Roadmap for Photonics with 2D Materials
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article, Review
PubMed
40861258
PubMed Central
PMC12371959
DOI
10.1021/acsphotonics.5c00353
Knihovny.cz E-resources
- Keywords
- 2D polaritons, electro-optical modulation, excitons in van der Waals materials, layer stacking and moiré photonics, nonlinear optics, photonics with 2D materials, quantum photonics,
- Publication type
- Journal Article MeSH
- Review MeSH
Triggered by advances in atomic-layer exfoliation and growth techniques, along with the identification of a wide range of extraordinary physical properties in self-standing films consisting of one or a few atomic layers, two-dimensional (2D) materials such as graphene, transition metal dichalcogenides (TMDs), and other van der Waals (vdW) crystals now constitute a broad research field expanding in multiple directions through the combination of layer stacking and twisting, nanofabrication, surface-science methods, and integration into nanostructured environments. Photonics encompasses a multidisciplinary subset of those directions, where 2D materials contribute remarkable nonlinearities, long-lived and ultraconfined polaritons, strong excitons, topological and chiral effects, susceptibility to external stimuli, accessibility, robustness, and a completely new range of photonic materials based on layer stacking, gating, and the formation of moiré patterns. These properties are being leveraged to develop applications in electro-optical modulation, light emission and detection, imaging and metasurfaces, integrated optics, sensing, and quantum physics across a broad spectral range extending from the far-infrared to the ultraviolet, as well as enabling hybridization with spin and momentum textures of electronic band structures and magnetic degrees of freedom. The rapid expansion of photonics with 2D materials as a dynamic research arena is yielding breakthroughs, which this Roadmap summarizes while identifying challenges and opportunities for future goals and how to meet them through a wide collection of topical sections prepared by leading practitioners.
Catalan Institute of Nanoscience and Nanotechnology CSIC and BIST Bellaterra 08193 Barcelona Spain
Center for Nanoscale Dynamics Carl von Ossietzky Universität 26129 Oldenburg Germany
Center for Quantum Nanoscience Institute for Basic Science Seoul 03760 Republic of Korea
Center of Research on Nanomaterials and Nanotechnology CINN El Entrego 33940 Spain
Centre for Advanced Laser Techniques Institute of Physics 10000 Zagreb Croatia
Centro de Física and Departamento de Física Universidade do Minho P 4710 057 Braga Portugal
Departamento de Física de la Materia Condensada Universidad de Zaragoza Zaragoza 50009 Spain
Department of Applied Physics Stanford University Stanford California 94305 United States
Department of Chemistry Columbia University New York New York 10027 United States
Department of Chemistry Northwestern University Evanston Illinois 60208 United States
Department of Materials Science and Engineering National University of Singapore 117575 Singapore
Department of Mechanical Engineering Columbia University New York New York 10027 United States
Department of Mechanical Engineering Vanderbilt University Nashville Tennessee 37235 United States
Department of Physics and Astronomy Stony Brook University Stony Brook New York 11794 United States
Department of Physics and Astronomy University of Georgia Athens Georgia 30602 United States
Department of Physics Boston College Chestnut Hill Massachusetts 02467 3804 United States
Department of Physics Chalmers University of Technology Göteborg 41296 Sweden
Department of Physics Harvard University Cambridge Massachusetts 02138 United States
Department of Physics MIT Cambridge Massachusetts 02139 United States
Department of Physics Stanford University Stanford California 94305 United States
Department of Physics University of Basel Klingelbergstrasse 82 4056 Basel Switzerland
Department of Physics University of Maryland College Park Maryland 20742 United States
Department of Physics University of Michigan Ann Arbor Michigan 48109 United States
Department of Physics University of Oviedo 33006 Oviedo Spain
Department of Physics University of Washington Seattle Washington 98195 United States
Dipartimento di Fisica dell'Università di Pisa Largo Bruno Pontecorvo 3 1 56127 Pisa Italy
Dipartimento di Scienze Fisiche e Chimiche Universitá degli Studi dell'Aquila L'Aquila 67100 Italy
Donostia International Physics Center Donostia San Sebastian 20018 Spain
Emerging Technologies Research Center XPANCEO Internet City Emmay Tower Dubai United Arab Emirates
Fakultät für Physik Ludwig Maximilians Universität D 80799 München Germany
Fritz Haber Institut der Max Planck Gesellschaft Faradayweg 4 6 14195 Berlin Germany
IKERBASQUE Basque Foundation for Science Bilbao 48011 Spain
Institut für Festkörpertheorie Universität Münster 48149 Münster Germany
Institut für Physik Carl von Ossietzky Universität 26129 Oldenburg Germany
Institut für Physik Fakultät 5 Carl von Ossietzky Universität Oldenburg 26129 Oldenburg Germany
Institute for Functional Intelligent Materials National University of Singapore 117544 Singapore
Institute for Quantum Electronics ETH Zürich Auguste Piccard Hof 1 8093 Zürich Switzerland
Institute of Physics Czech Academy of Sciences Praha 6 CZ16200 Czech Republic
Institute of Theoretical Physics University of Regensburg 93053 Regensburg Germany
Instituto de Ciencia de Materiales de Madrid 28049 Madrid Spain
Instituto de Nanociencia y Materiales de Aragón CSIC Universidad de Zaragoza Zaragoza 50009 Spain
Instituto de Química Física Blas Cabrera CSIC 28006 Madrid Spain
International Iberian Nanotechnology Laboratory Av Mestre José Veiga 4715 330 Braga Portugal
Joint Quantum Institute University of Maryland College Park Maryland 20742 United States
Maryland Quantum Materials Center University of Maryland College Park Maryland 20742 United States
Max Born Institut 12489 Berlin Germany
Munich Center for Quantum Science and Technology D 80799 München Germany
NEST CNR Istituto Nanoscienze and Scuola Normale Superiore Piazza San Silvestro 12 Pisa 56127 Italy
Photonics Laboratory ETH Zurich Zurich 8093 Switzerland
Physics Department University of Michigan 450 Church Street Ann Arbor Michigan 48109 United States
Physics Program Graduate Center City University of New York New York New York 10016 United States
Politecnico di Milano Dipartimento di Fisica Piazza Leonardo da Vinci 32 Milano 20133 Italy
Regensburg Center for Ultrafast Nanoscopy University of Regensburg 93040 Regensburg Germany
School of Materials Engineering Purdue University West Lafayette Indiana 47907 United States
School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P R China
School of Physical Science and Technology Northwestern Polytechnical University Xi'an 710072 China
School of Physics and Astronomy University of Minnesota Minneapolis Minnesota 55455 United States
School of Physics and Astronomy University of Nottingham Nottingham NG7 2RD U K
Scuola Normale Superiore Piazza dei Cavalieri 7 1 56126 Pisa Italy
SLAC National Accelerator Laboratory Menlo Park California 94025 United States
The Institute of Optics University of Rochester Rochester New York 14627 United States
Université Paris Saclay CNRS Laboratoire de Physique des Solides 91405 Orsay France
See more in PubMed
Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A.. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI
Novoselov K. S., Mishchenko A., Carvalho A., Castro Neto A. H.. 2D Materials and van der Waals Heterostructures. Science. 2016;353:aac9439. doi: 10.1126/science.aac9439. PubMed DOI
Du L., Molas M. R., Huang Z., Zhang G., Wang F., Sun Z.. Moiré Photonics and Optoelectronics. Science. 2023;379:eadg0014. doi: 10.1126/science.adg0014. PubMed DOI
Woessner A., Lundeberg M. B., Gao Y., Principi A., Alonso-González P., Carrega M., Watanabe K., Taniguchi T., Vignale G., Polini M., Hone J., Hillenbrand R., Koppens F. H. L.. Highly Confined Low-Loss Plasmons in Graphene-Boron Nitride Heterostructures. Nat. Mater. 2015;14:421–425. doi: 10.1038/nmat4169. PubMed DOI
Ni G. X., McLeod A. S., Sun Z., Wang L., Xiong L., Post K. W., Sunku S. S., Jiang B. Y., Hone J., Dean C. R., Fogler M. M., Basov D. N.. Fundamental Limits to Graphene Plasmonics. Nature. 2018;557:530–533. doi: 10.1038/s41586-018-0136-9. PubMed DOI
Alfaro-Mozaz F. J., Rodrigo S. G., Alonso-González P., Vélez S., Dolado I., Casanova F., Hueso L. E., Martín-Moreno L., Hillenbrand R., Nikitin A. Y.. Deeply Subwavelength Phonon-Polaritonic Crystal Made of a van der Waals Material. Nat. Commun. 2019;10:42. doi: 10.1038/s41467-018-07795-6. PubMed DOI PMC
Autore M., D’Apuzzo F., Di Gaspare A., Giliberti V., Limaj O., Roy P., Brahlek M., Koirala N., Oh S., García de Abajo F. J., Lupi S.. Plasmon−Phonon Interactions in Topological Insulator Microrings. Adv. Opt. Mater. 2015;3:1257–1263. doi: 10.1002/adom.201400513. DOI
Hu F., Luan Y., Scott M. E., Yan J., Mandrus D. G., Xu X., Fei Z.. Imaging Exciton-Polariton Transport in MoSe2 Waveguides. Nat. Photonics. 2017;11:356–360. doi: 10.1038/nphoton.2017.65. DOI
Koppens F. H. L., Chang D. E., García de Abajo F. J.. Graphene Plasmonics: A Platform for Strong Light−Matter Interactions. Nano Lett. 2011;11:3370–3377. doi: 10.1021/nl201771h. PubMed DOI
