption of Alkali Metals. J. Phys. C. 1983;16:3297–3304. doi: 10.1088/0022-3719/16/17/015. DOI

Hopfield J. J.. Effect of Electron-Electron Interactions on Photoemission in Simple Metals. Phys. Rev. 1965;139:A419–A424. doi: 10.1103/PhysRev.139.A419. DOI

Persson B. N. J., Andersson S.. Dynamical Processes at Surfaces: Excitation of Electron-Hole Pairs. Phys. Rev. B. 1984;29:4382. doi: 10.1103/PhysRevB.29.4382. DOI

Hopfield J. J.. Infrared divergences, X-ray edges, and all that. Comm. Solid State Phys. 1969;2:40–49.

Novko D., Despoja V., Reutzel M., Li A., Petek H., Gumhalter B.. Plasmonically Assisted Channels of Photoemission from Metals. Phys. Rev. B. 2021;103:205401. doi: 10.1103/PhysRevB.103.205401. DOI

Gumhalter B., Novko D.. Complementary Perturbative and Nonperturbative Pictures of Plasmonically Induced Electron Emission from Flat Metal Surfaces. Prog. Surf. Sci. 2023;98:100706. doi: 10.1016/j.progsurf.2023.100706. DOI

Petek H., Li A., Li X., Tan S., Reutzel M.. Plasmonic Decay Into Hot Electrons in Silver. Prog. Surf. Sci. 2023;98:100707. doi: 10.1016/j.progsurf.2023.100707. DOI

Reutzel M., Li A., Petek H.. Coherent Two-Dimensional Multiphoton Photoelectron Spectroscopy of Metal Surfaces. Phys. Rev. X. 2019;9:011044. doi: 10.1103/PhysRevX.9.011044. DOI

Li A., Reutzel M., Wang Z., Schmitt D., Keunecke M., Bennecke W., Matthijs Jansen G. S., Steil D., Steil S., Novko D., Gumhalter B., Mathias S., Petek H.. Multidimensional Multiphoton Momentum Microscopy of the Anisotropic Ag(110) Surface. Phys. Rev. B. 2022;105:075105. doi: 10.1103/PhysRevB.105.075105. DOI

Cui X., Wang C., Argondizzo A., Garrett-Roe S., Gumhalter B., Petek H.. Transient Excitons at Metal Surfaces. Nat. Phys. 2014;10:505–509. doi: 10.1038/nphys2981. DOI

Echenique P. M., Pitarke J. M., Chulkov E. V., Rubio A.. Theory of Inelastic Lifetimes of Low-Energy Electrons in Metals. Chem. Phys. 2000;251:1–35. doi: 10.1016/S0301-0104(99)00313-4. DOI

Giuliani G. F., Quinn J. J.. Lifetime of a Quasiparticle in a Two-Dimensional Electron Gas. Phys. Rev. B. 1982;26:4421. doi: 10.1103/PhysRevB.26.4421. DOI

Schuster R., Trinckauf J., Habenicht C., Knupfer M., Buchner B.. Anisotropic Particle-Hole Excitations in Black Phosphorus. Phys. Rev. Lett. 2015;115:026404. doi: 10.1103/PhysRevLett.115.026404. PubMed DOI

Wang F., Wang C., Chaves A., Song C., Zhang G., Huang S., Lei Y., Xing Q., Mu L., Xie Y., Yan H.. Prediction of Hyperbolic Exciton-Polaritons in Monolayer Black Phosphorus. Nat. Commun. 2021;12:5628. doi: 10.1038/s41467-021-25941-5. PubMed DOI PMC

Kumar A.. et al. Black Phosphorus Unipolar Transistor, Memory, and Photodetector. J. Mater. Sci. 2023;58:2689–2699. doi: 10.1007/s10853-023-08169-0. DOI

Petersen R., Pedersen T. G., García de Abajo F. J.. Nonlocal Plasmonic Response of Doped and Optically Pumped Graphene, MoS2 and Black Phosphorus. Phys. Rev. B. 2017;96:205430. doi: 10.1103/PhysRevB.96.205430. DOI

Tao A. R., Habas S., Yang P.. Shape Control of Colloidal Metal Nanocrystals. Small. 2008;4:310–325. doi: 10.1002/smll.200701295. DOI

Nagao T., Yaginuma S., Inaoka T., Sakurai T.. One-Dimensional Plasmon in an Atomic-Scale Metal Wire. Phys. Rev. Lett. 2006;97:116802. doi: 10.1103/PhysRevLett.97.116802. PubMed DOI

Johnson P. B., Christy R. W.. Optical Constants of the Noble Metals. Phys. Rev. B. 1972;6:4370–4379. doi: 10.1103/PhysRevB.6.4370. DOI

Zundel L., Gieri P., Sanders S., Manjavacas A.. Comparative Analysis of the Near- and Far-Field Optical Response of Thin Plasmonic Nanostructures. Adv. Opt. Mater. 2022;10:2102550. doi: 10.1002/adom.202102550. DOI

García de Abajo F. J., Manjavacas A.. Plasmonics in Atomically Thin Materials. Faraday Discuss. 2015;178:87–107. doi: 10.1039/C4FD00216D. PubMed DOI

Yu R., Pruneri F., García de Abajo F. J.. Active Modulation of Visible Light with Graphene-Loaded Ultrathin Metal Plasmonic Antennas. Sci. Rep. 2016;6:32144. doi: 10.1038/srep32144. PubMed DOI PMC

Lofton C., Sigmund W.. Mechanisms Controlling Crystal Habits of Gold and Silver Colloids. Adv. Funct. Mater. 2005;15:1197–1208. doi: 10.1002/adfm.200400091. DOI

Millstone J. E., Hurst S. J., Métraux G. S., Cutler J. I., Mirkin C. A.. Colloidal Gold and Silver Triangular Nanoprisms. Small. 2009;5:646–664. doi: 10.1002/smll.200801480. PubMed DOI

Kiani F., Tagliabue G.. High Aspect Ratio Au Microflakes Via Gap-Assisted Synthesis. Chem. Mater. 2022;34:1278–1288. doi: 10.1021/acs.chemmater.1c03908. DOI

Scarabelli L., Sun M., Zhuo X., Yoo S., Millstone J. E., Jones M. R., Liz-Marzán L. M.. Plate-Like Colloidal Metal Nanoparticles. Chem. Rev. 2023;123:3493–3542. doi: 10.1021/acs.chemrev.3c00033. PubMed DOI PMC

Ye S., Brown A. P., Stammers A. C., Thomson N. H., Wen J., Roach L., Bushby R. J., Coletta P. L., Critchley K., Connell S. D., Markham A. F., Brydson R.. Sub-Nanometer Thick Gold Nanosheets as Highly Efficient Catalysts. Adv. Sci. 2019;6:1900911. doi: 10.1002/advs.201900911. PubMed DOI PMC

Wang L., Zhu Y., Wang J.-Q., Liu F., Huang J., Meng X., Basset J.-M., Han Y., Xiao F.-S.. Two-Dimensional Gold Nanostructures with High Activity for Selective Oxidation of Carbon−Hydrogen Bonds. Nat. Commun. 2015;6:6957. doi: 10.1038/ncomms7957. PubMed DOI PMC

Mironov M. S., Yakubovsky D. I., Ermolaev G. A., Khramtsov I. A., Kirtaev R. V., Slavich A. S., Tselikov G. I., Vyshnevyy A. A., Arsenin A. V., Volkov V. S., Novoselov K. S.. Graphene-Inspired Wafer-Scale Ultrathin Gold Films. Nano Lett. 2024;24:16270–16275. doi: 10.1021/acs.nanolett.4c04311. PubMed DOI PMC

Speer N. J., Tang S.-J., Miller T., Chiang T.-C.. Coherent Electronic Fringe Structure in Incommensurate Silver-Silicon Quantum Wells. Science. 2006;314:804–806. doi: 10.1126/science.1132941. PubMed DOI

Green A., Bauer E.. Gold Monolayers on Silicon Single Crystal Surfaces. Surf. Sci. 1981;103:L127–L133. doi: 10.1016/0167-2584(81)90627-7. DOI

Yu R., Guo Q., Xia F., García de Abajo F. J.. Photothermal Engineering of Graphene Plasmons. Phys. Rev. Lett. 2018;121:057404. doi: 10.1103/PhysRevLett.121.057404. PubMed DOI

Meng Y.. et al. Photonic van der Waals Integration from 2D Materials to 3D Nanomembranes. Nat. Rev. Mater. 2023;8:498–517. doi: 10.1038/s41578-023-00558-w. DOI

Sun Z., Hasan T., Torrisi F., Popa D., Privitera G., Wang F., Bonaccorso F., Basko D. M., Ferrari A. C.. Graphene Mode-Locked Ultrafast Laser. ACS Nano. 2010;4:803–810. doi: 10.1021/nn901703e. PubMed DOI

Jiang B.. et al. High-efficiency Second-order Nonlinear Processes in an Optical Microfibre Assisted by Few-layer GaSe. Light Sci. Appl. 2020;9:63. doi: 10.1038/s41377-020-0304-1. PubMed DOI PMC

Bao Q.. et al. Broadband Graphene Polarizer. Nat. Photonics. 2011;5:411–415. doi: 10.1038/nphoton.2011.102. DOI

Wu Y., Yao B., Yu C., Rao Y.. Optical Graphene Gas Sensors Based on Microfibers: A Review. Sensors. 2018;18:941. doi: 10.3390/s18040941. PubMed DOI PMC

Xie J.. et al. Critical-Layered MoS2 for the Enhancement of Supercontinuum Generation in Photonic Crystal Fibre. Adv. Mater. 2024;36:2403696. doi: 10.1002/adma.202403696. PubMed DOI

Phare C. T., Lee Y., Cardenas J., Lipson M.. Graphene Electro-Optic Modulator with 30 GHz Bandwidth. Nat. Photonics. 2015;9:511–514. doi: 10.1038/nphoton.2015.122. DOI

Ma P.. et al. Plasmonically Enhanced Graphene Photodetector Featuring 100 Gbit/s Data Reception, High Responsivity, and Compact Size. ACS Photonics. 2019;6:154–161. doi: 10.1021/acsphotonics.8b01234. DOI

Gonzalez Marin J. F., Unuchek D., Watanabe K., Taniguchi T., Kis A.. MoS2 Photodetectors Integrated with Photonic Circuits. npj 2D Mater. Appl. 2019;3:14. doi: 10.1038/s41699-019-0096-4. DOI

Lin H.. et al. Chalcogenide Glass-on-Graphene Photonics. Nat. Photonics. 2017;11:798–805. doi: 10.1038/s41566-017-0033-z. DOI

Lin H.. et al. A 90-nm-thick Graphene Metamaterial for Strong and Extremely Broadband Absorption of Unpolarized Light. Nat. Photonics. 2019;13:270–276. doi: 10.1038/s41566-019-0389-3. DOI

Qu Y.. et al. Enhanced Four-Wave Mixing in Silicon Nitride Waveguides Integrated with 2D Layered Graphene Oxide Films. Adv. Optical Mater. 2020;8:2001048. doi: 10.1002/adom.202001048. DOI

Wang Y.. et al. Enhancing Si3N4 Waveguide Nonlinearity with Heterogeneous Integration of Few-Layer WS2 . ACS Photonics. 2021;8:2713–2721. doi: 10.1021/acsphotonics.1c00767. PubMed DOI PMC