Abd El-Fattah Z. M., Mkhitaryan V., Brede J., Fernández L., Li C., Guo Q., Ghosh A., Rodríguez Echarri A., Naveh D., Xia F., Ortega J. E., García de Abajo F. J.. Plasmonics in Atomically Thin Crystalline Silver Films. ACS Nano. 2019;13:7771–7779. doi: 10.1021/acsnano.9b01651. PubMed DOI
Caldwell J. D., Aharonovich I., Cassabois G., Edgar J. H., Gil B., Basov D. N.. Photonics with Hexagonal Boron Nitride. Nat. Rev. Mater. 2019;4:552–567. doi: 10.1038/s41578-019-0124-1. DOI
Ma W., Alonso-González P., Li S., Nikitin A. Y., Yuan J., Martín-Sánchez J., Taboada-Gutiérrez J., Amenabar I., Li P., Vélez S., Tollan C., Dai Z., Zhang Y., Sriram S., Kalantar-Zadeh K., Lee S.-T., Hillenbrand R., Bao Q.. In-Plane Anisotropic and Ultra-Low-Loss Polaritons in a Natural van der Waals Crystal. Nature. 2018;562:557–562. doi: 10.1038/s41586-018-0618-9. PubMed DOI
Parto K., Azzam S. I., Banerjee K., Moody G.. Defect and Strain Engineering of Monolayer WSe2 Enables Site-Controlled Single-Photon Emission up to 150 K. Nat. Commun. 2021;12:3585. doi: 10.1038/s41467-021-23709-5. PubMed DOI PMC
Thongrattanasiri S., García de Abajo F. J.. Optical Field Enhancement by Strong Plasmon Interaction in Graphene Nanostructures. Phys. Rev. Lett. 2013;110:187401. doi: 10.1103/PhysRevLett.110.187401. PubMed DOI
Chen J., Badioli M., Alonso-González P., Thongrattanasiri S., Huth F., Osmond J., Spasenović M., Centeno A., Pesquera A., Godignon P., Zurutuza Elorza A., Camara N., García de Abajo F. J., Hillenbrand R., Koppens F. H. L.. Optical Nano-Imaging of Gate-Tunable Graphene Plasmons. Nature. 2012;487:77–81. doi: 10.1038/nature11254. PubMed DOI
Fei Z., Rodin A. S., Andreev G. O., Bao W., McLeod A. S., Wagner M., Zhang L. M., Zhao Z., Thiemens M., Dominguez G., Fogler M. M., Castro Neto A. H., Lau C. N., Keilmann F., Basov D. N.. Gate-Tuning of Graphene Plasmons Revealed by Infrared Nano-Imaging. Nature. 2012;487:82–85. doi: 10.1038/nature11253. PubMed DOI
Epstein I., Terrés B., Chaves A. J., Pusapati V.-V., Rhodes D. A., Frank B., Zimmermann V., Qin Y., Watanabe K., Taniguchi T., Giessen H., Tongay S., Hone J. C., Peres N. M. R., Koppens F. H. L.. Near-Unity Light Absorption in a Monolayer WS2 van der Waals Heterostructure Cavity. Nano Lett. 2020;20:3545–3552. doi: 10.1021/acs.nanolett.0c00492. PubMed DOI
Ni G. X., Wang L., Goldflam M. D., Wagner M., Fei Z., McLeod A. S., Liu M. K., Keilmann F., Özyilmaz B., Castro Neto A. H., Hone J., Fogler M. M., Basov D. N.. Ultrafast Optical Switching of Infrared Plasmon Polaritons in High-Mobility Graphene. Nat. Photonics. 2016;10:244–247. doi: 10.1038/nphoton.2016.45. DOI
Hernández López P., Heeg S., Schattauer C., Kovalchuk S., Kumar A., Bock D. J., Kirchhof J. N., Höfer B., Greben K., Yagodkin D., Linhart L., Libisch F., Bolotin K.. Strain Control of Hybridization between Dark and Localized Excitons in a 2D Semiconductor. Nat. Commun. 2022;13:7691. doi: 10.1038/s41467-022-35352-9. PubMed DOI PMC
Crassee I., Orlita M., Potemski M., Walter A. L., Ostler M., Seyller T., Gaponenko I., Chen J., Kuzmenko A. B.. Intrinsic Terahertz Plasmons and Magnetoplasmons in Large Scale Monolayer Graphene. Nano Lett. 2012;12:2470–2474. doi: 10.1021/nl300572y. PubMed DOI
Hu H., Yang X., Guo X., Khaliji K., Biswas R., García de Abajo F. J., Low T., Sun Z., Dai Q.. Gas Identification with Graphene Plasmons. Nat. Commun. 2019;10:1131. doi: 10.1038/s41467-019-09008-0. PubMed DOI PMC
Calafell I. A., Rozema L. A., Iranzo D. A., Trenti A., Jenke P. K., Cox J. D., Kumar A., Bieliaiev H., Nanot S., Peng C., Efetov D. K., Hong J.-Y., Kong J., Englund D. R., García de Abajo F. J., Koppens F. H. L., Walther P.. Giant Enhancement of Third-Harmonic Generation in Graphene-Metal Heterostructures. Nat. Nanotechnol. 2021;16:318–324. doi: 10.1038/s41565-020-00808-w. PubMed DOI
Autere A., Jussila H., Marini A., Saavedra J. R. M., Dai Y., Säynätjoki A., Karvonen L., Yang H., Amirsolaimani B., Norwood R. A., Peyghambarian N., Lipsanen H., Kieu K., García de Abajo F. J., Sun Z.. Optical Harmonic Generation in Monolayer Group-VI Transition Metal Dichalcogenides. Phys. Rev. B. 2018;98:115426. doi: 10.1103/PhysRevB.98.115426. DOI
Zhao H., Pettes M. T., Zheng Y., Htoon H.. Site-Controlled Telecom-Wavelength Single-Photon Emitters in Atomically-Thin MoTe2 . Nat. Commun. 2021;12:6753. doi: 10.1038/s41467-021-27033-w. PubMed DOI PMC
Bistritzer R., MacDonald A. H.. Moiré Bands in Twisted Double-Layer Graphene. Proc. Natl. Acad. Sci. U. S. A. 2011;108:12233–12237. doi: 10.1073/pnas.1108174108. PubMed DOI PMC
Ding J., Xiang H., Zhou W., Liu N., Chen Q., Fang X., Wang K., Wu L., Watanabe K., Taniguchi T., Xin N., Xu X.. Engineering Band Structures of Two- Dimensional Materials with Remote Moiré Ferroelectricity. Nat. Commun. 2024;15:9087. doi: 10.1038/s41467-024-53440-w. PubMed DOI PMC
Kuznetsov A. I.. et al. Roadmap for Optical Metamaterials. ACS Photonics. 2024;11:816–865. doi: 10.1021/acsphotonics.3c00457. PubMed DOI PMC
Hopfield J. J.. Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals. Phys. Rev. 1958;112:1555–1567. doi: 10.1103/PhysRev.112.1555. DOI
Lundeberg M. B., Gao Y., Asgari R., Tan C., Van Duppen B., Autore M., Alonso-González P., Woessner A., Watanabe K., Taniguchi T., Hillenbrand R., Hone J., Polini M., Koppens F. H. L.. Tuning Quantum Nonlocal Effects in Graphene Plasmonics. Science. 2017;357:187–191. doi: 10.1126/science.aan2735. PubMed DOI
Silveiro I., Plaza Ortega J. M., García de Abajo F. J.. Quantum Nonlocal Effects in Individual and Interacting Graphene Nanoribbons. Light: Sci. & Appl. 2015;4:e241. doi: 10.1038/lsa.2015.14. DOI
Manjavacas A., Marchesin F., Thongrattanasiri S., Koval P., Nordlander P., Sánchez-Portal D., García de Abajo F. J.. Tunable Molecular Plasmons in Polycyclic Aromatic Hydrocarbons. ACS Nano. 2013;7:3635–3643. doi: 10.1021/nn4006297. PubMed DOI
García de Abajo F. J.. Graphene Plasmonics: Challenges and Opportunities. ACS Photonics. 2014;1:135–152. doi: 10.1021/ph400147y. DOI
Rudenko A. N., Mikhail I., Katsnelson M. I.. Anisotropic Effects in Two-Dimensional Materials. 2D Mater. 2024;11:042002. doi: 10.1088/2053-1583/ad64e1. DOI
Yu R., Cox J. D., Saavedra J. R. M., García de Abajo F. J.. Analytical Modeling of Graphene Plasmons. ACS Photonics. 2017;4:3106–3114. doi: 10.1021/acsphotonics.7b00740. DOI
Brar V. W., Jang M. S., Sherrott M., Kim S., Lopez J. J., Kim L. B., Choi M., Atwater H.. Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/Monolayer h-BN Heterostructures. Nano Lett. 2014;14:3876–3880. doi: 10.1021/nl501096s. PubMed DOI
Fukumoto H., Miyazaki M., Aoki Y., Nakatsuji K., Hirayama H.. Initial Stage of Ag Growth on Bi/Ag(111)√3×√3 Surfaces. Surf. Sci. 2013;611:49–53. doi: 10.1016/j.susc.2013.01.013. DOI
Mkhitaryan V., Weber A. P., Abdullah S., Fernández L., Abd El-Fattah Z. M., Piquero-Zulaica I., Agarwal H., García Díez K., Schiller F., Ortega J. E., García de Abajo F. J.. Ultraconfined Plasmons in Atomically Thin Crystalline Silver Nanostructures. Adv. Mater. 2024;36:2302520. doi: 10.1002/adma.202470065. PubMed DOI
Hu H., Yu R., Teng H., Hu D., Chen N., Qu Y., Yang X., Chen X., McLeod A. S., Alonso-González P., Guo X., Li C., Yao Z., Li Z., Chen J., Sun Z., Liu M., García de Abajo F. J., Dai Q.. Active Control of Micrometer Plasmon Propagation in Suspended Graphene. Nat. Commun. 2022;13:1465. doi: 10.1038/s41467-022-28786-8. PubMed DOI PMC
Bergman D. J., Stockman M. I.. Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems. Phys. Rev. Lett. 2003;90:027402. doi: 10.1103/PhysRevLett.90.027402. PubMed DOI
Fakonas J. S., Lee H., Kelaita Y. A., Atwater H. A.. Two-Plasmon Quantum Interference. Nat. Photonics. 2014;8:317–320. doi: 10.1038/nphoton.2014.40. DOI
Liu N., Xia F., Xiao D., García de Abajo F. J., Sun D.. Semimetals for High-Performance Photodetection. Nat. Mater. 2020;19:830–837. doi: 10.1038/s41563-020-0715-7. PubMed DOI
Fali A., White S. T., Folland T. G., He M., Aghamiri N. A., Liu S., Edgar J. H., Caldwell J. D., Haglund R. F., Abate Y.. Refractive Index-Based Control of Hyperbolic Phonon-Polariton Propagation. Nano Lett. 2019;19:7725–7734. doi: 10.1021/acs.nanolett.9b02651. PubMed DOI
Duan J., Capote-Robayna N., Taboada-Gutiérrez J., Álvarez-Pérez G., Prieto I., Martín-Sánchez J., Nikitin A. Y., Alonso-González P.. Twisted Nano-Optics: Manipulating Light at the Nanoscale with Twisted Phonon Polaritonic Slabs. Nano Lett. 2020;20:5323–5329. doi: 10.1021/acs.nanolett.0c01673. PubMed DOI
Hu G., Ou Q., Si G., Wu Y., Wu J., Dai Z., Krasnok A., Mazor Y., Zhang Q., Bao Q., Qiu C.-W., Alù A.. Topological Polaritons and Photonic Magic Angles in Twisted α-MoO3 Bilayers. Nature. 2020;582:209–213. doi: 10.1038/s41586-020-2359-9. PubMed DOI
Sternbach A. J., Moore S. L., Rikhter A., Zhang S., Jing R., Shao Y., Kim B. S. Y., Xu S., Liu S., Edgar J. H., Rubio A., Dean C., Hone J., Fogler M. M., Basov D. N.. Negative Refraction in Hyperbolic Hetero-Bicrystals. Science. 2023;379:555–557. doi: 10.1126/science.adf1065. PubMed DOI
Dai S., Ma Q., Liu M. K., Andersen T., Fei Z., Goldflam M. D., Wagner M., Watanabe K., Taniguchi T., Thiemens M., Keilmann F., Janssen G. C. a. M., Zhu S.-E., Jarillo-Herrero P., Fogler M. M., Basov D. N.. Graphene on Hexagonal Boron Nitride as a Tunable Hyperbolic Metamaterial. Nat. Nanotechnol. 2015;10:682–686. doi: 10.1038/nnano.2015.131. PubMed DOI