Ono M.. et al. Ultrafast and Energy-efficient All-Optical Switching with Graphene-loaded Deep-Subwavelength Plasmonic Waveguides. Nat. Photonics. 2020;14:37–43. doi: 10.1038/s41566-019-0547-7. DOI

Yao B.. et al. Gate-Tunable Frequency Combs in Graphene-Nitride Microresonators. Nature. 2018;558:410–414. doi: 10.1038/s41586-018-0216-x. PubMed DOI

Kim K.. et al. A Role for Graphene in Silicon-Based Semiconductor Devices. Nature. 2011;479:338–344. doi: 10.1038/nature10680. PubMed DOI

Cui X.. et al. On-chip Photonics and Optoelectronics with a van der Waals Material Dielectric Platform. Nanoscale. 2022;14:9459–9465. doi: 10.1039/D2NR01042A. PubMed DOI PMC

Wang Y., Lee J., Zheng X., Xie Y., Feng P. X.-L. Hexagonal Boron Nitride Phononic Crystal Waveguides. ACS Photonics. 2019;6:3225–3232. doi: 10.1021/acsphotonics.9b01094. DOI

Kȩdziora M.. et al. Predesigned Perovskite Crystal Waveguides for Room-Temperature Exciton-Polariton Condensation and Edge Lasing. Nat. Mater. 2024;23:1515–1522. doi: 10.1038/s41563-024-01980-3. PubMed DOI

Cui X.. et al. Miniaturized Spectral Sensing with a Tunable Optoelectronic Interface. Sci. Adv. 2025;11:eado6886. doi: 10.1126/sciadv.ado6886. PubMed DOI PMC

Theis T. N., Wong H.-S. P.. The End of Moore’s Law: A New Beginning for Information Technology. Comput. Sci. Eng. 2017;19:41–50. doi: 10.1109/MCSE.2017.29. DOI

Thomson D., Zilkie A., Bowers J. E., Komljenovic T., Reed G. T., Vivien L., Marris-Morini D., Cassan E., Virot L., Fédéli J.-M.. Roadmap on Silicon Photonics. J. Opt. 2016;18:073003. doi: 10.1088/2040-8978/18/7/073003. DOI

Boes A., Chang L., Langrock C., Yu M., Zhang M., Lin Q., Lončar M., Fejer M., Bowers J., Mitchell A.. Lithium Niobate Photonics: Unlocking the Electromagnetic Spectrum. Science. 2023;379:eabj4396. doi: 10.1126/science.abj4396. PubMed DOI

Yuvaraja S., Khandelwal V., Tang X., Li X.. Wide Bandgap Semiconductor-Based Integrated Circuits. Chip. 2023;2:100072. doi: 10.1016/j.chip.2023.100072. DOI

Smajic, J. ; Leuthold, J. . Plasmonic Electro-Optic Modulators−A Review. IEEE J. Sel. Top. Quantum Electron. 2024, 30, 1. 10.1109/JSTQE.2024.3396549 DOI

Giles A. J., Dai S., Vurgaftman I., Hoffman T., Liu S., Lindsay L., Ellis C. T., Assefa N., Chatzakis I., Reinecke T. L.. Ultralow-Loss Polaritons in Isotopically Pure Boron Nitride. Nat. Mater. 2018;17:134–139. doi: 10.1038/nmat5047. PubMed DOI

Hu H., Chen N., Teng H., Yu R., Qu Y., Sun J., Xue M., Hu D., Wu B., Li C.. Doping-Driven Topological Polaritons in Graphene/α-MoO3 Heterostructures. Nat. Nanotechnol. 2022;17:940–946. doi: 10.1038/s41565-022-01185-2. PubMed DOI PMC

Ayata M., Fedoryshyn Y., Heni W., Baeuerle B., Josten A., Zahner M., Koch U., Salamin Y., Hoessbacher C., Haffner C.. High-Speed Plasmonic Modulator in a Single Metal Layer. Science. 2017;358:630–632. doi: 10.1126/science.aan5953. PubMed DOI

Woessner A., Gao Y., Torre I., Lundeberg M. B., Tan C., Watanabe K., Taniguchi T., Hillenbrand R., Hone J., Polini M.. Electrical 2π Phase Control of Infrared Light in a 350-nm Footprint Using Graphene Plasmons. Nat. Photonics. 2017;11:421–424. doi: 10.1038/nphoton.2017.98. DOI

Bandurin D. A., Svintsov D., Gayduchenko I., Xu S. G., Principi A., Moskotin M., Tretyakov I., Yagodkin D., Zhukov S., Taniguchi T.. Resonant Terahertz Detection Using Graphene Plasmons. Nat. Commun. 2018;9:5392. doi: 10.1038/s41467-018-07848-w. PubMed DOI PMC

Freitag M., Low T., Zhu W., Yan H., Xia F., Avouris P.. Photocurrent in Graphene Harnessed by Tunable Intrinsic Plasmons. Nat. Commun. 2013;4:1951. doi: 10.1038/ncomms2951. PubMed DOI

Koepfli S. M., Baumann M., Koyaz Y., Gadola R., Güngör A., Keller K., Horst Y., Nashashibi S., Schwanninger R., Doderer M.. Metamaterial Graphene Photodetector with Bandwidth Exceeding 500 Gigahertz. Science. 2023;380:1169–1174. doi: 10.1126/science.adg8017. PubMed DOI

Liu A., Zhang X., Liu Z., Li Y., Peng X., Li X., Qin Y., Hu C., Qiu Y., Jiang H.. The Roadmap of 2D Materials and Devices Toward Chips. Nano-Micro Lett. 2024;16:119. doi: 10.1007/s40820-023-01273-5. PubMed DOI PMC

Nikitin A. Y., Guinea F., García-Vidal F., Martín-Moreno L.. Edge and Waveguide Terahertz Surface Plasmon Modes in Graphene Microribbons. Phys. Rev. B. 2011;84:161407. doi: 10.1103/PhysRevB.84.161407. DOI

Lundeberg M. B., Gao Y., Woessner A., Tan C., Alonso-González P., Watanabe K., Taniguchi T., Hone J., Hillenbrand R., Koppens F. H.. Thermoelectric Detection and Imaging of Propagating Graphene Plasmons. Nat. Mater. 2017;16:204–207. doi: 10.1038/nmat4755. PubMed DOI

Sloan J.. et al. Controlling Spins with Surface Magnon Polaritons. Phys. Rev. B. 2019;100:235453. doi: 10.1103/PhysRevB.100.235453. DOI

Kampfrath T.. et al. Resonant and Nonresonant Control over Matter and Light by Intense Terahertz transients. Nat. Photonics. 2013;7:680–690. doi: 10.1038/nphoton.2013.184. DOI

Kurman Y.. et al. Spatiotemporal Imaging of 2D Polariton Wave Packet Dynamics Using Free Electrons. Science. 2021;372:1181–1186. doi: 10.1126/science.abg9015. PubMed DOI

Liu M.. et al. Terahertz-Field-Induced Insulator-to-Metal Transition in Vanadium Dioxide Metamaterial. Nature. 2012;487:345–348. doi: 10.1038/nature11231. PubMed DOI

Henstridge M.. et al. Nonlocal Nonlinear Phononics. Nat. Phys. 2022;18:457–461. doi: 10.1038/s41567-022-01512-3. DOI

High A. A.. et al. Visible-Frequency Hyperbolic Metasurface. Nature. 2015;522:192–196. doi: 10.1038/nature14477. PubMed DOI

Sie E. J.. et al. Valley-Selective Optical Stark Effect in Monolayer WS2 . Nat. Mater. 2015;14:290–294. doi: 10.1038/nmat4156. PubMed DOI

Bao C.. et al. Light-Induced Emergent Phenomena in 2D Materials and Topological Materials. Nat. Rev. Phys. 2022;4:33–48. doi: 10.1038/s42254-021-00388-1. DOI

de la Torre A.. et al. Colloquium: Nonthermal Pathways to Ultrafast Control in Quantum Materials. Rev. Mod. Phys. 2021;93:041002. doi: 10.1103/RevModPhys.93.041002. DOI

Kim H.. et al. Optical Imprinting of Superlattices in Two-Dimensional Materials. Phys. Rev. Research. 2020;2:043004. doi: 10.1103/PhysRevResearch.2.043004. DOI

Ghazaryan A.. et al. Light-Induced Fractional Quantum Hall Phases in Graphene. Phys. Rev. Lett. 2017;119:247403. doi: 10.1103/PhysRevLett.119.247403. PubMed DOI

Michael M. H.. et al. Generalized Fresnel-Floquet Equations for Driven Quantum Materials. Phys. Rev. B. 2022;105:174301. doi: 10.1103/PhysRevB.105.174301. DOI

Jarc G.. et al. Cavity-Mediated Thermal Control of Metal-to-Insulator Transition in 1T-TaS2 . Nature. 2023;622:487–492. doi: 10.1038/s41586-023-06596-2. PubMed DOI

Eckhardt, C. J. ; et al. Surface-Mediated Ultra-Strong Cavity Coupling of Two-Dimensional Itinerant Electrons. arXiv 2024, 2409.10615. 10.48550/arXiv.2409.10615 DOI

Sarkar S.. et al. Sub-Wavelength Optical Lattice in 2D Materials. Sci. Adv. 2025;11:eadv2023. doi: 10.1126/sciadv.adv2023. PubMed DOI PMC

Enkner, J. ; et al. Enhanced Fractional Quantum Hall Gaps in a Two-Dimensional Electron Gas Coupled to a Hovering Split-Ring resonator. arXiv 2024, 2405.18362. 10.48550/arXiv.2405.18362 DOI

Camphausen R., Marini L., Tawfik S. A., Tran T. T., Ford M. J., Palomba S.. Observation of Near-Infrared Sub-Poissonian Photon Emission in Hexagonal Boron Nitride at Room Temperature. APL Photonics. 2020;5:076103. doi: 10.1063/5.0008242. DOI

Koperski M., Vaclavkova D., Watanabe K., Taniguchi T., Novoselov K. S., Potemski M.. Midgap Radiative Centers in Carbon-Enriched Hexagonal Boron Nitride. Proc. Natl. Acad. Sci. U. S. A. 2020;117:13214–13219. doi: 10.1073/pnas.2003895117. PubMed DOI PMC

Srivastava A., Sidler M., Allain A. V., Lembke D. S., Kis A., Imamoǧlu A.. Optically Active Quantum Dots in Monolayer WSe2 . Nat. Nanotechnol. 2015;10:491–496. doi: 10.1038/nnano.2015.60. PubMed DOI

He Y.-M., Clark G., Schaibley J. R., He Y., Chen M.-C., Wei Y.-J., Ding X., Zhang Q., Yao W., Xu X., Lu C.-Y., Pan J.-W.. Single Quantum Emitters in Monolayer Semiconductors. Nat. Nanotechnol. 2015;10:497–502. doi: 10.1038/nnano.2015.75. PubMed DOI

Koperski M., Nogajewski K., Arora A., Cherkez V., Mallet P., Veuillen J.-Y., Marcus J., Kossacki P., Potemski M.. Single Photon Emitters in Exfoliated WSe2 Structures. Nat. Nanotechnol. 2015;10:503–506. doi: 10.1038/nnano.2015.67. PubMed DOI