Alfaro-Mozaz F. J., Rodrigo S. G., Vélez S., Dolado I., Govyadinov A., Alonso-González P., Casanova F., Hueso L. E., Martín-Moreno L., Hillenbrand R., Nikitin A. Y.. Hyperspectral Nanoimaging of van der Waals Polaritonic Crystals. Nano Lett. 2021;21:7109–7115. doi: 10.1021/acs.nanolett.1c01452. PubMed DOI
Tamagnone, M. ; Chaudhary, K. ; Spaegele, C. M. ; Zhu, A. ; Meretska, M. ; Li, J. ; Edgar, J. H. ; Ambrosio, A. ; Capasso, F. . High Quality Factor Polariton Resonators Using van der Waals Materials. arXiv 2020, 1905.02177. 10.48550/arXiv.1905.02177 DOI
Autore M., Li P., Dolado I., Alfaro-Mozaz F. J., Esteban R., Atxabal A., Casanova F., Hueso L. E., Alonso-González P., Aizpurua J., Nikitin A. Y., Vélez S., Hillenbrand R.. Boron Nitride Nanoresonators for Phonon-Enhanced Molecular Vibrational Spectroscopy at the Strong Coupling Limit. Light Sci. Appl. 2018;7:17172–17178. doi: 10.1038/lsa.2017.172. PubMed DOI PMC
Duan J., Alfaro-Mozaz F. J., Taboada-Gutiérrez J., Dolado I., Álvarez-Pérez G., Titova E., Bylinkin A., Tresguerres-Mata A. I. F., Martín-Sánchez J., Liu S., Edgar J. H., Bandurin D. A., Jarillo-Herrero P., Hillenbrand R., Nikitin A. Y., Alonso-González P.. Active and Passive Tuning of Ultranarrow Resonances in Polaritonic Nanoantennas. Adv. Mater. 2022;34:2104954. doi: 10.1002/adma.202104954. PubMed DOI
Teng H., Chen N., Hu H., García de Abajo F. J., Dai Q.. Steering and Cloaking of Hyperbolic Polaritons at Deep-Subwavelength Scales. Nat. Commun. 2024;15:4463. doi: 10.1038/s41467-024-48318-w. PubMed DOI PMC
Chaudhary K., Tamagnone M., Yin X., Spägele C. M., Oscurato S. L., Li J., Persch C., Li R., Rubin N. A., Jauregui L. A., Watanabe K., Taniguchi T., Kim P., Wuttig M., Edgar J. H., Ambrosio A., Capasso F.. Polariton Nanophotonics Using Phase-Change Materials. Nat. Commun. 2019;10:4487. doi: 10.1038/s41467-019-12439-4. PubMed DOI PMC
Duan J., Álvarez-Pérez G., Tresguerres-Mata A. I. F., Taboada-Gutiérrez J., Voronin K. V., Bylinkin A., Chang B., Xiao S., Liu S., Edgar J. H., Martín J. I., Volkov V. S., Hillenbrand R., Martín-Sánchez J., Nikitin A. Y., Alonso-González P.. Planar Refraction and Lensing of Highly Confined Polaritons in Anisotropic Media. Nat. Commun. 2021;12:4325. doi: 10.1038/s41467-021-24599-3. PubMed DOI PMC
Álvarez-Pérez G., Duan J., Taboada-Gutiérrez J., Ou Q., Nikulina E., Liu S., Edgar J. H., Bao Q., Giannini V., Hillenbrand R., Martín-Sánchez J., Nikitin A. Y., Alonso-González P.. Negative Reflection of Nanoscale-Confined Polaritons in a Low-Loss Natural Medium. Sci. Adv. 2022;8:eabp8486. doi: 10.1126/sciadv.abp8486. PubMed DOI PMC
Qu Y., Chen N., Teng H., Hu H., Sun J., Yu R., Hu D., Xue M., Li C., Wu B., Chen J., Sun Z., Liu M., Liu Y., García de Abajo F. J., Dai Q.. Tunable Planar Focusing Based on Hyperbolic Phonon Polaritons in α-MoO3 . Adv. Mater. 2022;34:2105590. doi: 10.1002/adma.202105590. PubMed DOI
Lee I.-H. H., He M., Zhang X., Luo Y., Liu S., Edgar J. H., Wang K., Avouris P., Low T., Caldwell J. D., Oh S.-H. H.. Image Polaritons in Boron Nitride for Extreme Polariton Confinement with Low Losses. Nat. Commun. 2020;11:3649. doi: 10.1038/s41467-020-17424-w. PubMed DOI PMC
Xiong L., Forsythe C., Jung M., McLeod A. S., Sunku S. S., Shao Y. M., Ni G. X., Sternbach A. J., Liu S., Edgar J. H., Mele E. J., Fogler M. M., Shvets G., Dean C. R., Basov D. N.. Photonic Crystal for Graphene Plasmons. Nat. Commun. 2019;10:4780. doi: 10.1038/s41467-019-12778-2. PubMed DOI PMC
Herzig Sheinfux H., Jung M., Orsini L., Ceccanti M., Mahalanabish A., Martinez-Cercós D., Torre I., Barcons Ruiz D., Janzen E., Edgar J. H., Pruneri V., Shvets G., Koppens F. H. L.. Transverse Hypercrystals Formed by Periodically Modulated Phonon Polaritons. ACS Nano. 2023;17:7377–7383. doi: 10.1021/acsnano.2c11497. PubMed DOI
Herzig Sheinfux H., Orsini L., Jung M., Torre I., Ceccanti M., Marconi S., Maniyara R., Barcons Ruiz D., Hötger A., Bertini R., Castilla S., Hesp N. C. H., Janzen E., Holleitner A., Pruneri V., Edgar J. H., Shvets G., Koppens F. H. L.. High-Quality Nanocavities through Multimodal Confinement of Hyperbolic Polaritons in Hexagonal Boron Nitride. Nat. Mater. 2024;23:499–505. doi: 10.1038/s41563-023-01785-w. PubMed DOI
Orsini L., Herzig Sheinfux H., Li Y., Lee S., Andolina G. M., Scarlatella O., Ceccanti M., Soundarapandian K., Janzen E., Edgar J. H., Shvets G., Koppens F. H. L.. Deep Subwavelength Topological Edge State in a Hyperbolic Medium. Nat. Nanotechnol. 2024;19:1485–1490. doi: 10.1038/s41565-024-01737-8. PubMed DOI
Guo, Q. ; Esin, I. ; Li, C. ; Chen, C. ; Liu, S. ; Edgar, J. H. ; Zhou, S. ; Demler, E. ; Refael, G. ; Xia, F. . Hyperbolic Phonon-Polariton Electroluminescence in Graphene-hBN van der Waals Heterostructures. arXiv 2023, 2310.03926. 10.48550/arXiv.2310.03926 PubMed DOI
Castilla S., Agarwal H., Vangelidis I., Bludov Y. V., Iranzo D. A., Grabulosa A., Ceccanti M., Vasilevskiy M. I., Kumar R. K., Janzen E., Edgar J. H., Watanabe K., Taniguchi T., Peres N. M. R., Lidorikis E., Koppens F. H. L.. Electrical Spectroscopy of Polaritonic Nanoresonators. Nat. Commun. 2024;15:8635. doi: 10.1038/s41467-024-52838-w. PubMed DOI PMC
Basov D. N., Fogler M. M., García de Abajo F. J.. Polaritons in van der Waals Materials. Science. 2016;354:aag1992. doi: 10.1126/science.aag1992. PubMed DOI
Svendsen M. K., Kurman Y., Schmidt P., Koppens F., Kaminer I., Thygesen K. S.. Combining Density Functional Theory with Macroscopic QED for Quantum Light-Matter Interactions in 2D Materials. Nat. Commun. 2021;12:2778. doi: 10.1038/s41467-021-23012-3. PubMed DOI PMC
Rivera N., Kaminer I., Zhen B., Joannopoulos J. D., Soljačić M.. Shrinking Light to Allow Forbidden Transitions on the Atomic Scale. Science. 2016;353:263–269. doi: 10.1126/science.aaf6308. PubMed DOI
Arwas G., Ciuti C.. Quantum Electron Transport Controlled by Cavity Vacuum Fields. Phys. Rev. B. 2023;107:045425. doi: 10.1103/PhysRevB.107.045425. DOI
Nie S., Emory S. R.. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science. 1997;275:1102–1106. doi: 10.1126/science.275.5303.1102. PubMed DOI
Kneipp K., Wang Y., Kneipp H., Perelman L. T., Itzkan I., Dasari R. R., Feld M. S.. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) Phys. Rev. Lett. 1997;78:1667–1670. doi: 10.1103/PhysRevLett.78.1667. DOI
Atwater H. A., Polman A.. Plasmonics for Improved Photovoltaic Devices. Nat. Mater. 2010;9:205–213. doi: 10.1038/nmat2629. PubMed DOI
Brune M., Hagley E., Dreyer J., Maître X., Maali A., Wunderlich C., Raimond J. M., Haroche S.. Observing the Progressive Decoherence of the `̀Meter’’ in a Quantum Measurement. Phys. Rev. Lett. 1996;77:4887–4890. doi: 10.1103/PhysRevLett.77.4887. PubMed DOI
Frisk Kockum A., Miranowicz A., De Liberato S., Savasta S., Nori F.. Ultrastrong Coupling between Light and Matter. Nat. Rev. Phys. 2019;1:19–40. doi: 10.1038/s42254-018-0006-2. DOI
Appugliese F., Enkner J., Paravicini-Bagliani G. L., Beck M., Reichl C., Wegscheider W., Scalari G., Ciuti C., Faist J.. Breakdown of Topological Protection by Cavity Vacuum Fields in the Integer Quantum Hall Effect. Science. 2022;375:1030–1034. doi: 10.1126/science.abl5818. PubMed DOI
Thomas A., Devaux E., Nagarajan K., Rogez G., Seidel M., Richard F., Genet C., Drillon M., Ebbesen T. W.. Large Enhancement of Ferromagnetism under a Collective Strong Coupling of YBCO Nanoparticles. Nano Lett. 2021;21:4365–4370. doi: 10.1021/acs.nanolett.1c00973. PubMed DOI PMC
Bylinkin A., Calavalle F., Barra-Burillo M., Kirtaev R. V., Nikulina E., Modin E. B., Janzen E., Edgar J. H., Casanova F., Hueso L. E., Volkov V. S., Vavassori P., Aharonovich I., Alonso-Gonzalez P., Hillenbrand R., Nikitin A. Y.. Dual-Band Coupling between Nanoscale Polaritons and Vibrational and Electronic Excitations in Molecules. Nano Lett. 2023;23:3985–3993. doi: 10.1021/acs.nanolett.3c00768. PubMed DOI
Yoxall E., Schnell M., Nikitin A. Y., Txoperena O., Woessner A., Lundeberg M. B., Casanova F., Hueso L. E., Koppens F. H. L., Hillenbrand R.. Direct Observation of Ultraslow Hyperbolic Polariton Propagation with Negative Phase Velocity. Nat. Photonics. 2015;9:674–678. doi: 10.1038/nphoton.2015.166. DOI
Wehmeier L., Xu S., Mayer R. A., Vermilyea B., Tsuneto M., Dapolito M., Pu R., Du Z., Chen X., Zheng W., Jing R., Zhou Z., Watanabe K., Taniguchi T., Gozar A., Li Q., Kuzmenko A. B., Carr G. L., Du X., Fogler M. M., Basov D. N., Liu M.. Landau-Phonon Polaritons in Dirac Heterostructures. Sci. Adv. 2024;10:eadp3487. doi: 10.1126/sciadv.adp3487. PubMed DOI PMC
Ashida Y., İmamoǧlu A., Demler E.. Cavity Quantum Electrodynamics with Hyperbolic van der Waals Materials. Phys. Rev. Lett. 2023;130:216901. doi: 10.1103/PhysRevLett.130.216901. PubMed DOI
Riolo, R. ; Tomadin, A. ; Mazza, G. ; Asgari, R. ; MacDonald, A. H. ; Polini, M. . Tuning Fermi Liquids with Sub-Wavelength Cavities. arXiv 2024, 2403.20067. 10.48550/arXiv.2403.20067 DOI
Bloch J., Cavalleri A., Galitski V., Hafezi M., Rubio A.. Strongly Correlated Electron−Photon Systems. Nature. 2022;606:41–48. doi: 10.1038/s41586-022-04726-w. PubMed DOI
Andolina G. M., De Pasquale A., Pellegrino F. M. D., Torre I., Koppens F. H. L., Polini M.. Amperean Superconductivity Cannot Be Induced by Deep Subwavelength Cavities in a Two-Dimensional Material. Phys. Rev. B. 2024;109:104513. doi: 10.1103/PhysRevB.109.104513. DOI
Atwater H. A.. The Promise of Plasmonics. Sci. Am. 2007;296:56–63. doi: 10.1038/scientificamerican0407-56. PubMed DOI
Giuliani, G. F. ; Vignale, G. . Quantum Theory of the Electron Liquid; Cambridge University Press: Cambridge, 2005.
Chen X.. et al. Modern Scattering-Type Scanning Near-Field Optical Microscopy for Advanced Material Research. Adv. Mater. 2019;31:1804774. doi: 10.1002/adma.201804774. PubMed DOI
Geim A., Grigorieva I.. Van der Waals Heterostructures. Nature. 2013;499:419–425. doi: 10.1038/nature12385. PubMed DOI
Grigorenko A. N., Polini M., Novoselov K. S.. Graphene Plasmonics. Nat. Photonics. 2012;6:749–758. doi: 10.1038/nphoton.2012.262. DOI
Andrei E. Y., Efetov D. K., Jarillo-Herrero P., MacDonald A. H., Mak K. F., Senthil T., Tutuc E., Yazdani A., Young A. F.. The Marvels of Moiré Materials. Nat. Rev. Mater. 2021;6:201–206. doi: 10.1038/s41578-021-00284-1. DOI
Cao Y.. et al. Unconventional Superconductivity in Magic-Angle Graphene Superlattices. Nature. 2018;556:43–50. doi: 10.1038/nature26160. PubMed DOI
Cao Y.. et al. Correlated Insulator Behaviour at Half-Filling in Aagic-Angle Graphene Superlattices. Nature. 2018;556:80–84. doi: 10.1038/nature26154. PubMed DOI
Cao Y.. et al. Strange Metal in Magic-Angle Graphene with Near Planckian Dissipation. Phys. Rev. Lett. 2020;124:076801. doi: 10.1103/PhysRevLett.124.076801. PubMed DOI
Xie Y.. et al. Fractional Chern Insulators in Magic-Angle Twisted Bilayer Graphene. Nature. 2021;600:439–443. doi: 10.1038/s41586-021-04002-3. PubMed DOI PMC
Mak K. F., Shan J.. Semiconductor Moiré Materials. Nat. Nanotechnol. 2022;17:686–695. doi: 10.1038/s41565-022-01165-6. PubMed DOI
Xia Y., Han Z., Watanabe K., Taniguchi T., Shan J., Mak K. F.. Unconventional Superconductivity in Twisted Bilayer WSe2 . Nature. 2025;637:833–838. doi: 10.1038/s41586-024-08116-2. PubMed DOI
Cai J.. et al. Signatures of Fractional Quantum Anomalous Hall States in Twisted MoTe2 . Nature. 2023;622:63–68. doi: 10.1038/s41586-023-06289-w. PubMed DOI
Agarwal A.. et al. Plasmon Mass and Drude Weight in Strongly Spin-Orbit-Coupled Two-Dimensional Electron Gases. Phys. Rev. B. 2011;83:115135. doi: 10.1103/PhysRevB.83.115135. DOI
Tomadin A.. et al. Generation and Morphing of Plasmons in Graphene Superlattices. Phys. Rev. B. 2014;90:161406(R) doi: 10.1103/PhysRevB.90.161406. DOI
Stauber T., Kohler H.. Quasi-Flat Plasmonic Bands in Twisted Bilayer Graphene. Nano Lett. 2016;16:6844–6849. doi: 10.1021/acs.nanolett.6b02587. PubMed DOI
Hesp N. C. H., Torre I., Rodan-Legrain D., Novelli P., Cao Y., Carr S., Fang S., Stepanov P., Barcons-Ruiz D., Herzig Sheinfux H., Watanabe K., Taniguchi T., Efetov D. K., Kaxiras E., Jarillo-Herrero P., Polini M., Koppens F. H. L.. Observation of Interband Collective Excitations in Twisted Bilayer Graphene. Nat. Phys. 2021;17:1162–1168. doi: 10.1038/s41567-021-01327-8. DOI
Lewandowski C., Levitov L.. Intrinsically Undamped Plasmon Modes in Narrow Electron Bands. Proc. Natl. Acad. Sci. U. S. A. 2019;116:20869–20874. doi: 10.1073/pnas.1909069116. PubMed DOI PMC
Chakraborty A.. et al. Tunable Interband and Intraband Plasmons in Twisted Double Bilayer Graphene. Phys. Rev. B. 2022;106:155422. doi: 10.1103/PhysRevB.106.155422. DOI
Cavicchi L.. et al. Theory of Intrinsic Acoustic Plasmons in Twisted Bilayer Graphene. Phys. Rev. B. 2024;110:045431. doi: 10.1103/PhysRevB.110.045431. DOI
García-Vidal F. J.. et al. Manipulating Matter by Strong Coupling to Vacuum Fields. Science. 2021;373:eabd0336. doi: 10.1126/science.abd0336. PubMed DOI
Kim C.-J., Sánchez-Castillo A., Ziegler Z., Ogawa Y., Noguez C., Park J.. Chiral Atomically Thin Films. Nat. Nanotechnol. 2016;11:520–524. doi: 10.1038/nnano.2016.3. PubMed DOI
Stauber T.. et al. Chiral Response of Twisted Bilayer Graphene. Phys. Rev. Lett. 2018;120:046801. doi: 10.1103/PhysRevLett.120.046801. PubMed DOI
Moreno, A. ; Cavicchi, L. ; Wang, X. ; Peralta, M. ; Vergniory, M. ; Watanabe, K. ; Taniguchi, T. ; Jarillo-Herrero, P. ; Felser, C. ; Polini, M. ; Koppens, F. H. L. . Twisted Bilayer Graphene for Enantiomeric Sensing of chiral molecules. arXiv 2024, 2409.05178. 10.48550/arXiv.2409.05178 DOI
Song J. C. W., Rudner M. S.. Chiral Plasmons without Magnetic Field. Proc. Natl. Acad. Sci. U. S. A. 2016;113:4658. doi: 10.1073/pnas.1519086113. PubMed DOI PMC
Lu X.. et al. Superconductors, Orbital Magnets and Correlated States in Magic-Angle Bilayer Graphene. Nature. 2019;574:653–657. doi: 10.1038/s41586-019-1695-0. PubMed DOI
Liou S.-F.. et al. Chiral Gravitons in Fractional Quantum Hall Liquids. Phys. Rev. Lett. 2019;123:146801. doi: 10.1103/PhysRevLett.123.146801. PubMed DOI
Adak P. C.. et al. Tunable Moiré Materials for Probing Berry Physics and Topology. Nat. Rev. Mater. 2024;9:481–498. doi: 10.1038/s41578-024-00671-4. DOI
Papaj M., Lewandowski C.. Probing Correlated States with Plasmons. Sci. Adv. 2023;9:eadg3262. doi: 10.1126/sciadv.adg3262. PubMed DOI
Morales-Durán N.. et al. Magic Angles and Fractional Chern Insulators in Twisted Homobilayer TMDs. Phys. Rev. Lett. 2024;132:096602. doi: 10.1103/PhysRevLett.132.096602. PubMed DOI
Cavicchi, L. ; Reijnders, K. J. A. ; Katsnelson, M. I. ; Polini, M. . Optical Properties, Plasmons, and Orbital Skyrme Textures in Twisted TMDs. arXiv 2024, 2410.18025. 10.48550/arXiv.2410.18025 DOI
Basov D. N., Asenjo-Garcia A., Schuck P. J., Zhu X., Rubio A.. Polariton Panorama. Nanophotonics. 2020;10:549–577. doi: 10.1515/nanoph-2020-0449. DOI
Rivera N., Kaminer I.. Light−Matter Interactions with Photonic Quasiparticles. Nat. Rev. Phys. 2020;2:538–561. doi: 10.1038/s42254-020-0224-2. DOI
Gonçalves, P. A. D. ; Peres, N. M. R. . An Introduction to Graphene Plasmonics; World Scientific: Singapore, 2016.
Gonçalves P. A. D., Stenger N., Cox J. D., Mortensen N. A., Xiao S.. Strong Light−Matter Interactions Enabled by Polaritons in Atomically-Thin Materials. Adv. Opt. Mater. Mod. Phys. 2020;8:1901473. doi: 10.1002/adom.201901473. DOI
Xia F., Wang H., Xiao D., Dubey M., Ramasubramaniam A.. Two-Dimensional Material Nanophotonics. Nat. Photonics. 2014;8:899–907. doi: 10.1038/nphoton.2014.271. DOI
Alonso-González P.. et al. Acoustic Terahertz Graphene Plasmons Revealed by Photocurrent Nanoscopy. Nat. Nanotechnol. 2017;12:31–35. doi: 10.1038/nnano.2016.185. PubMed DOI
Alcaraz Iranzo D., Nanot S., Dias E. J. C., Epstein I., Peng C., Efetov D. K., Lundeberg M. B., Parret R., Osmond J., Hong J.-Y., Kong J., Englund D. R., Peres N. M. R., Koppens F. H. L.. Probing the Ultimate Plasmon Confinement Limits with a van der Waals Heterostructure. Science. 2018;360:291–295. doi: 10.1126/science.aar8438. PubMed DOI
Reserbat-Plantey A., Epstein I., Torre I., Costa A. T., Gonçalves P. A. D., Mortensen N. A., Polini M., Song J. C. W., Peres N. M. R., Koppens F. H. L.. Quantum Nanophotonics in Two-Dimensional Materials. ACS Photonics. 2021;8:85–101. doi: 10.1021/acsphotonics.0c01224. DOI
Gonçalves, P. A. D. Plasmonics and Light−Matter Interactions in Two-Dimensional Materials and in Metal Nanostructures: Classical and Quantum Considerations; Springer Nature, 2020.
Basov D. N., Averitt R. D., van der Marel D., Dressel M., Haule K.. Electrodynamics of Correlated Electron Materials. Rev. Mod. Phys. 2011;83:471–541. doi: 10.1103/RevModPhys.83.471. DOI
Costa A. T., Gonçalves P. A. D., Basov D. N., Koppens F. H. L., Mortensen N. A., Peres N. M. R.. Harnessing Ultraconfined Graphene Plasmons to Probe the Electrodynamics of Superconductors. Proc. Nat. Acad. Sci. 2021;118:e2012847118. doi: 10.1073/pnas.2012847118. PubMed DOI PMC
Berkowitz M. E., Kim B. S. Y., Ni G., McLeod A. S., Lo C. F. B., Sun Z., Gu G., Watanabe K., Taniguchi T., Millis A. J., Hone J. C., Fogler M. M., Averitt R. D., Basov D. N.. Hyperbolic Cooper-Pair Polaritons in Planar Graphene/Cuprate Plasmonic Cavities. Nano Lett. 2021;21:308–316. doi: 10.1021/acs.nanolett.0c03684. PubMed DOI
Costa A. T., Peres N. M. R.. Enhancing the Hybridization of Plasmons in Graphene with 2D Superconductor Collective Modes. J. Phys.: Cond. Matter. 2022;34:105304. doi: 10.1088/1361-648X/ac3e1d. PubMed DOI
Bludov Y. V., Gomes J. N., Farias G. A., Fernández-Rossier J., Vasilevskiy M. I., Peres N. M. R.. Hybrid Plasmon-Magnon Polaritons in Graphene-Antiferromagnet Heterostructures. 2D Mater. 2019;6:045003. doi: 10.1088/2053-1583/ab2513. DOI
Costa A. T., Vasilevskiy M. I., Fernández-Rossier J., Peres N. M. R.. Strongly Coupled Magnon−Plasmon Polaritons in Graphene-Two-Dimensional Ferromagnet Heterostructures. Nano Lett. 2023;23:4510–4515. doi: 10.1021/acs.nanolett.3c00907. PubMed DOI PMC
Falch V., Danon J., Qaiumzadeh A., Brataas A.. Impact of Spin Torques and Spin-Pumping Phenomena on Magnon-Plasmon Polaritons in Antiferromagnetic Insulator-Semiconductor Heterostructures. Phys. Rev. B. 2024;109:214436. doi: 10.1103/PhysRevB.109.214436. DOI
Yuan H. Y., Blanter Y. M.. Breaking Surface-Plasmon Excitation Constraint via Surface Spin Waves. Phys. Rev. Lett. 2024;133:156703. doi: 10.1103/PhysRevLett.133.156703. PubMed DOI
Keller O.. Electromagnetic Surface Waves on a Cooper-Paired Superconductor. J. Opt. Soc. Am. B. 1990;7:2229–2235. doi: 10.1364/JOSAB.7.002229. DOI