Branny A., Wang G., Kumar S., Robert C., Lassagne B., Marie X., Gerardot B. D., Urbaszek B.. Discrete Quantum Dot like Emitters in Monolayer MoSe2: Spatial Mapping, Magneto-Optics, and Charge Tuning. Appl. Phys. Lett. 2016;108:142101. doi: 10.1063/1.4945268. DOI

Chakraborty C., Goodfellow K. M., Vamivakas A. N.. Localized Emission from Defects in MoSe2 Layers. Opt. Mater. Express. 2016;6:2081–2087. doi: 10.1364/OME.6.002081. DOI

Zhao S., Lavie J., Rondin L., Orcin-Chaix L., Diederichs C., Roussignol P., Chassagneux Y., Voisin C., Müllen K., Narita A., Campidelli S., Lauret J. S.. Single Photon Emission from Graphene Quantum Dots at Room Temperature. Nat. Commun. 2018;9:3470. doi: 10.1038/s41467-018-05888-w. PubMed DOI PMC

Kozawa D., Wu X., Ishii A., Fortner J., Otsuka K., Xiang R., Inoue T., Maruyama S., Wang Y., Kato Y. K.. Formation of Organic Color Centers in Air-Suspended Carbon Nanotubes Using Vapor-Phase Reaction. Nat. Commun. 2022;13:2814. doi: 10.1038/s41467-022-30508-z. PubMed DOI PMC

He X., Hartmann N. F., Ma X., Kim Y., Ihly R., Blackburn J. L., Gao W., Kono J., Yomogida Y., Hirano A., Tanaka T., Kataura H., Htoon H., Doorn S. K.. Tunable Room-Temperature Single-Photon Emission at Telecom Wavelengths from sp 3 Defects in Carbon Nanotubes. Nat. Photonics. 2017;11:577–582. doi: 10.1038/nphoton.2017.119. DOI

Yu H., Liu G.-B., Tang J., Xu X., Yao W.. Moiré Excitons: From Programmable Quantum Emitter Arrays to Spin-Orbit−Coupled Artificial Lattices. Sci. Adv. 2017;3:e1701696. doi: 10.1126/sciadv.1701696. PubMed DOI PMC

Seyler K. L., Rivera P., Yu H., Wilson N. P., Ray E. L., Mandrus D. G., Yan J., Yao W., Xu X.. Signatures of Moiré-Trapped Valley Excitons in MoSe2/WSe2 Heterobilayers. Nature. 2019;567:66–70. doi: 10.1038/s41586-019-0957-1. PubMed DOI

Tang Y., Li L., Li T., Xu Y., Liu S., Barmak K., Watanabe K., Taniguchi T., MacDonald A. H., Shan J., Mak K. F.. Simulation of Hubbard Model Physics in WSe2/WS2 Moiré Superlattices. Nature. 2020;579:353–358. doi: 10.1038/s41586-020-2085-3. PubMed DOI

Cai T., Kim J.-H., Yang Z., Dutta S., Aghaeimeibodi S., Waks E.. Radiative Enhancement of Single Quantum Emitters in WSe2 Monolayers Using Site-Controlled Metallic Nanopillars. ACS Photonics. 2018;5:3466–3471. doi: 10.1021/acsphotonics.8b00580. DOI

Fournier C., Plaud A., Roux S., Pierret A., Rosticher M., Watanabe K., Taniguchi T., Buil S., Quélin X., Barjon J., Hermier J.-P., Delteil A.. Position-Controlled Quantum Emitters with Reproducible Emission Wavelength in Hexagonal Boron Nitride. Nat. Commun. 2021;12:3779. doi: 10.1038/s41467-021-24019-6. PubMed DOI PMC

Klein J., Sigl L., Gyger S., Barthelmi K., Florian M., Rey S., Taniguchi T., Watanabe K., Jahnke F., Kastl C., Zwiller V., Jöns K. D., Müller K., Wurstbauer U., Finley J. J., Holleitner A. W.. Engineering the Luminescence and Generation of Individual Defect Emitters in Atomically Thin MoS2 . ACS Photonics. 2021;8:669–677. doi: 10.1021/acsphotonics.0c01907. DOI

Liu G.-L., Wu X.-Y., Jing P.-T., Cheng Z., Zhan D., Bao Y., Yan J.-X., Xu H., Zhang L.-G., Li B.-H., Liu K.-W., Liu L., Shen D.-Z.. Single Photon Emitters in Hexagonal Boron Nitride Fabricated by Focused Helium Ion Beam. Adv. Opt. Mater. 2024;12:2302083. doi: 10.1002/adom.202302083. DOI

Baek H., Brotons-Gisbert M., Koong Z. X., Campbell A., Rambach M., Watanabe K., Taniguchi T., Gerardot B. D.. Highly Energy-Tunable Quantum Light from Moiré-Trapped Excitons. Sci. Adv. 2020;6:eaba8526. doi: 10.1126/sciadv.aba8526. PubMed DOI PMC

Vogl T., Lecamwasam R., Buchler B. C., Lu Y., Lam P. K.. Compact Cavity-Enhanced Single-Photon Generation with Hexagonal Boron Nitride. ACS Photonics. 2019;6:1955–1962. doi: 10.1021/acsphotonics.9b00314. DOI

Fröch J. E., Li C., Chen Y., Toth M., Kianinia M., Kim S., Aharonovich I.. Purcell Enhancement of a Cavity-Coupled Emitter in Hexagonal Boron Nitride. Small. 2022;18:2104805. doi: 10.1002/smll.202104805. PubMed DOI

Li C., Fröch J. E., Nonahal M., Tran T. N., Toth M., Kim S., Aharonovich I.. Integration of hBN Quantum Emitters in Monolithically Fabricated Waveguides. ACS Photonics. 2021;8:2966–2972. doi: 10.1021/acsphotonics.1c00890. DOI

Elshaari A. W., Skalli A., Gyger S., Nurizzo M., Schweickert L., Esmaeil Zadeh I., Svedendahl M., Steinhauer S., Zwiller V.. Deterministic Integration of hBN Emitter in Silicon Nitride Photonic Waveguide. Adv. Quantum Technol. 2021;4:2100032. doi: 10.1002/qute.202100032. DOI

Gérard D., Rosticher M., Watanabe K., Taniguchi T., Barjon J., Buil S., Hermier J.-P., Delteil A.. Top-down Integration of an hBN Quantum Emitter in a Monolithic Photonic Waveguide. Appl. Phys. Lett. 2023;122:264001. doi: 10.1063/5.0152721. DOI

Stern H. L., Gu Q., Jarman J., Eizagirre Barker S., Mendelson N., Chugh D., Schott S., Tan H. H., Sirringhaus H., Aharonovich I., Atatüre M.. Room-Temperature Optically Detected Magnetic Resonance of Single Defects in Hexagonal Boron Nitride. Nat. Commun. 2022;13:618. doi: 10.1038/s41467-022-28169-z. PubMed DOI PMC

Gottscholl A., Kianinia M., Soltamov V., Orlinskii S., Mamin G., Bradac C., Kasper C., Krambrock K., Sperlich A., Toth M., Aharonovich I., Dyakonov V.. Initialization and Read-out of Intrinsic Spin Defects in a van der Waals Crystal at Room Temperature. Nat. Mater. 2020;19:540–545. doi: 10.1038/s41563-020-0619-6. PubMed DOI

Smoleński T., Cotlet O., Popert A., Back P., Shimazaki Y., Knüppel P., Dietler N., Taniguchi T., Watanabe K., Kroner M., Imamoglu A.. Interaction-Induced Shubnikov−de Haas Oscillations in Optical Conductivity of Monolayer MoSe2 . Phys. Rev. Lett. 2019;123:097403. doi: 10.1103/PhysRevLett.123.097403. PubMed DOI

Wang H., Kim H., Dong D., Shinokita K., Watanabe K., Taniguchi T., Matsuda K.. Quantum Coherence and Interference of a Single Moiré Exciton in Nano-Fabricated Twisted Monolayer Semiconductor Heterobilayers. Nat. Commun. 2024;15:4905. doi: 10.1038/s41467-024-48623-4. PubMed DOI PMC

Litvinov D., Wu A., Barbosa M., Vaklinova K., Grzeszczyk M., Baldi G., Zhu M., Koperski M.. Single Photon Sources and Single Electron Transistors in Two-Dimensional Materials. Mater. Sci. Eng. R. 2025;163:100928. doi: 10.1016/j.mser.2025.100928. DOI

Badrtdinov D. I., Rodriguez-Fernandez C., Grzeszczyk M., Qiu Z., Vaklinova K., Huang P., Hampel A., Watanabe K., Taniguchi T., Jiong L., Potemski M., Dreyer C. E., Koperski M., Rösner M.. Dielectric Environment Sensitivity of Carbon Centers in Hexagonal Boron Nitride. Small. 2023;19:2300144. doi: 10.1002/smll.202300144. PubMed DOI

Qiu Z., Vaklinova K., Huang P., Grzeszczyk M., Watanabe K., Taniguchi T., Novoselov K. S., Lu J., Koperski M.. Atomic and Electronic Structure of Defects in hBN: Enhancing Single-Defect Functionalities. ACS Nano. 2024;18:24035–24043. doi: 10.1021/acsnano.4c03640. PubMed DOI PMC

Wu S. W., Nazin G. V., Ho W.. Intramolecular Photon Emission from a Single Molecule in a Scanning Tunneling Microscope. Phys. Rev. B. 2008;77:205430. doi: 10.1103/PhysRevB.77.205430. DOI

Krane N., Lotze C., Läger J. M., Reecht G., Franke K. J.. Electronic Structure and Luminescence of Quasi-Freestanding MoS2 Nanopatches on Au(111) Nano Lett. 2016;16:5163–5168. doi: 10.1021/acs.nanolett.6b02101. PubMed DOI PMC

Kastl C., Chen C. T., Koch R. J., Schuler B., Kuykendall T. R., Bostwick A., Jozwiak C., Seyller T., Rotenberg E., Weber-Bargioni A., Aloni S., Schwartzberg A. M.. Multimodal Spectromicroscopy of Monolayer WS2 Enabled by Ultra-Clean van der Waals Epitaxy. 2D Mater. 2018;5:045010. doi: 10.1088/2053-1583/aad21c. DOI

Howarth J., Vaklinova K., Grzeszczyk M., Baldi G., Hague L., Potemski M., Novoselov K. S., Kozikov A., Koperski M.. Electroluminescent Vertical Tunneling Junctions Based on WSe2 Monolayer Quantum Emitter Arrays: Exploring Tunability with Electric and Magnetic Fields. Proc. Natl. Acad. Sci. U. S. A. 2024;121:e2401757121. doi: 10.1073/pnas.2401757121. PubMed DOI PMC

Grzeszczyk M., Vaklinova K., Watanabe K., Taniguchi T., Novoselov K. S., Koperski M.. Electroluminescence from Pure Resonant States in hBN-Based Vertical Tunneling Junctions. Light: Sci. Appl. 2024;13:155. doi: 10.1038/s41377-024-01491-5. PubMed DOI PMC

Withers F., Del Pozo-Zamudio O., Mishchenko A., Rooney A. P., Gholinia A., Watanabe K., Taniguchi T., Haigh S. J., Geim A. K., Tartakovskii A. I., Novoselov K. S.. Light-Emitting Diodes by Band-Structure Engineering in van der Waals Heterostructures. Nat. Mater. 2015;14:301–306. doi: 10.1038/nmat4205. PubMed DOI

Binder J., Withers F., Molas M. R., Faugeras C., Nogajewski K., Watanabe K., Taniguchi T., Kozikov A., Geim A. K., Novoselov K. S., Potemski M.. Sub-bandgap Voltage Electroluminescence and Magneto-oscillations in a WSe2 Light-Emitting van der Waals Heterostructure. Nano Lett. 2017;17:1425–1430. doi: 10.1021/acs.nanolett.6b04374. PubMed DOI

Puchert R. P., Steiner F., Plechinger G., Hofmann F. J., Caspers I., Kirschner J., Nagler P., Chernikov A., Schüller C., Korn T., Vogelsang J., Bange S., Lupton J. M.. Spectral Focusing of Broadband Silver Electroluminescence in Nanoscopic FRET-LEDs. Nat. Nanotechnol. 2017;12:637–641. doi: 10.1038/nnano.2017.48. PubMed DOI

Pommier D., Bretel R., López L. E. P., Fabre F., Mayne A., Boer-Duchemin E., Dujardin G., Schull G., Berciaud S., Le Moal E.. Scanning Tunneling Microscope-Induced Excitonic Luminescence of a Two-Dimensional Semiconductor. Phys. Rev. Lett. 2019;123:1–7. doi: 10.1103/PhysRevLett.123.027402. PubMed DOI

Papadopoulos, S. ; Wang, L. ; Taniguchi, T. ; Watanabe, K. ; Novotny, L. . Energy Transfer from Tunneling Electrons to Excitons. arXiv 2022, 2209.11641. 10.48550/arXiv.2209.11641 DOI

Shan S., Huang J., Papadopoulos S., Khelifa R., Taniguchi T., Watanabe K., Wang L., Novotny L.. Overbias Photon Emission from Light-Emitting Devices Based on Monolayer Transition Metal Dichalcogenides. Nano Lett. 2023;23:10908–10913. doi: 10.1021/acs.nanolett.3c03155. PubMed DOI PMC

Wang Z., Kalathingal V., Trushin M.. et al. Upconversion Electroluminescence in 2D Semiconductors Integrated with Plasmonic Tunnel Junctions. Nat. Nanotechnol. 2024;19:993–999. doi: 10.1038/s41565-024-01650-0. PubMed DOI

Mishchenko A., Tu J. S., Cao Y., Gorbachev R. V., Wallbank J. R., Greenaway M. T., Morozov V. E., Morozov S. V., Zhu M. J., Wong S. L., Withers F., Woods C. R., Kim Y. J., Watanabe K., Taniguchi T., Vdovin E. E., Makarovsky O., Fromhold T. M., Fal’ko V. I., Novoselov K. S.. Twist-Controlled Resonant Tunnelling in Graphene/Boron Nitride/Graphene Heterostructures. Nat. Nanotechnol. 2014;9:808–813. doi: 10.1038/nnano.2014.187. PubMed DOI

Kuzmina A., Parzefall M., Back P., Taniguchi T., Watanabe K., Jain A., Novotny L.. Resonant Light Emission from Graphene/Hexagonal Boron Nitride/Graphene Tunnel Junctions. Nano Lett. 2021;21:8332–8339. doi: 10.1021/acs.nanolett.1c02913. PubMed DOI

Zhang Y., Brar V. W., Wang F., Girit C., Yayon Y., Panlasigui M., Zettl A., Crommie M. F.. Giant Phonon-Induced Conductance in Scanning Tunnelling Spectroscopy of Gate-Tunable Graphene. Nat. Phys. 2008;4:627–630. doi: 10.1038/nphys1022. DOI

Wang L., Papadopoulos S., Iyikanat F., Zhang J., Huang J., Taniguchi T., Watanabe K., Calame M., Perrin M. L., García de Abajo F. J., Novotny L.. Exciton-Assisted Electron Tunnelling in van der Waals Heterostructures. Nat. Mater. 2023;22:1094–1099. doi: 10.1038/s41563-023-01556-7. PubMed DOI PMC

Inbar A., Birkbeck J., Xiao J., Taniguchi T., Watanabe K., Yan B., Oreg Y., Stern A., Berg E., Ilani S.. The Quantum Twisting Microscope. Nature. 2023;614:682–687. doi: 10.1038/s41586-022-05685-y. PubMed DOI

Parzefall P., Novotny L.. Optical Antennas Driven by Quantum Tunneling: A Key Issues Review. Rep. Prog. Phys. 2019;82:112401. doi: 10.1088/1361-6633/ab4239. PubMed DOI

Kim K., Prasad N., Movva H. C. P., Burg G. W., Wang Y., Larentis S., Taniguchi T., Watanabe K., Register L. F., Tutuc E.. Spin-Conserving Resonant Tunneling in Twist-Controlled WSe2-hBN-WSe2 Heterostructures. Nano Lett. 2018;18:5967–5973. doi: 10.1021/acs.nanolett.8b02770. PubMed DOI

Xia F., Mueller T., Lin Y. M., Valdes-Garcia A., Avouris P.. Ultrafast Graphene Photodetector. Nat. Nanotechnol. 2009;4:839–843. doi: 10.1038/nnano.2009.292. PubMed DOI

Vicarelli L., Vitiello M. S., Coquillat D., Lombardo A. A., Ferrari C., Knap W., Polini M., Pellegrini V., Tredicucci A.. Graphene Field Effect Transistors as Room-Temperature Terahertz Detectors. Nat. Mater. 2012;11:865–871. doi: 10.1038/nmat3417. PubMed DOI

Koppens F. H. L., Mueller T., Avouris P., Ferrari A. C., Vitiello M. S., Polini M.. Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014;9:780–793. doi: 10.1038/nnano.2014.215. PubMed DOI

Viti L., Purdie D. G., Lombardo A., Ferrari A. C., Vitiello M. S.. HBN-Encapsulated, Graphene-based, Room-temperature Terahertz Receivers, with High Speed and Low Noise. Nano Lett. 2020;20:3169. doi: 10.1021/acs.nanolett.9b05207. PubMed DOI

Asgari M., Riccardi E., Balci O., De Fazio D., Shinde S. M., Zhang J., Mignuzzi S., Koppens F. H. L., Ferrari A. C., Viti L., Vitiello M. S.. Chip-Scalable, Room-Temperature, Zero-Bias, Graphene-Based Terahertz Detectors with Nanosecond Response Time. ACS Nano. 2021;15:17966–17976. doi: 10.1021/acsnano.1c06432. PubMed DOI PMC

Liu M., Yin X., Ulin-Avila E., Geng B., Zentgraf T., Ju L., Wang F., Zhang X. A.. Graphene-Based Broadband Optical Modulator. Nature. 2011;474:64–67. doi: 10.1038/nature10067. PubMed DOI

Di Gaspare A., Pogna E. A. A., Salemi L., Balci O., Cadore A. R., Shinde S. M., Li L., Di Franco C., Davies A. G., Linfield E. H., Ferrari A. C., Scamarcio G., Vitiello M. S.. Tunable, Grating-Gated, Graphene-On-Polyimide Terahertz Modulators. Adv. Funct. Mater. 2021;31:2008039. doi: 10.1002/adfm.202008039. DOI

Di Gaspare A., Pogna E. A. A., Riccardi E., Sarfraz S. M. A., Scamarcio G., Vitiello M. S.. All in One-Chip, Electrolyte-Gated Graphene Amplitude Modulator, Saturable Absorber Mirror and Metrological Frequency-Tuner in the 2−5 THz Range. Adv. Optical Mater. 2022;10:2200819. doi: 10.1002/adom.202200819. DOI

Riccardi E., Pistore V., Kang S., Seitner L., De Vetter A., Jirauschek C., Mangeney J., Li L., Davies A. G., Linfield E. H., Ferrari A. C., Dhillon S. S., Vitiello M. S.. Short Pulse Generation from a Graphene-Coupled Passively Mode-Locked Terahertz Laser. Nat. Photonics. 2023;17:607–614. doi: 10.1038/s41566-023-01195-z. DOI

Brida D., Tomadin A., Manzoni C., Kim Y. J., Lombardo A., Milana S., Nair R. R., Novoselov K. S., Ferrari A. C., Cerullo G., Polini M.. Ultrafast Collinear Scattering and Carrier Multiplication in Graphene. Nat. Commun. 2013;4:1987. doi: 10.1038/ncomms2987. PubMed DOI

Vakil A., Engheta N.. Transformation Optics Using Graphene. Science. 2011;332:1291–1294. doi: 10.1126/science.1202691. PubMed DOI

Miseikis V., Marconi S., Giambra M. A., Montanaro A., Martini L., Fabbri F., Pezzini S., Piccinini G., Forti S., Terrés B., Goykhman I., Hamidouche L., Legagneux P., Sorianello V., Ferrari A. C., Koppens F. H. L., Romagnoli M., Coletti C.. Ultrafast, Zero-Bias, Graphene Photodetectors with Polymeric Gate Dielectric on Passive Photonic Waveguides. ACS Nano. 2020;14:11190–11204. doi: 10.1021/acsnano.0c02738. PubMed DOI PMC

Castilla S., Terrés B., Autore M., Viti L., Li J., Nikitin A. Y., Vangelidis I., Watanabe K., Taniguchi T., Lidorikis E., Vitiello M. S., Hillenbrand R., Tielrooij K.-J., Koppens F. H. L.. Fast and Sensitive Terahertz Detection Using an Antenna-Integrated Graphene pn Junction. Nano Lett. 2019;19:2765. doi: 10.1021/acs.nanolett.8b04171. PubMed DOI

Viti L., Cadore A. R., Yang X., Vorobiev A., Muench J. E., Watanabe K., Taniguchi T., Stake J., Ferrari A. C., Vitiello M. S.. Thermoelectric Graphene Photodetectors with Sub-Nanosecond Response Times at Terahertz Frequencies. Nanophotonics. 2020;10:89. doi: 10.1515/nanoph-2020-0255. DOI

Asgari M., Viti L., Balci O., Shinde S. M., Zhang J., Ramezani H., Sharma S., Meersha A., Menichetti G., McAleese C., Conran B., Wang X., Tomadin A., Ferrari A. C., Vitiello M. S.. Terahertz Photodetection in Scalable Single-Layer-Graphene and Hexagonal Boron Nitride Heterostructures. Appl. Phys. Lett. 2022;121:031103. doi: 10.1063/5.0097726. DOI

Viti L., Hu J., Coquillat D., Knap W., Tredicucci A., Politano A., Vitiello M. S.. Black Phosphorus Terahertz Photodetectors. Adv. Mater. 2015;27:5567–5572. doi: 10.1002/adma.201502052. PubMed DOI

Viti L., Coquillat D., Politano A., Kokh A. K., Aliev Z. S., Babanly M. B., Tereshchenko O. E., Knap W., Chulkov E. V., Vitiello M. S.. Plasma-Wave Terahertz Detection Mediated by Topological Insulators Surface States. Nano Lett. 2016;16:80–87. doi: 10.1021/acs.nanolett.5b02901. PubMed DOI