Sun Z., Fogler M. M., Basov D. N., Millis A. J.. Collective Modes and Terahertz Near-Field Response of Superconductors. Phys. Rev. Research. 2020;2:023413. doi: 10.1103/PhysRevResearch.2.023413. DOI
Matsunaga R., Hamada Y. I., Makise K., Uzawa Y., Terai H., Wang Z., Shimano R.. Higgs Amplitude Mode in the BCS Superconductors Nb1-xTi x N Induced by Terahertz Pulse Excitation. Phys. Rev. Lett. 2013;111:057002. doi: 10.1103/PhysRevLett.111.057002. PubMed DOI
Matsunaga R., Tsuji N., Fujita H., Sugioka A., Makise K., Uzawa Y., Terai H., Wang Z., Aoki H., Shimano R.. Light-Induced Collective Pseudospin Precession Resonating with Higgs Mode in a Superconductor. Science. 2014;345:1145–1149. doi: 10.1126/science.1254697. PubMed DOI
Dias E. J. C., Iranzo D. A., Gonçalves P. A. D., Hajati Y., Bludov Y. V., Jauho A.-P., Mortensen N. A., Koppens F. H. L., Peres N. M. R.. Probing Nonlocal Effects in Metals with Graphene Plasmons. Phys. Rev. B. 2018;97:245405. doi: 10.1103/PhysRevB.97.245405. DOI
Gonçalves P. A. D., Christensen T., Peres N. M. R., Jauho A.-P., Epstein I., Koppens F. H. L., Soljačić M., Mortensen N. A.. Quantum Surface-Response of Metals Revealed by Acoustic Graphene Plasmons. Nat. Commun. 2021;12:3271. doi: 10.1038/s41467-021-23061-8. PubMed DOI PMC
Feibelman P. J.. Surface Electromagnetic-Fields. Prog. Surf. Sci. 1982;12:287–407. doi: 10.1016/0079-6816(82)90001-6. DOI
Yang Y., Zhu D., Yan W., Agarwal A., Zheng M., Joannopoulos J. D., Lalanne P., Christensen T., Berggren K. K., Soljačić M.. A General Theoretical and Experimental Framework for Nanoscale Electromagnetism. Nature. 2019;576:248–252. doi: 10.1038/s41586-019-1803-1. PubMed DOI
Persson B. N. J., Zaremba E.. Reference-Plane Position for the Atom-Surface van der Waals Interaction. Phys. Rev. B. 1984;30:5669. doi: 10.1103/PhysRevB.30.5669. PubMed DOI
Dyrdal A., Qaiumzadeh A., Brataas A., Barnas J.. Magnon-Plasmon Hybridization Mediated by Spin-Orbit Interaction in Magnetic Materials. Phys. Rev. B. 2023;108:045414. doi: 10.1103/PhysRevB.108.045414. DOI
Zheng S., Wang Z., Wang Y., Sun F., He Q., Yan P., Yuan H. Y.. Tutorial: Nonlinear Magnonics. J. Appl. Phys. 2023;134:151101. doi: 10.1063/5.0152543. DOI
Zhang X., Bian C., Gong Z., Chen R., Low T., Chen H., Lin X.. Hybrid Surface Waves in Twisted Anisotropic Heterometasurfaces. Phys. Rev. Appl. 2024;21:064034. doi: 10.1103/PhysRevApplied.21.064034. DOI
Rizzo D. J.. et al. Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl3 Interfaces. Nano Lett. 2020;20:8438–8445. doi: 10.1021/acs.nanolett.0c03466. PubMed DOI PMC
Hesp N. C. H., Batlle-Porro S., Kumar R. K., Agarwal H., Ruiz D. B., Sheinfux H. H., Watanabe K., Taniguchi T., Stepanov P., Koppens F. H. L.. Cryogenic Nano-Imaging of Second-Order Moiré Superlattices. Nat. Mater. 2024;23:1664–1670. doi: 10.1038/s41563-024-01993-y. PubMed DOI
Kennes D. M., Claassen M., Xian L., Georges A., Millis A. J., Hone J., Dean C. R., Basov D. N., Pasupathy A. N., Rubio A.. Moiré Heterostructures as a Condensed-Matter Quantum Simulator. Nat. Phys. 2021;17:155–163. doi: 10.1038/s41567-020-01154-3. DOI
Costa A. T., Santos D. L. R., Peres N. M. R., Fernández-Rossier J.. Topological Magnons in CrI3 Monolayers: An Itinerant Fermion Description. 2D Mater. 2020;7:045031. doi: 10.1088/2053-1583/aba88f. DOI
Li S., Sun Z., McLaughlin N. J., Sharmin A., Agarwal N., Huang M., Sung S. H., Lu H., Yan S., Lei H., Hovden R., Wang H., Chen H., Zhao L., Du C. R.. Observation of Stacking Engineered Magnetic Phase Transitions within Moiré Supercells of Twisted van der Waals Magnets. Nat. Commun. 2024;15:5712. doi: 10.1038/s41467-024-49942-2. PubMed DOI PMC
Liu Y., Yu J., Liu C.-C.. Twisted Magnetic Van der Waals Bilayers: An Ideal Platform for Altermagnetism. Phys. Rev. Lett. 2024;133:206702. doi: 10.1103/PhysRevLett.133.206702. PubMed DOI
Lu L., Joannopoulos J. D., Soljačić M.. Topological Photonics. Nat. Photonics. 2014;8:821–829. doi: 10.1038/nphoton.2014.248. DOI
Oulton R. F., Sorger V. J., Genov D., Pile D., Zhang X.. A Hybrid Plasmonic Waveguide for Subwavelength Confinement and Long-Range Propagation. Nat. Photonics. 2008;2:496–500. doi: 10.1038/nphoton.2008.131. DOI
Luo C., Johnson S. G., Joannopoulos J., Pendry J.. Subwavelength Imaging in Photonic Crystals. Phys. Rev. B. 2003;68:045115. doi: 10.1103/PhysRevB.68.045115. DOI
Markel V. A.. Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A. 2016;33:1244–1256. doi: 10.1364/JOSAA.33.001244. PubMed DOI
Bregola, M. ; Marmo, G. ; Morandi, G. . Anomalies, Phases, Defects−Ferrara, June 1989; Bibliopolis, 1990.
Bharadwaj S., Van Mechelen T., Jacob Z.. Picophotonics: Anomalous Atomistic Waves in Silicon. Phys. Rev. Appl. 2022;18:044065. doi: 10.1103/PhysRevApplied.18.044065. DOI
Van Mechelen T., Jacob Z.. Nonlocal Topological Electromagnetic Phases of Matter. Physi. Rev. B. 2019;99:205146. doi: 10.1103/PhysRevB.99.205146. DOI
Haldane F. D. M.. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the Parity Anomaly. Phys. Rev. Lett. 1988;61:2015–2018. doi: 10.1103/PhysRevLett.61.2015. PubMed DOI
Kane C. L., Mele E. J.. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett. 2005;95:226801. doi: 10.1103/PhysRevLett.95.226801. PubMed DOI
Van Mechelen T., Jacob Z.. Unidirectional Maxwellian Spin Waves. Nanophotonics. 2019;8:1399–1416. doi: 10.1515/nanoph-2019-0092. DOI
Kim M., Jacob Z., Rho J.. Recent Advances in 2D, 3D and Higher-Order Topological Photonics. Light Sci. Appl. 2020;9:130. doi: 10.1038/s41377-020-0331-y. PubMed DOI PMC
Van Mechelen T., Sun W., Jacob Z.. Optical N-Invariant of Graphene’s Topological Viscous Hall Fluid. Nat. Commun. 2021;12:4729. doi: 10.1038/s41467-021-25097-2. PubMed DOI PMC
Bharadwaj, S. ; Jacob, Z. . Unraveling Optical Polarization at Deep Microscopic Scales in Crystalline Materials. arXiv 2024, 2407.15189. 10.48550/arXiv.2407.15189 DOI
Mun, J. ; Bharadwaj, S. ; Jacob, Z. . Visualization of Atomistic Optical Waves in Crystals. arXiv 2024, 2411.09876. 10.48550/arXiv.2411.09876 DOI
Van Mechelen T., Bharadwaj S., Jacob Z., Slager R.-J.. Optical -Insulators: Topological Obstructions to Optical Wannier Functions in the Atomistic Susceptibility Tensor. Phys. Rev. Research. 2022;4:023011. doi: 10.1103/PhysRevResearch.4.023011. DOI
Van Mechelen T., Jacob Z.. Viscous Maxwell-Chern-Simons Theory for Topological Electromagnetic Phases of Matter. Phys. Rev. B. 2020;102:155425. doi: 10.1103/PhysRevB.102.155425. DOI
Van Mechelen T., Jacob Z.. Photonic Dirac Monopoles and Skyrmions: Spin-1 Quantization. Opt. Mater. Express. 2019;9:95–111. doi: 10.1364/OME.9.000095. DOI
Sun W., Van Mechelen T. F., Bharadwaj S., Boddeti A. K., Jacob Z.. Optical N-Plasmon: Topological Hydrodynamic Excitations in Graphene from Repulsive Hall Viscosity. New J. Phys. 2023;25:113009. doi: 10.1088/1367-2630/ad04bc. DOI
Cocker T. L., Jelic V., Hillenbrand R., Hegmann F. A.. Nanoscale Terahertz Scanning Probe Microscopy. Nat. Photonics. 2021;15:558–569. doi: 10.1038/s41566-021-00835-6. DOI
Barber M. E., Ma E. Y., Shen Z.-X.. Microwave Impedance Microscopy and Its Application to Quantum Materials. Nat. Rev. Phys. 2022;4:61–74. doi: 10.1038/s42254-021-00386-3. DOI
Poursoti Z., Sun W., Bharadwaj S., Malac M., Iyer S., Khosravi F., Cui K., Qi L., Nazemifard N., Jagannath R.. Deep Ultra-Violet Plasmonics: Exploiting Momentum-Resolved Electron Energy Loss Spectroscopy to Probe Germanium. Opt. Express. 2022;30:12630–12638. doi: 10.1364/OE.447017. PubMed DOI
McLeod A. S., Zhang J., Gu M. Q., Jin F., Zhang G., Post K. W., Zhao X. G., Millis A. J., Wu W. B., Rondinelli J. M., Averitt R. D., Basov D. N.. Multi-Messenger Nanoprobes of Hidden Magnetism in a Strained Manganite. Nat. Mater. 2020;19:397–404. doi: 10.1038/s41563-019-0533-y. PubMed DOI
Dai S., Fei Z., Ma Q., Rodin A. S., Wagner M., McLeod A. S., Liu M. K., Gannett W., Regan W., Watanabe K., Taniguchi T., Thiemens M., Dominguez G., Castro Neto A. H., Zettl A., Keilmann F., Jarillo-Herrero P., Fogler M. M., Basov D. N.. Tunable Phonon Polaritons Inatomically Thin van der Waals Crystals of Boron Nitride. Science. 2014;343:1125–1129. doi: 10.1126/science.1246833. PubMed DOI
Ruta F. L., Zhang S., Shao Y., Moore S. L., Acharya S., Sun Z., Qiu S., Geurs J., Kim B. S. Y., Fu M., Chica D. G., Pashov D., Xu X., Xiao D., Delor M., Zhu X. Y., Millis A. J., Roy X., Hone J. C., Dean C. R., Katsnelson M. I., van Schilfgaarde M., Basov D. N.. Hyperbolic Exciton Polaritons in a van der Waals Magnet. Nat. Commun. 2023;14:8261. doi: 10.1038/s41467-023-44100-6. PubMed DOI PMC
Sunku S. S., Ni G. X., Jiang B. Y., Yoo H., Sternbach A., Mcleod A. S., Stauber T., Xiong L., Taniguchi T., Watanabe K., Kim P., Fogler M. M., Basov D. N.. Photonic Crystals for Nano-Light in Moiré Graphene Superlattices. Science. 2018;362:1153–1156. doi: 10.1126/science.aau5144. PubMed DOI