Viti L., Riccardi E., Beere H. E., Ritchie D. A., Vitiello M. S.. Real-Time Measure of the Lattice Temperature of a Semiconductor Heterostructure Laser via an On-Chip Integrated Graphene Thermometer. ACS Nano. 2023;17:6103–6112. doi: 10.1021/acsnano.3c01208. PubMed DOI PMC

Vitiello M. S., Tredicucci A.. Physics and Technology of Terahertz Quantum Cascade Lasers. Adv. Phys. X. 2021;6:1893809. doi: 10.1080/23746149.2021.1893809. DOI

Riccardi E., Pistore V., Consolino L., Sorgi A., Cappelli F., Eramo R., De Natale P., Li L., Davies A. G., Linfield E. H., Vitiello M. S.. Terahertz Sources Based on Metrological-Grade Frequency Combs. Laser Photonics Rev. 2023;17:2200412. doi: 10.1002/lpor.202200412. DOI

Justo Guerrero M. A., Arif M., Sorba L., Vitiello M. S.. Harmonic Quantum Cascade Laser Terahertz Frequency Combs Enabled by Multilayer Graphene Top-Cavity Scatters. Nanophotonics. 2024;13:1835–1841. doi: 10.1515/nanoph-2023-0912. PubMed DOI PMC

Bianchi V., Carey T., Viti L., Li L., Linfield E. H., Davies A. G., Tredicucci A., Yoon D., Karagiannidis P. G., Lombardi L., Tomarchio F., Ferrari A. C., Torrisi F., Vitiello M. S.. Terahertz Saturable Absorbers from Liquid Phase Exfoliation of Graphite. Nat. Commun. 2017;8:15763. doi: 10.1038/ncomms15763. PubMed DOI PMC

Di Gaspare A., Pistore V., Riccardi E., Pogna E. A. A., Beere H. E., Ritchie D. A., Li L., Davies A. G., Linfield E. H., Ferrari A. C., Vitiello M. S.. Self-Induced Mode-Locking in Electrically Pumped Far-Infrared Random Lasers. Adv. Sci. 2023;10:2206824. doi: 10.1002/advs.202206824. PubMed DOI PMC

Hafez H. A., Kovalev S., Tielrooij K.-J., Bonn M., Gensch M., Turchinovich D.. Terahertz Nonlinear Optics of Graphene: From Saturable Absorption to High-Harmonics Generation. Adv. Optical Mater. 2020;8:1900771. doi: 10.1002/adom.201900771. DOI

Hafez H. A., Kovalev S., Deinert J.-C., Mics Z., Green B., Awari N., Chen M., Germanskiy S., Lehnert U., Teichert J., Wang Z., Tielrooij K.-J., Liu Z., Chen Z., Narita A., Müllen K., Bonn M., Gensch M., Turchinovich D.. Extremely Efficient Terahertz High-Harmonic Generation in Graphene by Hot Dirac Fermions. Nature. 2018;561:507–511. doi: 10.1038/s41586-018-0508-1. PubMed DOI

Kovalev S., Hafez H. A., Tielrooij K.-J., Deinert J.-C., Ilyakov I., Awari N., Alcaraz D., Soundarapandian K., Saleta D., Germanskiy S., Chen M., Bawatna M., Green B., Koppens F. H. L., Mittendorff M., Bonn M., Gensch D., Turchinovich D.. Electrical Tunability of Terahertz Nonlinearity in Graphene. Sci. Adv. 2021;7:eabf9809. doi: 10.1126/sciadv.abf9809. PubMed DOI PMC

Deinert J.-C., Alcaraz Iranzo D., Pérez R., Jia X., Hafez H. A., Ilyakov I., Awari N., Chen M., Bawatna M., Ponomaryov A. N., Germanskiy S., Bonn M., Koppens F. H.L., Turchinovich D., Gensch M., Kovalev S., Tielrooij K.-J.. Grating-Graphene Metamaterial as a Platform for Terahertz Nonlinear Photonics. ACS Nano. 2021;15:1145–1154. doi: 10.1021/acsnano.0c08106. PubMed DOI PMC

Giorgianni F., Chiadroni E., Rovere A., Cestelli-Guidi M., Perucchi A., Bellaveglia M., Castellano M., Di Giovenale D., Di Pirro G., Ferrario M., Pompili R., Vaccarezza C., Villa F., Cianchi A., Mostacci A., Petrarca M., Brahlek M., Koirala N., Oh S., Lupi S.. Strong Nonlinear Terahertz Response Induced by Dirac Surface States in Bi2Se3 Topological Insulator. Nat. Commun. 2016;7:11421. doi: 10.1038/ncomms11421. PubMed DOI PMC

Tielrooij K.-J., Principi A., Reig D. S., Block A., Varghese S., Schreyeck S., Brunner K., Karczewski G., Ilyakov I., Ponomaryov O., de Oliveira T. V. A. G., Chen M., Deinert J.-C., Carbonell C. G., Valenzuela S. O., Molenkamp L. W., Kiessling T., Astakhov G. V., Kovalev S.. Milliwatt Terahertz Harmonic Generation from Topological Insulator Metamaterials. Light Sci. Appl. 2022;11:315. doi: 10.1038/s41377-022-01008-y. PubMed DOI PMC

Cheng B., Kanda N., Ikeda T. K., Matsuda T., Xia P., Schumann T., Stemmer S., Itatani J., Armitage N. P., Matsunaga R.. Efficient Terahertz Harmonic Generation with Coherent Acceleration of Electrons in the Dirac Semimetal. Phys. Rev. Lett. 2020;124:117402. doi: 10.1103/PhysRevLett.124.117402. PubMed DOI

Kovalev S., Dantas R. M. A., Germanskiy S., Deinert J.-C., Green B., Ilyakov I., Awari N., Chen M., Bawatna M., Ling J., Xiu F., van Loosdrecht P. H. M., Surówka P., Oka T., Wang Z.. Non-Perturbative Terahertz High-Harmonic Generation in the Three-Dimensional Dirac Semimetal Cd3As2 . Nat. Commun. 2020;11:2451. doi: 10.1038/s41467-020-16133-8. PubMed DOI PMC

Di Gaspare A., Song C., Schiattarella C., Li L. H., Salih M., Davies A. G., Linfield E. H., Zhang J., Balci O., Ferrari A. C., Dhillon S., Vitiello M. S.. Compact Terahertz Harmonic Generation in the Reststrahlenband Using a Graphene-Embedded Metallic Split Ring Resonator Array. Nat. Commun. 2024;15:2312. doi: 10.1038/s41467-024-45267-2. PubMed DOI PMC

Fukuda D., Kikuchi T.. Single and Few-Photon Detection Using Superconducting Transition Edge Sensors. Prog. Opt. 2024;69:135–175. doi: 10.1016/bs.po.2024.03.001. DOI

Baselmans J. J. A., Facchin F., Pascual Laguna A., Bueno A., Thoen D. J., Murugesan V., Llombart N., de Visser P. J.. Ultra-Sensitive THz Microwave Kinetic Inductance Detectors for Future Space Telescopes. Astron. Instrum. 2022;665:A17. doi: 10.1051/0004-6361/202243840. DOI

Rogalski A.. Semiconductor Detectors and Focal Plane Arrays for Far-Infrared Imaging. Opto−Electron. Rev. 2013;21:406–426. doi: 10.2478/s11772-013-0110-x. DOI

Karasik B. S., Olaya D., Wei J., Pereverzev S., Gershenson M. E., Kawamura J. H., McGrath W. R., Sergeev A. V.. Record−Low NEP in Hot−Electron Titanium Nanobolometers. IEEE T. Appl. Supercon. 2007;17:293–297. doi: 10.1109/TASC.2007.897167. DOI

Echternach P. M., Pepper B. J., Reck T., Bradford C. M.. Single Photon Detection of 1.5 THz Radiation with the Quantum Capacitance Detector. Nat. Astron. 2018;2:90–97. doi: 10.1038/s41550-017-0294-y. DOI

Massicotte M., Soavi G., Principi A., Tielrooij K.-J.. Hot Carriers in Graphene − Fundamentals and Applications. Nanoscale. 2021;13:8376–8411. doi: 10.1039/D0NR09166A. PubMed DOI PMC

Hunt B., Sanchez-Yamagishi J. D., Young A. F., Yankowitz M., LeRoy B. J., Watanabe K., Taniguchi T., Moon P., Koshino M., Jarillo-Herrero P., Ashoori R. C.. Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure. Science. 2013;340:1427–1430. doi: 10.1126/science.1237240. PubMed DOI

Ohta T., Bostwick A., Seyller T., Horn K., Rotenberg E.. Controlling the Electronic Structure of Bilayer Graphene. Science. 2006;313:951–954. doi: 10.1126/science.1130681. PubMed DOI

Zhang Y., Tang T.-T., Girit C., Hao Z., Martin M. C., Zettl A., Crommie M. F., Shen Y. R., Wang F.. Direct Observation of a Widely Tunable Bandgap in Bilayer Graphene. Nature. 2009;459:820–823. doi: 10.1038/nature08105. PubMed DOI

Gayduchenko I., Xu S. G., Alymov G., Moskotin M., Tretyakov I., Taniguchi T., Watanabe K., Goltsman G., Geim A. K., Fedorov G., Svintsov D., Bandurin D. A.. Tunnel Field-Effect Transistors for Sensitive Terahertz Detection. Nat. Commun. 2021;12:543. doi: 10.1038/s41467-020-20721-z. PubMed DOI PMC

Mylnikov D. A., Titova E. I., Kashchenko M. A., Safonov I. V., Zhukov S. S., Semkin V. A., Novoselov K. S., Bandurin D. A., Svintsov D. A.. Terahertz Photoconductivity in Bilayer GrapheneTransistors: Evidence for Tunneling at Gate-Induced Junctions. Nano Lett. 2023;23:220–226. doi: 10.1021/acs.nanolett.2c04119. PubMed DOI

Todorov Y., Andrews A. M., Sagnes I., Colombelli R., Klang P., Strasser G., Sirtori C.. Strong Light-Matter Coupling in Subwavelength Metal-Dielectric Microcavities at Terahertz Frequencies. Phys. Rev. Lett. 2009;102:186402. doi: 10.1103/PhysRevLett.102.186402. PubMed DOI

Lee I., Yoo D., Avouris P., Low T., Oh S. H.. Graphene Acoustic Plasmon Resonator for Ultrasensitive Infrared Spectroscopy. Nat. Nanotechnol. 2019;14:313–319. doi: 10.1038/s41565-019-0363-8. PubMed DOI

Liang G., Huang H., Mohanty A., Shin M. C., Ji X., Carter M. J., Shrestha S., Lipson M., Yu N.. Robust, Efficient, Micrometre-Scale Phase Modulators at Visible Wavelengths. Nat. Photonics. 2021;15:908–913. doi: 10.1038/s41566-021-00891-y. DOI

Kippenberg T. J., Holzwarth R., Diddams S. A.. Microresonator-Based Optical Frequency Combs. Science. 2011;332:555–559. doi: 10.1126/science.1193968. PubMed DOI

Nguyen T. M. H., Shin S. G., Choi H. W., Bark C. W.. Recent Advances in Self-Powered and Flexible UVC Photodetectors. Exploration. 2022;2:20210078. doi: 10.1002/EXP.20210078. PubMed DOI PMC

Vavoulas A., Sandalidis H. G., Chatzidiamantis N. D., Xu Z., Karagiannidis G. K.. A Survey on Ultraviolet C-Band (UV-C) Communications. IEEE Commun. Surv. Tutor. 2019;21:2111–2133. doi: 10.1109/COMST.2019.2898946. DOI

Cai Q., You H., Guo H., Wang J., Liu B., Xie Z., Chen D., Lu H., Zheng Y., Zhang R.. Progress on AlGaN-Based Solar-Blind Ultraviolet Photodetectors and Focal Plane Arrays. Light Sci. Appl. 2021;10:94. doi: 10.1038/s41377-021-00527-4. PubMed DOI PMC

Wang L., Xu S., Yang J., Huang H., Huo Z., Li J., Xu X., Ren F., He Y., Ma Y., Zhang W., Xiao X.. Recent Progress in Solar-Blind Photodetectors Based on Ultrawide Bandgap Semiconductors. ACS Omega. 2024;9:25429–25447. doi: 10.1021/acsomega.4c02897. PubMed DOI PMC

Lu L., Weng W., Ma Y., Liu Y., Han S., Liu X., Xu H., Lin W., Sun Z., Luo J.. Anisotropy in a 2D Perovskite Ferroelectric Drives Self-Powered Polarization-Sensitive Photoresponse for Ultraviolet Solar-Blind Polarized-Light Detection. Angew. Chem., Int. Ed. 2022;61:202205030. doi: 10.1002/anie.202205030. PubMed DOI

Qiao H., Huang Z., Ren X., Liu S., Zhang Y., Qi X., Zhang H.. Self-Powered Photodetectors Based on 2D Materials. Adv. Opt. Mater. 2020;8:1900765. doi: 10.1002/adom.201900765. DOI

Chu J., Wang F., Yin L., Lei L., Yan C., Wang F., Wen Y., Wang Z., Jiang C., Feng L., Xiong J., Li Y., He J.. High-Performance Ultraviolet Photodetector Based on a Few-Layered 2D NiPS3 Nanosheet. Adv. Funct. Mater. 2017;27:1701342. doi: 10.1002/adfm.201701342. DOI

Lu Y., Chen J., Chen T., Shu Y., Chang R.-J., Sheng Y., Shautsova V., Mkhize N., Holdway P., Bhaskaran H., Warner J. H.. Controlling Defects in Continuous 2D GaS Films for High-Performance Wavelength-Tunable UV-Discriminating Photodetectors. Adv. Mater. 2020;32:1906958. doi: 10.1002/adma.201906958. PubMed DOI

Shiffa M., Dewes B. T., Bradford J., Cottam N. D., Cheng T. S., Mellor C. J., Makarovskiy O., Rahman K., O’Shea J. N., Beton P. H., Novikov S. V., Ben T., Gonzalez D., Xie J., Zhang L., Patanè A.. Wafer-Scale Two-Dimensional Semiconductors for Deep UV Sensing. Small. 2024;20:2305865. doi: 10.1002/smll.202305865. PubMed DOI

Li S., Zhang Y., Yang W., Liu H., Fang X.. 2D Perovskite Sr2Nb3O10 for High-Performance UV Photodetectors. Adv. Mater. 2020;32:1905443. doi: 10.1002/adma.201905443. PubMed DOI

Bradford J., Dewes B. T., Shiffa M., Cottam N. D., Rahman K., Cheng T. S., Novikov S. V., Makarovsky O., O’Shea J. N., Beton P. H., Lara-Avila S., Harknett J., Greenaway M. T., Patanè A.. Epitaxy of GaSe Coupled to Graphene: From In Situ Band Engineering to Photon Sensing. Small. 2024;20:2404809. doi: 10.1002/smll.202404809. PubMed DOI

Yan Y., Xiong W., Li S., Zhao K., Wang X., Su J., Song X., Li X., Zhang S., Yang H., Liu X., Jiang L., Zhai T., Xia C., Li J., Wei Z.. et al. Direct Wide Bandgap 2D GeSe2 Monolayer toward Anisotropic UV Photodetection. Adv. Opt. Mater. 2019;7:1900622. doi: 10.1002/adom.201900622. DOI

Yan Y., Yang J., Du J., Zhang X., Liu Y.-Y., Xia C., Wei Z.. Cross-Substitution Promoted Ultrawide Bandgap up to 4.5 eV in a 2D Semiconductor: Gallium Thiophosphate. Adv. Mater. 2021;33:2008761. doi: 10.1002/adma.202008761. PubMed DOI

Liu H., Meng J., Zhang X., Chen Y., Yin Z., Wang D., Wang Y., You J., Gao M., Jin P.. High-Performance Deep Ultraviolet Photodetectors Based on Few-Layer Hexagonal Boron Nitride. Nanoscale. 2018;10:5559–5565. doi: 10.1039/C7NR09438H. PubMed DOI

Kaushik S., Karmakar S., Varshney R. K., Sheoran H., Chugh D., Jagadish C., Tan H. H., Singh R.. Deep-Ultraviolet Photodetectors Based on Hexagonal Boron Nitride Nanosheets Enhanced by Localized Surface Plasmon Resonance in Al Nanoparticles. ACS Appl. Nano Mater. 2022;5:7481–7491. doi: 10.1021/acsanm.2c01466. DOI

Kaur D., Kumar M.. A Strategic Review on Gallium Oxide Based Deep-Ultraviolet Photodetectors: Recent Progress and Future Prospects. Adv. Opt. Mater. 2021;9:2002160. doi: 10.1002/adom.202002160. DOI

Chen Y., Yang X., Zhang C., He G., Chen X., Qiao Q., Zang J., Dou W., Sun P., Deng Y., Dong L., Shan C.-X.. Ga2O3-Based Solar-Blind Position-Sensitive Detector for Noncontact Measurement and Optoelectronic Demodulation. Nano Lett. 2022;22:4888–4896. doi: 10.1021/acs.nanolett.2c01322. PubMed DOI

Zeng G., Zhang M.-R., Chen Y.-C., Li X.-X., Chen D.-B., Shi C.-Y., Zhao X.-F., Chen N., Wang T.-Y., Zhang D. W., Lu H.-L.. A Solar-Blind Photodetector with Ultrahigh Rectification Ratio and Photoresponsivity Based on the MoTe2/Ta:β-Ga2O3 pn Junction. Mater. Today Phys. 2023;33:101042. doi: 10.1016/j.mtphys.2023.101042. DOI

Cottam N. D., Dewes B. T., Shiffa M., Cheng T. S., Novikov S. V., Mellor C. J., Makarovsky O., Gonzalez D., Ben T., Patanè A.. Thin Ga2O3 Layers by Thermal Oxidation of van der Waals GaSe Nanostructures for Ultraviolet Photon Sensing. ACS Appl. Nano Mater. 2024;7:17553–17560. doi: 10.1021/acsanm.4c02685. PubMed DOI PMC

Li Q., Zhou Q., Shi L., Chen Q., Wang J.. Recent Advances in Oxidation and Degradation Mechanisms of Ultrathin 2D Materials Under Ambient Conditions and Their Passivation Strategies. J. Mater. Chem. A. 2019;7:4291–4312. doi: 10.1039/C8TA10306B. DOI

Wang F., Zhang T., Xie R., Wang Z., Hu W.. How to Characterize Figures of Merit of Two-Dimensional Photodetectors. Nat. Commun. 2023;14:2224. doi: 10.1038/s41467-023-37635-1. PubMed DOI PMC

Ranjan A., Mazumder A., Ramakrishnan N.. Recent Advances in Layered and Non-Layered 2D Materials for UV Detection. Sens. Actuators A: Phys. 2024;378:115837. doi: 10.1016/j.sna.2024.115837. DOI

Wang L., Xu X., Zhang L., Qiao R., Wu M., Wang Z., Zhang S., Liang J., Zhang Z., Zhang Z., Chen W., Xie X., Zong J., Shan Y., Guo Y., Willinger M., Wu H., Li Q., Wang W., Gao P., Wu S., Zhang Y., Jiang Y., Yu D., Wang E., Bai X., Wang Z.-J., Ding F., Liu K.. Epitaxial Growth of a 100-Square-Centimetre Single-Crystal Hexagonal Boron Nitride Monolayer on Copper. Nature. 2019;570:91–95. doi: 10.1038/s41586-019-1226-z. PubMed DOI

Wang S., Liu X., Xu M., Liu L., Yang D., Zhou P.. Two-Dimensional Devices and Integration Towards the Silicon Lines. Nat. Mater. 2022;21:1225–1239. doi: 10.1038/s41563-022-01383-2. PubMed DOI

Li Y., Li Z., Chi C., Shan H., Zheng L., Fang Z.. Plasmonics of 2D Nanomaterials: Properties and Applications. Adv. Sci. 2017;4:1600430. doi: 10.1002/advs.201600430. PubMed DOI PMC

Editorial. Moiré beyond van der Waals. Nat. Mater. 2024, 23, 1151. PubMed

Bai C., Wu G., Yang J., Zeng J., Liu Y., Wang J.. 2D Materials-Based Photodetectors Combined with Ferroelectrics. Nanotechnol. 2024;35:352001. doi: 10.1088/1361-6528/ad4652. PubMed DOI

Bridgman P. W.. Two New Modifications of Phosphorus. J. Am. Chem. Soc. 1914;36:1344–1363. doi: 10.1021/ja02184a002. DOI

Maruyama Y., Suzuki S., Kobayashi K., Tanuma S.. Synthesis and Some Properties of Black Phosphorus Single-Crystals. Physica B&C. 1981;105:99–102. doi: 10.1016/0378-4363(81)90223-0. DOI

Li L. K.. et al. Black Phosphorus Field-Effect Transistors. Nat. Nanotechnol. 2014;9:372–377. doi: 10.1038/nnano.2014.35. PubMed DOI

Liu H.. et al. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano. 2014;8:4033–4041. doi: 10.1021/nn501226z. PubMed DOI

Castellanos-Gomez A.. et al. Isolation and Characterization of Few-Layer Black Phosphorus. 2D Mater. 2014;1:025001. doi: 10.1088/2053-1583/1/2/025001. DOI

Xia F. N., Wang H., Jia Y. C.. Rediscovering Black Phosphorus as an Anisotropic Layered Material for Optoelectronics and Electronics. Nat. Commun. 2014;5:4458. doi: 10.1038/ncomms5458. PubMed DOI

Qiao J. S., Kong X. H., Hu Z. X., Yang F., Ji W.. High-Mobility Transport Anisotropy and Linear Dichroism in Few-Layer Black Phosphorus. Nat. Commun. 2014;5:4475. doi: 10.1038/ncomms5475. PubMed DOI PMC

Tran V., Soklaski R., Liang Y. F., Yang L.. Layer-Controlled Band Gap and Anisotropic Excitons in Few-Layer Black Phosphorus. Phys. Rev. B. 2014;89:235319. doi: 10.1103/PhysRevB.89.235319. DOI

Long G.. et al. Achieving Ultrahigh Carrier Mobility in Two-Dimensional Hole Gas of Black Phosphorus. Nano Lett. 2016;16:7768–7773. doi: 10.1021/acs.nanolett.6b03951. PubMed DOI

Low T.. et al. Tunable Optical Properties of Multilayer Black Phosphorus Thin Films. Phys. Rev. B. 2014;90:075434. doi: 10.1103/PhysRevB.90.075434. DOI