Lee K., Iqbal, Bakti Utama M., Kahn S., Samudrala A., Leconte N., Yang B., Wang S., Watanabe K., Taniguchi T., Altoé V. M. P., Zhang G., Weber-Bargioni A., Crommie M., Ashby P. D., Jung J., Wang F., Zettl A.. Ultrahigh-Resolution Scanning Microwave Impedance Microscopy of Moiré Lattices and Superstructures. Sci. Adv. 2020;6:50. doi: 10.1126/sciadv.abd1919. PubMed DOI PMC
Kerelsky A., McGilly L. J., Kennes D. M., Xian L., Yankowitz M., Chen S., Watanabe K., Taniguchi T., Hone J., Dean C., Rubio A., Pasupathy A. N.. Maximized Electron Interactions at the Magic Angle in Twisted Bilayer Graphene. Nature. 2019;572:95–100. doi: 10.1038/s41586-019-1431-9. PubMed DOI
Halbertal D., Finney N. R., Sunku S. S., Kerelsky A., Rubio-Verdú C., Shabani S., Xian L., Carr S., Chen S., Zhang C., Wang L., Gonzalez-Acevedo D., McLeod A. S., Rhodes D., Watanabe K., Taniguchi T., Kaxiras E., Dean C. R., Hone J. C., Pasupathy A. N., Kennes D. M., Rubio A., Basov D. N.. Moiré Metrology of Energy Landscapes in van der Waals Heterostructures. Nat. Commun. 2021;12:242. doi: 10.1038/s41467-020-20428-1. PubMed DOI PMC
McGilly L. J., Kerelsky A., Finney N. R., Shapovalov K., Shih E. M., Ghiotto A., Zeng Y., Moore S. L., Wu W., Bai Y., Watanabe K., Taniguchi T., Stengel M., Zhou L., Hone J., Zhu X., Basov D. N., Dean C., Dreyer C. E., Pasupathy A. N.. Visualization of Moiré Superlattices. Nat. Nanotechnol. 2020;15:580–584. doi: 10.1038/s41565-020-0708-3. PubMed DOI
Zhang S., Liu Y., Sun Z., Chen X., Li B., Moore S. L., Liu S., Wang Z., Rossi S. E., Jing R., Fonseca J., Yang B., Shao Y., Huang C. Y., Handa T., Xiong L., Fu M., Pan T. C., Halbertal D., Xu X., Zheng W., Schuck P. J., Pasupathy A. N., Dean C. R., Zhu X., Cobden D. H., Xu X., Liu M., Fogler M. M., Hone J. C., Basov D. N.. Visualizing Moiré Ferroelectricity Via Plasmons and Nano-Photocurrent in Graphene/Twisted-WSe2 Structures. Nat. Commun. 2023;14:6200. doi: 10.1038/s41467-023-41773-x. PubMed DOI PMC
Vizner Stern M., Waschitz Y., Cao W., Nevo I., Watanabe K., Taniguchi T., Sela E., Urbakh M., Hod O., Shalom M. B.. Interfacial Ferroelectricity by van der Waals Sliding. Science. 2021;372:1462–1466. doi: 10.1126/science.abe8177. PubMed DOI
Song T., Sun Q. C., Anderson E., Wang C., Qian J., Taniguchi T., Watanabe K., McGuire M. A., Stöhr R., Xiao D., Cao T., Wrachtrup J., Xu X.. Direct Visualization of Magnetic Domains and Moiré Magnetism in Twisted 2D Magnets. Science. 2021;374:1140–1144. doi: 10.1126/science.abj7478. PubMed DOI
Fali A., Zhang T., Terry J. P., Kahn E., Fujisawa K., Kabius B., Koirala S., Ghafouri Y., Zhou D., Song W., Yang L., Terrones M., Abate Y.. Photodegradation Protection in 2D In-Plane Heterostructures Revealed by Hyperspectral Nanoimaging: The Role of Nanointerface 2D Alloys. ACS Nano. 2021;15:2447–2457. doi: 10.1021/acsnano.0c06148. PubMed DOI
Schuler B., Cochrane K. A., Kastl C., Barnard E. S., Wong E., Borys N. J., Schwartzberg A. M., Ogletree D. F., García de Abajo F. J., Weber-Bargioni A.. Electrically Driven Photon Emission from Individual Atomic Defects in Monolayer WS2 . Sci. Adv. 2020;6:eabb5988. doi: 10.1126/sciadv.abb5988. PubMed DOI PMC
Luo W., Whetten B. G., Kravtsov V., Singh A., Yang Y., Huang D., Cheng X., Jiang T., Belyanin A., Raschke M. B.. Ultrafast Nanoimaging of Electronic Coherence of Monolayer WSe2 . Nano Lett. 2023;23:1767–1773. doi: 10.1021/acs.nanolett.2c04536. PubMed DOI
Yao K., Zhang S., Yanev E., McCreary K., Chuang H., Rosenberger M. R., Darlington T., Krayev A., Jonker B. T., Hone J. C., Basov D. N., Schuck P. J.. Nanoscale Optical Imaging of 2D Semiconductor Stacking Orders by Exciton-Enhanced Second Harmonic Generation. Adv. Opt. Mater. 2022;10:12. doi: 10.1002/adom.202200085. DOI
Dapolito M., Tsuneto M., Zheng W., Wehmeier L., Xu S., Chen X., Sun J., Du Z., Shao Y., Jing R., Zhang S., Bercher A., Dong Y., Halbertal D., Ravindran V., Zhou Z., Petrovic M., Gozar A., Carr G. L., Li Q., Kuzmenko A. B., Fogler M. M., Basov D. N., Du X., Liu M.. Infrared Nano-Imaging of Dirac Magnetoexcitons in Graphene. Nat. Nanotechnol. 2023;18:1409–1415. doi: 10.1038/s41565-023-01488-y. PubMed DOI
Huber M. A., Mooshammer F., Plankl M., Viti L., Sandner F., Kastner L. Z., Frank T., Fabian J., Vitiello M. S., Cocker T. L., Huber R.. Femtosecond Photo-Switching of Interface Polaritons in Black Phosphorus Heterostructures. Nat. Nanotechnol. 2017;12:207–211. doi: 10.1038/nnano.2016.261. PubMed DOI
Dong Y., Xiong L., Phinney I. Y., Sun Z., Jing R., McLeod A. S., Zhang S., Liu S., Ruta F. L., Gao H., Dong Z., Pan R., Edgar J. H., Jarillo-Herrero P., Levitov L. S., Millis A. J., Fogler M. M., Bandurin D. A., Basov D. N.. Fizeau Drag in Graphene Plasmonics. Nature. 2021;594:513–516. doi: 10.1038/s41586-021-03640-x. PubMed DOI
Zhao W., Zhao S., Li H., Wang S., Wang S., Utama M. I. B., Kahn S., Jiang Y., Xiao X., Yoo S. J., Watanabe K., Taniguchi T., Zettl A., Wang F.. Efficient Fizeau Drag from Dirac Electrons in Monolayer Graphene. Nature. 2021;594:517–521. doi: 10.1038/s41586-021-03574-4. PubMed DOI
Hesp N. C. H., Torre I., Barcons-Ruiz D., Herzig Sheinfux H., Watanabe K., Taniguchi T., Krishna, Kumar R., Koppens F. H. L.. Nano-Imaging Photoresponse in a Moiré Unit Cell of Minimally Twisted Bilayer Graphene. Nat. Commun. 2021;12:1640. doi: 10.1038/s41467-021-21862-5. PubMed DOI PMC
Wagner M., Fei Z., McLeod A. S., Rodin A. S., Bao W., Iwinski E. G., Zhao Z., Goldflam M., Liu M., Dominguez G., Thiemens M., Fogler M. M., Castro Neto A. H., Lau C. N., Amarie S., Keilmann F., Basov D. N.. Ultrafast and Nanoscale Plasmonic Phenomena in Exfoliated Graphene Revealed by Infrared Pump-Probe Nanoscopy. Nano Lett. 2014;14:894. doi: 10.1021/nl4042577. PubMed DOI
Mrejen M., Yadgarov L., Levanon A., Suchowski H.. Transient Exciton-Polariton Dynamics in WSe2 by Ultrafast Near-Field Imaging. Sci. Adv. 2019;5:2. doi: 10.1126/sciadv.aat9618. PubMed DOI PMC
Xu S., Li Y., Vitalone R. A., Jing R., Sternbach A. J., Zhang S., Ingham J., Delor M., McIver J. W., Yankowitz M., Queiroz R., Millis A. J., Fogler M. M., Dean C. R., Pasupathy A. N., Hone J., Liu M., Basov D. N.. Electronic Interactions in Dirac Fluids Visualized by Nano-Terahertz Spacetime Interference of Electron-Photon Quasiparticles. Sci. Adv. 2024;10:43. doi: 10.1126/sciadv.ado5553. PubMed DOI PMC
Siday T., Hayes J., Schiegl F., Sandner F., Menden P., Bergbauer V., Zizlsperger M., Nerreter S., Lingl S., Repp J., Wilhelm J., Huber M. A., Gerasimenko Y. A., Huber R.. All-Optical Subcycle Microscopy on Atomic Length Scales. Nature. 2024;629:329–334. doi: 10.1038/s41586-024-07355-7. PubMed DOI
Rizzo D. J., Shabani S., Jessen B. S., Zhang J., McLeod A. S., Rubio-Verdú C., Ruta F. L., Cothrine M., Yan J., Mandrus D. G., Nagler S. E., Rubio A., Hone J. C., Dean C. R., Pasupathy A. N., Basov D. N.. Nanometer-Scale Lateral p−n Junctions in Graphene/α-RuCl3 Heterostructures. Nano Lett. 2022;22:1946–1953. doi: 10.1021/acs.nanolett.1c04579. PubMed DOI PMC
Kim B. S. Y., Sternbach A. J., Choi M. S., Sun Z., Ruta F. L., Shao Y., McLeod A. S., Xiong L., Dong Y., Chung T. S., Rajendran A., Liu S., Nipane A., Chae S. H., Zangiabadi A., Xu X., Millis A. J., Schuck P. J., Dean C. R., Hone J. C., Basov D. N.. Ambipolar Charge-Transfer Graphene Plasmonic Cavities. Nat. Mater. 2023;22:828–843. doi: 10.1038/s41563-023-01520-5. PubMed DOI
Hu H., Chen N., Teng H., Yu R., Xue M., Chen K., Xiao Y., Qu Y., Hu D., Chen J., Sun Z., Li P., García de Abajo F. J., Dai Q.. Gate-Tunable Negative Refraction of Mid-Infrared Polaritons. Science. 2023;379:558–561. doi: 10.1126/science.adf1251. PubMed DOI
Ji Z., Park H., Barber M. E., Hu C., Watanabe K., Taniguchi T., Chu J.-H., Xu X., Shen Z.-X.. Local Probe of Bulk and Edge States in a Fractional Chern Insulator. Nature. 2024;635:578–583. doi: 10.1038/s41586-024-08092-7. PubMed DOI
Xiong L., Li Y., Halbertal D., Sammon M., Sun Z., Liu S., Edgar J. H., Low T., Fogler M. M., Dean C. R., Millis A. J., Basov D. N.. Polaritonic Vortices with a Half-Integer Charge. Nano Lett. 2021;21:9256–9261. doi: 10.1021/acs.nanolett.1c03175. PubMed DOI
Xie Q., Zhang Y., Janzen E., Edgar J. H., Xu X. G.. Atomic-Force-Microscopy-Based Time-Domain Two-Dimensional Infrared Nanospectroscopy. Nat. Nanotechnol. 2024;19:1108–1115. doi: 10.1038/s41565-024-01670-w. PubMed DOI
Yannai M., Haller M., Ruimy R., Gorlach A., Rivera N., Basov D. N., Kaminer I.. Opportunities in Nanoscale Probing of Laser-Driven Phase Transitions. Nat. Phys. 2024;20:1383–1388. doi: 10.1038/s41567-024-02603-z. DOI
Chen C., Chu P., Bobisch C. A., Mills D. L., Ho W.. Viewing the Interior of a Single Molecule: Vibronically Resolved Photon Imaging at Submolecular Resolution. Phys. Rev. Lett. 2010;105:217402. doi: 10.1103/PhysRevLett.105.217402. PubMed DOI
Chen X., Xu S., Shabani S., Zhao Y., Fu M., Millis A. J., Fogler M. M., Pasupathy A. N., Liu M., Basov D. N.. Machine Learning for Optical Scanning Probe Nanoscopy. Adv. Mater. 2023;35:2109171. doi: 10.1002/adma.202109171. PubMed DOI