Yuan H. T.. et al. Polarization-Sensitive Broadband Photodetector Using a Black Phosphorus Vertical p-n Junction. Nat. Nanotechnol. 2015;10:707–713. doi: 10.1038/nnano.2015.112. PubMed DOI

Wang J. J.. et al. Mid-infrared Polarized Emission from Black Phosphorus Light-Emitting Diodes. Nano Lett. 2020;20:3651–3655. doi: 10.1021/acs.nanolett.0c00581. PubMed DOI

Wang X. M.. et al. Highly Anisotropic and Robust Excitons in Monolayer Black Phosphorus. Nat. Nanotechnol. 2015;10:517–521. doi: 10.1038/nnano.2015.71. PubMed DOI

Li L. K.. et al. Direct Observation of the Layer-Dependent Electronic Structure in Phosphorene. Nat. Nanotechnol. 2017;12:21–25. doi: 10.1038/nnano.2016.171. PubMed DOI

Rodin A. S., Carvalho A., Castro Neto A. H.. Strain-Induced Gap Modification in Black Phosphorus. Phys. Rev. Lett. 2014;112:176801. doi: 10.1103/PhysRevLett.112.176801. PubMed DOI

Kim H.. et al. Actively Variable-Spectrum Optoelectronics with Black Phosphorus. Nature. 2021;596:232. doi: 10.1038/s41586-021-03701-1. PubMed DOI

Deng B. C.. et al. Efficient Electrical Control of Thin-Film Black Phosphorus Bandgap. Nat. Commun. 2017;8:14474. doi: 10.1038/ncomms14474. PubMed DOI PMC

Chen X. L.. et al. Widely Tunable Black Phosphorus Mid-Infrared Photodetector. Nat. Commun. 2017;8:1672. doi: 10.1038/s41467-017-01978-3. PubMed DOI PMC

Liu B. L.. et al. Black Arsenic-Phosphorus: Layered Anisotropic Infrared Semiconductors with Highly Tunable Compositions and Properties. Adv. Mater. 2015;27:4423–4429. doi: 10.1002/adma.201501758. PubMed DOI

Engel M., Steiner M., Avouris P.. Black Phosphorus Photodetector for Multispectral, High-Resolution Imaging. Nano Lett. 2014;14:6414–6417. doi: 10.1021/nl502928y. PubMed DOI

Huang M. Q.. et al. Broadband Black-Phosphorus Photodetectors with High Responsivity. Adv. Mater. 2016;28:3481–3485. doi: 10.1002/adma.201506352. PubMed DOI

Wu S. Q.. et al. Ultra-Sensitive Polarization-Resolved Black Phosphorus Homojunction Photodetector Defined by Ferroelectric Domains. Nat. Commun. 2022;13:3198. doi: 10.1038/s41467-022-30951-y. PubMed DOI PMC

Ge S. F.. et al. Dynamical Evolution of Anisotropic Response in Black Phosphorus under Ultrafast Photoexcitation. Nano Lett. 2015;15:4650–4656. doi: 10.1021/acs.nanolett.5b01409. PubMed DOI

Youngblood N., Chen C., Koester S. J., Li M.. Waveguide-Integrated Black Phosphorus Photodetector with High Responsivity and Low Dark Current. Nat. Photonics. 2015;9:247–252. doi: 10.1038/nphoton.2015.23. DOI

Tian R. J.. et al. Black Phosphorus Photodetector Enhanced by a Planar Photonic Crystal Cavity. ACS Photonics. 2021;8:3104–3110. doi: 10.1021/acsphotonics.1c01168. DOI

Liu C. Y.. et al. High-Speed and High-Responsivity Silicon/Black-Phosphorus Hybrid Plasmonic Waveguide Avalanche Photodetector. ACS Photonics. 2022;9:1764–1774. doi: 10.1021/acsphotonics.2c00244. DOI

Guo W. L.. et al. Terahertz Photon Detection: Sensitive Terahertz Detection and Imaging Driven by the Photothermoelectric Effect in Ultrashort-Channel Black Phosphorus Devices. Adv. Sci. 2020;7:1902699. doi: 10.1002/advs.202070029. PubMed DOI PMC

Yuan S. F., Naveh D., Watanabe K., Taniguchi T., Xia F. N.. A Wavelength-Scale Black Phosphorus Spectrometer. Nat. Photonics. 2021;15:601–607. doi: 10.1038/s41566-021-00787-x. DOI

Lee S., Peng R. M., Wu C. M., Li M.. Programmable Black Phosphorus Image Sensor for Broadband Optoelectronic Edge Computing. Nat. Commun. 2022;13:1485. doi: 10.1038/s41467-022-29171-1. PubMed DOI PMC

Amani M., Regan E., Bullock J., Ahn G. H., Javey A.. Mid-Wave Infrared Photoconductors Based on Black Phosphorus-Arsenic Alloys. ACS Nano. 2017;11:11724–11731. doi: 10.1021/acsnano.7b07028. PubMed DOI

Long M. S.. et al. Room Temperature High-Detectivity Mid-Infrared Photodetectors Based on Black Arsenic Phosphorus. Sci. Adv. 2017;3:e1700589. doi: 10.1126/sciadv.1700589. PubMed DOI PMC

Island J. O., Steele G. A., van der Zant H. S. J., Castellanos-Gomez A.. Environmental Instability of Few-Layer Black Phosphorus. 2D Mater. 2015;2:011002. doi: 10.1088/2053-1583/2/1/011002. DOI

Higashitarumizu N., Tajima S., Kim J., Cai M. Y., Javey A.. Long Operating Lifetime Mid-Infrared LEDs Based on Black Phosphorus. Nat. Commun. 2023;14:4033–4041. doi: 10.1038/s41467-023-40602-5. PubMed DOI PMC

Favron A.. et al. Photooxidation and Quantum Confinement Effects in Exfoliated Black Phosphorus. Nat. Mater. 2015;14:826–832. doi: 10.1038/nmat4299. PubMed DOI

Gamage S.. et al. Reliable Passivation of Black Phosphorus by Thin Hybrid Coating. Nanotechnology. 2017;28:265201. doi: 10.1088/1361-6528/aa7532. PubMed DOI

Avsar A.. et al. Air-Stable Transport in Graphene-Contacted, Fully Encapsulated Ultrathin Black Phosphorus-Based Field-Effect Transistors. ACS Nano. 2015;9:4138–4145. doi: 10.1021/acsnano.5b00289. PubMed DOI

Wood J. D.. et al. Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation. Nano Lett. 2014;14:6964–6970. doi: 10.1021/nl5032293. PubMed DOI

Chen X. L.. et al. High-Quality Sandwiched Black Phosphorus Heterostructure and Its Quantum Oscillations. Nat. Commun. 2015;6:7315. doi: 10.1038/ncomms8315. PubMed DOI PMC

Arora H.. et al. Fully Encapsulated and Stable Black Phosphorus Field-Effect Transistors. Adv. Mater. Technologies. 2023;8:2200546. doi: 10.1002/admt.202200546. DOI

Li C.. et al. Synthesis of Crystalline Black Phosphorus Thin Film on Sapphire. Adv. Mater. 2018;30:1703748. doi: 10.1002/adma.201703748. PubMed DOI

Higashitarumizu N.. et al. Mid-Infrared, Optically Active Black Phosphorus Thin Films on Centimeter Scale. Nano Lett. 2024;24:3104–3111. doi: 10.1021/acs.nanolett.3c04894. PubMed DOI

Wu Z.. et al. Large-Scale Growth of Few-Layer Two-Dimensional Black Phosphorus. Nat. Mater. 2021;20:1203–1209. doi: 10.1038/s41563-021-01001-7. PubMed DOI

Chen C.. et al. Growth of Single-Crystal Black Phosphorus and Its Alloy Films through Sustained Feedstock Release. Nat. Mater. 2023;22:717–724. doi: 10.1038/s41563-023-01516-1. PubMed DOI

Xu Y.. et al. Epitaxial Nucleation and Lateral Growth of High-Crystalline Black Phosphorus Films on Silicon. Nat. Commun. 2020;11:1330. doi: 10.1038/s41467-020-14902-z. PubMed DOI PMC

Yacoby, A. ; et al. QPress: Quantum Press for Next-Generation Quantum Information Platforms. DOE-HARVARD-19300, United States, March 2024. 10.2172/2000495 DOI

Huang L.. et al. Waveguide-Integrated Black Phosphorus Photodetector for Mid-Infrared Applications. ACS Nano. 2019;13:913–921. doi: 10.1021/acsnano.8b08758. PubMed DOI

Ma Y. M.. et al. High-Responsivity Mid-Infrared Black Phosphorus Slow Light Waveguide Photodetector. Adv. Opt. Mater. 2020;8:2000337. doi: 10.1002/adom.202000337. DOI

Soref R.. Mid-Infrared Photonics in Silicon and Germanium. Nat. Photonics. 2010;4:495–497. doi: 10.1038/nphoton.2010.171. DOI

Deckoff-Jones S.. et al. Chalcogenide Glass Waveguide-Integrated Black Phosphorus Mid-Infrared Photodetectors. J. Opt. 2018;20:044004. doi: 10.1088/2040-8986/aaadc5. DOI

Shaik A. B. D., Palla P.. Optical Quantum Technologies with Hexagonal Boron Nitride Single Photon Sources. Sci. Rep. 2021;11:12285. doi: 10.1038/s41598-021-90804-4. PubMed DOI PMC

Yu Y.. et al. Tunable Single-Photon Emitters in 2D Materials. Nanophotonics. 2024;13:3615–3629. doi: 10.1515/nanoph-2024-0050. PubMed DOI PMC

Gao T.. et al. Atomically-Thin Single-Photon Sources for Quantum Communication. npj 2D Mater. Appl. 2023;7:4. doi: 10.1038/s41699-023-00366-4. DOI

Cakan A.. Quantum Applications of Hexagonal Boron Nitride. Adv. Opt. Mater. 2025;13:2402508. doi: 10.1002/adom.202402508. DOI

Okoth C.. et al. Microscale Generation of Entangled Photons without Momentum Conservation. Phys. Rev. Lett. 2019;123:263602. doi: 10.1103/PhysRevLett.123.263602. PubMed DOI

Sultanov V., Santiago-Cruz T., Chekhova M. V.. Flat-Optics Generation of Broadband Photon Pairs with Tunable Polarization Entanglement. Opt. Lett. 2022;47:3872–3875. doi: 10.1364/OL.458133. PubMed DOI

Tame M. S.. et al. Quantum Plasmonics. Nat. Phys. 2013;9:329–340. doi: 10.1038/nphys2615. DOI

Alonso Calafell I.. et al. Quantum Computing with Graphene Plasmons. npj Quantum Inf. 2019;5:37. doi: 10.1038/s41534-019-0150-2. DOI

Kolesov R.. et al. Wave−Particle Duality of Single Surface Plasmon Polaritons. Nat. Phys. 2009;5:470–474. doi: 10.1038/nphys1278. DOI

Altewischer R., van Exter M., Woerdman J.. Plasmon-Assisted Transmission of Entangled Photons. Nature. 2002;418:304–306. doi: 10.1038/nature00869. PubMed DOI

Gullans M.. et al. Single-Photon Nonlinear Optics with Graphene Plasmons. Phys. Rev. Lett. 2013;111:247401. doi: 10.1103/PhysRevLett.111.247401. PubMed DOI