Fu M., Xu S., Zhang S., Ruta F. L., Pack J., Mayer R. A., Chen X., Moore S. L., Rizzo D. J., Jessen B. S., Cothrine M., Mandrus D. G., Watanabe K., Taniguchi T., Dean C. R., Pasupathy A. N., Bisogni V., Schuck P. J., Millis A. J., Liu M., Basov D. N.. Accelerated Nano-Optical Imaging through Sparse Sampling. Nano Lett. 2024;24:2149–2156. doi: 10.1021/acs.nanolett.3c03733. PubMed DOI
Rizzo D. J., McLeod A. S., Carnahan C., Telford E. J., Dismukes A. H., Wiscons R. A., Dong Y., Nuckolls C., Dean C. R., Pasupathy A. N., Roy X., Xiao D., Basov D. N.. Visualizing Atomically Layered Magnetism in CrSBr. Adv. Mater. 2022;34:2201000. doi: 10.1002/adma.202201000. PubMed DOI
Sunku S. S., Halbertal D., Stauber T., Chen S., McLeod A. S., Rikhter A., Berkowitz M. E., Lo C. F. B., Gonzalez-Acevedo D. E., Hone J. C., Dean C. R., Fogler M. M., Basov D. N.. Hyperbolic Enhancement of Photocurrent Patterns in Minimally Twisted Bilayer Graphene. Nat. Commun. 2021;12:1641. doi: 10.1038/s41467-021-21792-2. PubMed DOI PMC
Jing R., Shao Y., Fei Z., Lo C. F. B., Vitalone R. A., Ruta F. L., Staunton J., Zheng W. J. C., Mcleod A. S., Sun Z., Jiang B. Y., Chen X., Fogler M. M., Millis A. J., Liu M., Cobden D. H., Xu X., Basov D. N.. Terahertz Tesponse of Monolayer and Few-Layer WTe2 at the Nanoscale. Nat. Commun. 2021;12:5594. doi: 10.1038/s41467-021-23933-z. PubMed DOI PMC
Halbertal D., Turkel S., Ciccarino C. J., Hauck J. B., Finney N., Hsieh V., Watanabe K., Taniguchi T., Hone J., Dean C., Narang P., Pasupathy A. N., Kennes D. M., Basov D. N.. Unconventional Non-Local Relaxation Dynamics in a Twisted Trilayer Graphene Moiré Superlattice. Nat. Commun. 2022;13:7587. doi: 10.1038/s41467-022-35213-5. PubMed DOI PMC
Darlington T. P., Carmesin C., Florian M., Yanev E., Ajayi O., Ardelean J., Rhodes D. A., Ghiotto A., Krayev A., Watanabe K., Taniguchi T., Kysar J. W., Pasupathy A. N., Hone J. C., Jahnke F., Borys N. J., Schuck P. J.. Imaging Strain-Localized Excitons in Nanoscale Bubbles of Monolayer WSe2 at Room Temperature. Nat. Nanotechnol. 2020;15:854–860. doi: 10.1038/s41565-020-0730-5. PubMed DOI
Darlington T. P., Krayev A., Venkatesh V., Saxena R., Kysar J. W., Borys N. J., Jariwala D., Schuck P. J.. Facile and Quantitative Estimation of Strain in Nanobubbles with Arbitrary Symmetry in 2D Semiconductors Verified Using Hyperspectral Nano-Optical Imaging. J. Chem. Phys. 2020;153:024702. doi: 10.1063/5.0012817. PubMed DOI
Li P., Dolado I., Alfaro-Mozaz F. J., Casanova F., Hueso L. E., Liu S., Edgar J. H., Nikitin A. Y., Vélez S., Hillenbrand R.. Infrared Hyperbolic Metasurface Based on Nanostructured van der Waals Materials. Science. 2018;359:892–896. doi: 10.1126/science.aaq1704. PubMed DOI
Gadelha A. C., Ohlberg D. A. A., Rabelo C., Neto E. G. S., Vasconcelos T. L., Campos J. L., Lemos J. S., Ornelas V., Miranda D., Nadas R., Santana F. C., Watanabe K., Taniguchi T., van Troeye B., Lamparski M., Meunier V., Nguyen V.-H., Paszko D., Charlier J.-C., Campos L. C., Cançado L. G., Medeiros-Ribeiro G., Jorio A.. Localization of Lattice Dynamics in Low-Angle Twisted Bilayer Graphene. Nature. 2021;590:405–409. doi: 10.1038/s41586-021-03252-5. PubMed DOI
Sousa F. B., Nadas R., Martins R., Barboza A. P. M., Soares J. S., Neves B. R. A., Silvestre I., Jorio A., Malard L. M.. Disentangling Doping and Strain Effects at Defects of Grown MoS2 Monolayers with Nano-Optical Spectroscopy. Nanoscale. 2024;16:12923–12933. doi: 10.1039/D4NR00837E. PubMed DOI
Rodriguez A., Krayev A., Velický M., Frank O., El-Khoury P. Z.. Nano-Optical Visualization of Interlayer Interactions in WSe2/WS2 Heterostructures. J. Phys. Chem. Lett. 2022;13:5854–5859. doi: 10.1021/acs.jpclett.2c01250. PubMed DOI PMC
Lamsaadi H., Beret D., Paradisanos I., Renucci P., Lagarde D., Marie X., Urbaszek B., Gan Z., George A., Watanabe K., Taniguchi T., Turchanin A., Lombez L., Combe N., Paillard V., Poumirol J.-M.. Kapitza-Resistance-like Exciton Dynamics in Atomically Flat MoSe2-WSe2 Lateral Heterojunction. Nat. Commun. 2023;14:5881. doi: 10.1038/s41467-023-41538-6. PubMed DOI PMC
Rodriguez A., Kalbáč M., Frank O.. Strong Localization Effects in the Photoluminescence of Transition Metal Dichalcogenide Heterobilayers. 2D Mater. 2021;8:025028. doi: 10.1088/2053-1583/abe363. DOI
de Campos Ferreira R. C., Sagwal A., Doležal J., Canola S., Merino P., Neuman T., Švec M.. Resonant Tip-Enhanced Raman Spectroscopy of a Single-Molecule Kondo System. ACS Nano. 2024;18:13164–13170. doi: 10.1021/acsnano.4c02105. PubMed DOI PMC
López L. E. P., Rosławska A., Scheurer F., Berciaud S., Schull G.. Tip-Induced Excitonic Luminescence Nanoscopy of an Atomically Resolved van der Waals Heterostructure. Nat. Mater. 2023;22:482–488. doi: 10.1038/s41563-023-01494-4. PubMed DOI
Geng H., Tang J., Wu Y., Yu Y., Guest J. R., Zhang R.. Imaging Valley Excitons in a 2D Semiconductor with Scanning Tunneling Microscope-Induced Luminescence. ACS Nano. 2024;18:8961–8970. doi: 10.1021/acsnano.3c12555. PubMed DOI
Rosławska A., Merino P., Leon C. C., Grewal A., Etzkorn M., Kuhnke K., Kern K.. Gigahertz Frame Rate Imaging of Charge-Injection Dynamics in a Molecular Light Source. Nano Lett. 2021;21:4577–4583. doi: 10.1021/acs.nanolett.1c00328. PubMed DOI PMC
Doležal J., Sagwal A., de Campos Ferreira R. C., Švec M.. Single-Molecule Time-Resolved Spectroscopy in a Tunable STM Nanocavity. Nano Lett. 2024;24:1629–1634. doi: 10.1021/acs.nanolett.3c04314. PubMed DOI PMC
Luo Y., Martin-Jimenez A., Gutzler R., Garg M., Kern K.. Ultrashort Pulse Excited Tip-Enhanced Raman Spectroscopy in Molecules. Nano Lett. 2022;22:5100–5106. doi: 10.1021/acs.nanolett.2c00485. PubMed DOI PMC
Cocker T. L., Jelic V., Gupta M., Molesky S. J., Burgess J. A. J., Reyes G. D. L., Titova L. V., Tsui Y. Y., Freeman M. R., Hegmann F. A.. An Ultrafast Terahertz Scanning Tunnelling Microscope. Nat. Photonics. 2013;7:620–625. doi: 10.1038/nphoton.2013.151. DOI
Kimura K., Morinaga Y., Imada H., Katayama I., Asakawa K., Yoshioka K., Kim Y., Takeda J.. Terahertz-Field-Driven Scanning Tunneling Luminescence Spectroscopy. ACS Photonics. 2021;8:982–987. doi: 10.1021/acsphotonics.0c01755. DOI
Arashida Y., Mogi H., Ishikawa M., Igarashi I., Hatanaka A., Umeda N., Peng J., Yoshida S., Takeuchi O., Shigekawa H.. Subcycle Mid-Infrared Electric-Field-Driven Scanning Tunneling Microscopy with a Time Resolution Higher Than 30 fs. ACS Photonics. 2022;9:3156–3164. doi: 10.1021/acsphotonics.2c00995. DOI
Garg M., Martin-Jimenez A., Pisarra M., Luo Y., Martín F., Kern K.. Real-Space Subfemtosecond Imaging of Quantum Electronic Coherences in Molecules. Nat. Photonics. 2022;16:196–202. doi: 10.1038/s41566-021-00929-1. DOI
Rosławska A., Leon C. C., Grewal A., Merino P., Kuhnke K., Kern K.. Atomic-Scale Dynamics Probed by Photon Correlations. ACS Nano. 2020;14:6366–6375. doi: 10.1021/acsnano.0c03704. PubMed DOI PMC
Kaiser, K. ; Rosławska, A. ; Romeo, M. ; Scheurer, F. ; Neuman, T. ; Schull, G. . Electrically Driven Cascaded Photon-Emission in a Single Molecule. arXiv 2024, 2402.17536. 10.48550/arXiv.2402.17536 DOI
Abdo M., Sheng S., Rolf-Pissarczyk S., Arnhold L., Burgess J. A. J., Isobe M., Malavolti L., Loth S.. Variable Repetition Rate THz Source for Ultrafast Scanning Tunneling Microscopy. ACS Photonics. 2021;8:702–708. doi: 10.1021/acsphotonics.0c01652. PubMed DOI PMC
Li H., Xiang Z., Naik M. H., Kim W., Li Z., Sailus R., Banerjee R., Taniguchi T., Watanabe K., Tongay S., Zettl A., da Jornada F. H., Louie S. G., Crommie M. F., Wang F.. Imaging Moiré Excited States with Photocurrent Tunnelling Microscopy. Nat. Mater. 2024;23:633–638. doi: 10.1038/s41563-023-01753-4. PubMed DOI
Xu S.-Y., Ma Q., Gao Y., Kogar A., Zong A., Mier Valdivia A. M., Dinh T. H., Huang S.-M., Singh B., Hsu C.-H., Chang T.-R., Ruff J. P. C., Watanabe K., Taniguchi T., Lin H., Karapetrov G., Xiao D., Jarillo-Herrero P., Gedik N.. Spontaneous Gyrotropic Electronic Order in a Transition-Metal Dichalcogenide. Nature. 2020;578:545–549. doi: 10.1038/s41586-020-2011-8. PubMed DOI
Cui J., Boström E. V., Ozerov M., Wu F., Jiang Q., Chu J.-H., Li C., Liu F., Xu X., Rubio A., Zhang Q.. Chirality Selective Magnon-Phonon Hybridization and Magnon-Induced Chiral Phonons in a Layered Zigzag Antiferromagnet. Nat. Commun. 2023;14:3396. doi: 10.1038/s41467-023-39123-y. PubMed DOI PMC
Kaiser K., Jiang S., Romeo M., Scheurer F., Schull G., Rosławska A.. Gating Single-Molecule Fluorescence with Electrons. Phys. Rev. Lett. 2024;133:156902. doi: 10.1103/PhysRevLett.133.156902. PubMed DOI
Luo Y., Chen G., Zhang Y., Zhang L., Yu Y., Kong F., Tian X., Zhang Y., Shan C., Luo Y., Yang J., Sandoghdar V., Dong Z., Hou J. G.. Electrically Driven Single-Photon Superradiance from Molecular Chains in a Plasmonic Nanocavity. Phys. Rev. Lett. 2019;122:233901. doi: 10.1103/PhysRevLett.122.233901. PubMed DOI
InCAEM - Planes Complementarios on Advanced Materials. ALBA (Indico). https://indico.cells.es/event/1320/page/272-the-incaem-project (accessed April 8, 2024).