Fournier C.. et al. Two-Photon Interference from a Quantum Emitter in Hexagonal Boron Nitride. Phys. Rev. A. 2023;19:L041003. doi: 10.1103/PhysRevApplied.19.L041003. DOI

He Y. M.. et al. Cascaded Emission of Single Photons from the Biexciton in Monolayered WSe2 . Nat. Commun. 2016;7:13409. doi: 10.1038/ncomms13409. PubMed DOI PMC

Anwar A.. et al. Entangled Photon-Pair Sources Based on Three-Wave Mixing in Bulk Crystals. Rev. Sci. Instrum. 2021;92:041101. doi: 10.1063/5.0023103. PubMed DOI

Jin B.. et al. Efficient Single-Photon Pair Generation by Spontaneous Parametric Down-Conversion in Nonlinear Plasmonic Metasurfaces. Nanoscale. 2021;13:19903–19914. doi: 10.1039/D1NR05379E. PubMed DOI

Weissflog M. A.. et al. Directionally Tunable Co-and Counterpropagating Photon Pairs from a Nonlinear Metasurface. Nanophotonics. 2024;13:3563–3573. doi: 10.1515/nanoph-2024-0122. PubMed DOI PMC

Di Battista G.. et al. Infrared Single-Photon Detection with Superconducting Magic-Angle Twisted Bilayer Graphene. Sci. Adv. 2024;10:3275. doi: 10.1126/sciadv.adp3725. PubMed DOI PMC

Burch K. S., Mandrus D., Park J.-G.. Magnetism in Two-Dimensional van der Waals Materials. Nature. 2018;563:47–52. doi: 10.1038/s41586-018-0631-z. PubMed DOI

Savary L., Balents L.. Quantum Spin Liquids: A Review. Rep. Prog. Phys. 2017;80:016502. doi: 10.1088/0034-4885/80/1/016502. PubMed DOI

Cenker J., Sivakumar S., Xie K., Miller A., Thijssen P., Liu Z., Dismukes A., Fonseca J., Anderson E., Zhu X., Roy X., Xiao D., Chu J.-H., Cao T., Xu X.. Reversible Strain-Induced Magnetic Phase Transition in a van der Waals Magnet. Nat. Nanotechnol. 2022;17:256–261. doi: 10.1038/s41565-021-01052-6. PubMed DOI

Huang B., Clark G., Klein D. R., MacNeill D., Navarro-Moratalla E., Seyler K. L., Wilson N., McGuire M. A., Cobden D. H., Xiao D., Yao W., Jarillo-Herrero P., Xu X.. Electrical Control of 2D Magnetism in Bilayer CrI3 . Nat. Nanotechnol. 2018;13:544–548. doi: 10.1038/s41565-018-0121-3. PubMed DOI

Jiang S., Shan J., Mak K. F.. Electric-Field Switching of Two-Dimensional van der Waals Magnets. Nat. Mater. 2018;17:406–410. doi: 10.1038/s41563-018-0040-6. PubMed DOI

Xie H., Luo X., Ye Z., Sun Z., Ye G., Sung S. H., Ge H., Yan S., Fu Y., Tian S., Lei H., Sun K., Hovden R., He R., Zhao L.. Evidence of Non-Collinear Spin Texture in Magnetic Moiré Superlattices. Nat. Phys. 2023;19:1150–1155. doi: 10.1038/s41567-023-02061-z. DOI

Seyler K. L., Zhong D., Klein D. R., Gao S., Zhang X., Huang B., Navarro-Moratalla E., Yang L., Cobden D. H., McGuire M. A., Yao W., Xiao D., Jarillo-Herrero P., Xu X.. Ligand-Field Helical Luminescence in a 2D Ferromagnetic Insulator. Nat. Phys. 2018;14:277–281. doi: 10.1038/s41567-017-0006-7. DOI

Wang Z., Gutiérrez-Lezama I., Ubrig N., Kroner M., Gibertini M., Taniguchi T., Watanabe K., Imamoǧlu A., Giannini E., Morpurgo A. F.. Very Large Tunneling Magnetoresistance in Layered Magnetic Semiconductor CrI3 . Nat. Commun. 2018;9:2516. doi: 10.1038/s41467-018-04953-8. PubMed DOI PMC

Kim H. H., Yang B., Patel T., Sfigakis F., Li C., Tian S., Lei H., Tsen A. W.. One Million Percent Tunnel Magnetoresistance in a Magnetic van der Waals Heterostructure. Nano Lett. 2018;18:4885–4890. doi: 10.1021/acs.nanolett.8b01552. PubMed DOI

Jo J., Mañas-Valero S., Coronado E., Casanova F., Gobbi M., Hueso L. E.. Nonvolatile Electric Control of Antiferromagnet CrSBr. Nano Lett. 2024;24:4471–4477. doi: 10.1021/acs.nanolett.4c00348. PubMed DOI

Wang Y., Osterhoudt G. B., Tian Y., Lampen-Kelley P., Banerjee A., Goldstein T., Yan J., Knolle J., Ji H., Cava R. J., Nasu J., Motome Y., Nagler S. E., Mandrus D., Burch K. S.. The Range of Non-Kitaev Terms and Fractional Particles in α-RuCl3 . Npj Quantum Mater. 2020;5:14. doi: 10.1038/s41535-020-0216-6. DOI

Zhang X.-X., Li L., Weber D., Goldberger J., Mak K. F., Shan J.. Gate-Tunable Spin Waves in Antiferromagnetic Atomic Bilayers. Nat. Mater. 2020;19:838–842. doi: 10.1038/s41563-020-0713-9. PubMed DOI

Jin W., Ye Z., Luo X., Yang B., Ye G., Yin F., Kim H. H., Rojas L., Tian S., Fu Y., Yan S., Lei H., Sun K., Tsen A. W., He R., Zhao L.. Tunable Layered-Magnetism−Assisted Magneto-Raman Effect in a Two-Dimensional Magnet CrI3 . Proc. Natl. Acad. Sci. U. S. A. 2020;117:24664–24669. doi: 10.1073/pnas.2012980117. PubMed DOI PMC

Luo J., Li S., Ye Z., Xu R., Yan H., Zhang J., Ye G., Chen L., Hu D., Teng X., Smith W. A., Yakobson B. I., Dai P., Nevidomskyy A. H., He R., Zhu H.. Evidence for Topological Magnon−Phonon Hybridization in a 2D Antiferromagnet Down to the Monolayer Limit. Nano Lett. 2023;23:2023–2030. doi: 10.1021/acs.nanolett.3c00351. PubMed DOI

Qiu J.-X., Tzschaschel C., Ahn J., Gao A., Li H., Zhang X.-Y., Ghosh B., Hu C., Wang Y.-X., Liu Y.-F., Bérubé D., Dinh T., Gong Z., Lien S.-W., Ho S.-C., Singh B., Watanabe K., Taniguchi T., Bell D. C., Lu H.-Z., Bansil A., Lin H., Chang T.-R., Zhou B. B., Ma Q., Vishwanath A., Ni N., Xu S.-Y.. Axion Optical Induction of Antiferromagnetic Order. Nat. Mater. 2023;22:583–590. doi: 10.1038/s41563-023-01493-5. PubMed DOI

Zhang Q., Hwangbo K., Wang C., Jiang Q., Chu J.-H., Wen H., Xiao D., Xu X.. Observation of Giant Optical Linear Dichroism in a Zigzag Antiferromagnet FePS3. Nano Lett. 2021;21:6938–6945. doi: 10.1021/acs.nanolett.1c02188. PubMed DOI

Sun Z., Ye G., Zhou C., Huang M., Huang N., Xu X., Li Q., Zheng G., Ye Z., Nnokwe C., Li L., Deng H., Yang L., Mandrus D., Meng Z. Y., Sun K., Du C. R., He R., Zhao L.. Dimensionality Crossover to a Two-Dimensional Vestigial Nematic State from a Three-Dimensional Antiferromagnet in a Honeycomb van der Waals Magnet. Nat. Phys. 2024;20:1764–1771. doi: 10.1038/s41567-024-02618-6. DOI

Kim K., Lim S. Y., Lee J.-U., Lee S., Kim T. Y., Park K., Jeon G. S., Park C.-H., Park J.-G., Cheong H.. Suppression of Magnetic Ordering in XXZ-Type Antiferromagnetic Monolayer NiPS3 . Nat. Commun. 2019;10:345. doi: 10.1038/s41467-018-08284-6. PubMed DOI PMC

Lee J.-U., Lee S., Ryoo J. H., Kang S., Kim T. Y., Kim P., Park C.-H., Park J.-G., Cheong H.. Ising-Type Magnetic Ordering in Atomically Thin FePS3 . Nano Lett. 2016;16:7433–7438. doi: 10.1021/acs.nanolett.6b03052. PubMed DOI

Song Q., Occhialini C. A., Ergeçen E., Ilyas B., Amoroso D., Barone P., Kapeghian J., Watanabe K., Taniguchi T., Botana A. S., Picozzi S., Gedik N., Comin R.. Evidence for a Single-Layer van der Waals Multiferroic. Nature. 2022;602:601–605. doi: 10.1038/s41586-021-04337-x. PubMed DOI

Jin W., Drueke E., Li S., Admasu A., Owen R., Day M., Sun K., Cheong S.-W., Zhao L.. Observation of a Ferro-Rotational Order Coupled with Second-Order Nonlinear Optical Fields. Nat. Phys. 2020;16:42–46. doi: 10.1038/s41567-019-0695-1. DOI

Guo X., Liu W., Schwartz J., Sung S. H., Zhang D., Shimizu M., Kondusamy A. L. N., Li L., Sun K., Deng H., Jeschke H. O., Mazin I. I., Hovden R., Lv B., Zhao L.. Extraordinary Phase Transition Revealed in a van der Waals Antiferromagnet. Nat. Commun. 2024;15:6472. doi: 10.1038/s41467-024-50900-1. PubMed DOI PMC

Jin C., Tao Z., Kang K., Watanabe K., Taniguchi T., Mak K. F., Shan J.. Imaging and Control of Critical Fluctuations in Two-Dimensional Magnets. Nat. Mater. 2020;19:1290–1294. doi: 10.1038/s41563-020-0706-8. PubMed DOI

de Aguilar Júnior F. S., Santos M. F., Monken C. H., Jorio A.. Lifetime and Polarization for Real and Virtual Correlated Stokes-Anti-Stokes Raman Scattering in Diamond. Phys. Rev. Res. 2020;2:013084. doi: 10.1103/PhysRevResearch.2.013084. DOI

Velez S. T., Sudhir V., Sangouard N., Galland C.. Bell Correlations between Light and Vibration at Ambient Conditions. Sci. Adv. 2020;6:eabb0260. doi: 10.1126/sciadv.abb0260. PubMed DOI PMC

Disa A. S., Fechner M., Nova T. F., Liu B., Först M., Prabhakaran D., Radaelli P. G., Cavalleri A.. Polarizing an Antiferromagnet by Optical Engineering of the Crystal Field. Nat. Phys. 2020;16:937–941. doi: 10.1038/s41567-020-0936-3. DOI

García de Abajo, F. J. ; et al. Roadmap for Photonics with 2D Materials. arXiv 2025, 2504.04558 (accessed April 17, 2025). 10.48550/arXiv.2504.04558 DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...