Mateos D., Jover O., Varea M., Lauwaet K., Granados D., Miranda R., Fernandez-Dominguez A. I., Martin-Jimenez A., Otero R.. Directional Picoantenna Behavior of Tunnel Junctions Formed by an Atomic-Scale Surface Defect. Sci. Adv. 2024;10:eadn2295. doi: 10.1126/sciadv.adn2295. PubMed DOI PMC
Böckmann H., Liu S., Müller M., Hammud A., Wolf M., Kumagai T.. Near-Field Manipulation in a Scanning Tunneling Microscope Junction with Plasmonic Fabry-Pérot Tips. Nano Lett. 2019;19:3597–3602. doi: 10.1021/acs.nanolett.9b00558. PubMed DOI PMC
Zhang Y., Meng Q.-S., Zhang L., Luo Y., Yu Y.-J., Yang B., Zhang Y., Esteban R., Aizpurua J., Luo Y., Yang J.-L., Dong Z.-C., Hou J. G.. Sub-Nanometre Control of the Coherent Interaction between a Single Molecule and a Plasmonic Nanocavity. Nat. Commun. 2017;8:15225. doi: 10.1038/ncomms15225. PubMed DOI PMC
Merino P., Große C., Rosławska A., Kuhnke K., Kern K.. Exciton Dynamics of C60-Based Single-Photon Emitters Explored by Hanbury Brown−Twiss Scanning Tunnelling Microscopy. Nat. Commun. 2015;6:8461. doi: 10.1038/ncomms9461. PubMed DOI PMC
Peeters W., Toyouchi S., Fujita Y., Wolf M., Fortuni B., Fron E., Inose T., Hofkens J., Endo T., Miyata Y., Uji-i H.. Remote Excitation of Tip-Enhanced Photoluminescence with a Parallel AgNW Coupler. ACS Omega. 2023;8:38386–38393. doi: 10.1021/acsomega.3c04952. PubMed DOI PMC
Lee D. Y., Park C., Choi J., Koo Y., Kang M., Jeong M. S., Raschke M. B., Park K.-D.. Adaptive Tip-Enhanced Nano-Spectroscopy. Nat. Commun. 2021;12:3465. doi: 10.1038/s41467-021-23818-1. PubMed DOI PMC
Nam A. J., Teren A., Lusby T. A., Melmed A. J.. Benign Making of Sharp Tips for STM and FIM: Pt, Ir, Au, Pd, and Rh. J. Vac. Sci. Technol. B. 1995;13:1556–1559. doi: 10.1116/1.588186. DOI
Neto, A. R. ; Rabelo, C. ; Cancado, L. G. ; Engel, M. ; Steiner, M. ; Jorio, A. . Protocol and Reference Material for Measuring the Nanoantenna Enhancement Factor in Tip-Enhanced Raman Spectroscopy. In 2019 4th International Symposium on Instrumentation Systems, Circuits and Transducers (INSCIT); IEEE: Sao Paulo, Brazil, 2019; pp 1−6.
Xie S.. et al. Coherent, Atomically Thin Transition-Metal Dichalcogenide Superlattices with Engineered Strain. Science. 2018;359:1131–1136. doi: 10.1126/science.aao5360. PubMed DOI
Lin Y.-C.. et al. Structural and Chemical Dynamics of Pyridinic-Nitrogen Defects in Graphene. Nano Lett. 2015;15:7408–7413. doi: 10.1021/acs.nanolett.5b02831. PubMed DOI
Lovejoy T.. et al. Single Stom Identification by Energy Dispersive X-Ray Spectroscopy. Appl. Phys. Lett. 2012;100:154101. doi: 10.1063/1.3701598. DOI
Hage F. S.. et al. Single-Atom Vibrational Spectroscopy in the Scanning Transmission Electron Microscope. Science. 2020;367:1124–1127. doi: 10.1126/science.aba1136. PubMed DOI
Bonnet N.. et al. Nanoscale Modification of WS2 Trion Emission by Its Local Electromagnetic Environment. Nano Lett. 2021;21:10178–10185. doi: 10.1021/acs.nanolett.1c02600. PubMed DOI
Woo S. Y., Tizei L. H. G.. Nano-Optics of Transition Metal Dichalcogenides and Their van der Waals Heterostructures with Electron Spectroscopies. 2D Mater. 2025;12:012001. doi: 10.1088/2053-1583/ad97c8. DOI
Meyer J. C.. et al. The Structure of Suspended Graphene Sheets. Nature. 2007;446:60–63. doi: 10.1038/nature05545. PubMed DOI
Thomsen J. D.. et al. Suppression of Intrinsic Roughness in Encapsulated Graphene. Phys. Rev. B. 2017;96:014101. doi: 10.1103/PhysRevB.96.014101. DOI
Rooney A. P.. et al. Observing Imperfection in Atomic Interfaces for van der Waals Heterostructures. Nano Lett. 2017;17:5222–5228. doi: 10.1021/acs.nanolett.7b01248. PubMed DOI
Suenaga K.. et al. Core-Level Spectroscopy of Point Defects in Single Layer h-BN. Phys. Rev. Lett. 2012;108:075501. doi: 10.1103/PhysRevLett.108.075501. PubMed DOI
Ramasse Q.. et al. Probing the Bonding and Electronic Structure of Single Atom Dopants in Graphene with Electron Energy Loss Spectroscopy. Nano Lett. 2013;13:4989–4995. doi: 10.1021/nl304187e. PubMed DOI
Zachman M. J.. et al. 4D-STEM: Interferometric 4D-STEM for Lattice Distortion and Interlayer Spacing Measurements of Bilayer and Trilayer 2D Materials. Small. 2021;17:2100388. doi: 10.1002/smll.202170142. PubMed DOI
Linhart L., Paur M., Smejkal V., Burgdörfer J., Mueller T., Libisch F.. Localized Intervalley Defect Excitons as Single-Photon Emitters in WSe2 . Phys. Rev. Lett. 2019;123:146401. doi: 10.1103/PhysRevLett.123.146401. PubMed DOI
Zheng S.. et al. Giant Enhancement of Cathodoluminescence of Monolayer Transitional Metal Dichalcogenides Semiconductors. Nano Lett. 2017;17:6475–6480. doi: 10.1021/acs.nanolett.7b03585. PubMed DOI
Krivanek O.. et al. Vibrational Spectroscopy in the Electron Microscope. Nature. 2014;514:209–212. doi: 10.1038/nature13870. PubMed DOI
Bourrellier R., Meuret S., Tararan A., Stéphan O., Kociak M., Tizei L. H. G., Zobelli A.. Bright UV Single Photon Emission at Point Defects in h-BN. Nano Lett. 2016;16:4317–4321. doi: 10.1021/acs.nanolett.6b01368. PubMed DOI
Susarla S.. et al. Hyperspectral Imaging of Exciton Confinement within a Moiré Unit Cell with a Subnanometer Electron Probe. Science. 2022;378:1235–1239. doi: 10.1126/science.add9294. PubMed DOI
Merano M.. et al. Probing Carrier Dynamics in Nanostructures by Picosecond Cathodoluminescence. Nature. 2005;438:479–482. doi: 10.1038/nature04298. PubMed DOI
Mecklenburg M.. et al. Nanoscale Temperature Mapping in Operating Microelectronic Devices. Science. 2015;347:629–632. doi: 10.1126/science.aaa2433. PubMed DOI
Tizei L. H. G.. et al. Electron Energy Loss Spectroscopy of Excitons in Two-Dimensional-Semiconductors as a Function of Temperature. Appl. Phys. Lett. 2016;108:163107. doi: 10.1063/1.4947058. DOI
Castioni F.. et al. Nanosecond Nanothermometry in an Electron Microscope. Nano Lett. 2025;25:1601–1608. doi: 10.1021/acs.nanolett.4c05692. PubMed DOI
Feist A.. et al. Cavity-Mediated Electron-Photon Pairs. Science. 2022;377:777–780. doi: 10.1126/science.abo5037. PubMed DOI
Varkentina N.. et al. Cathodoluminescence Excitation Spectroscopy: Nanoscale Imaging of Excitation Pathways. Sci. Adv. 2022;8:abq4947. doi: 10.1126/sciadv.abq4947. PubMed DOI PMC
Barwick B., Flannigan D. J., Zewail A. H.. Photon-Induced Near-Field Electron Microscopy. Nature. 2009;462:902–906. doi: 10.1038/nature08662. PubMed DOI
Feist A.. et al. Nanoscale Diffractive Probing of Strain Dynamics in Ultrafast Transmission Electron Microscopy. Struct. Dyn. 2018;5:014302. doi: 10.1063/1.5009822. PubMed DOI PMC
Müller, N. ; et al. Spectrally Resolved Free Electron-Light Coupling Strength in a Transition Metal Dichalcogenide. arXiv 2024, 2405.12017. 10.48550/arXiv.2405.12017 DOI
García de Abajo F. J., Kociak M.. Electron Energy-Gain Spectroscopy. New J. Phys. 2008;10:073035. doi: 10.1088/1367-2630/10/7/073035. PubMed DOI
Lourenço-Martins H.. et al. Optical Polarization Analogue in Free Electron Beams. Nat. Phys. 2021;17:598–603. doi: 10.1038/s41567-021-01163-w. DOI
Garrigou, S. ; Lourenço-Martins, H. . Atomic-Like Selection Rules in Free Electron Scattering. arXiv 2024, 2411.11754. 10.48550/arXiv.2411.11754 PubMed DOI
Auad Y.. et al. Event-Based Hyperspectral EELS: Towards Nanosecond Temporal Resolution. Ultramicroscopy. 2022;239:113539. doi: 10.1016/j.ultramic.2022.113539. PubMed DOI
Velazco A.. et al. Reducing Electron Beam Damage through Alternative STEM Scanning Strategies, Part I: Experimental Findings. Ultramicroscopy. 2022;232:113398. doi: 10.1016/j.ultramic.2021.113398. PubMed DOI
Peters J. J. P.. et al. Event-Responsive Scanning Transmission Electron Microscopy. Science. 2024;385:549–553. doi: 10.1126/science.ado8579. PubMed DOI
Rosi P.. et al. Increasing the Resolution of Transmission Electron Microscopy by Computational Ghost Imaging. Phys. Rev. Lett. 2024;133:123801. doi: 10.1103/PhysRevLett.133.123801. PubMed DOI
Liu X.. et al. Strong Light−Matter Coupling in Two-Dimensional Atomic Crystals. Nat. Photonics. 2015;9:30–34. doi: 10.1038/nphoton.2014.304. DOI
Schneider C.. et al. Two-Dimensional Semiconductors in the Regime of Strong Light-Matter Coupling. Nat. Commun. 2018;9:2695. doi: 10.1038/s41467-018-04866-6. PubMed DOI PMC
Dufferwiel S.. et al. Exciton−Polaritons in van der Waals Heterostructures Embedded in Tunable Microcavities. Nat. Commun. 2015;6:8579. doi: 10.1038/ncomms9579. PubMed DOI PMC
Liu, W. ; Lee, B. ; Naylor, C. H. ; Ee, H.-S. ; Park, J. ; Johnson, A. T. C. ; Agarwal, R. . Strong Exciton−Plasmon Coupling in MoS PubMed DOI
Zhang L.. et al. Photonic-Crystal Exciton-Polaritons in Monolayer Semiconductors. Nat. Commun. 2018;9:713. doi: 10.1038/s41467-018-03188-x. PubMed DOI PMC
Tabataba-Vakili F., Krelle L., Husel L., Nguyen H. P. G., Li Z., Bilgin I., Watanabe K., Taniguchi T., Högele A.. Metasurface of Strongly Coupled Excitons and Nanoplasmonic Arrays. Nano Lett. 2024;24:10090–10097. doi: 10.1021/acs.nanolett.4c02043. PubMed DOI PMC
Chen Y., Miao S., Wang T., Zhong D., Saxena A., Chow C., Whitehead J., Gerace D., Xu X., Shi S. F., Majumdar A.. Metasurface Integrated Monolayer Exciton Polariton. Nano Lett. 2020;20:5292–5300. doi: 10.1021/acs.nanolett.0c01624. PubMed DOI
Canales A.. et al. Abundance of Cavity-Free Polaritonic States in Resonant Materials and Nanostructures. J. Chem. Phys. 2021;154:024701. doi: 10.1063/5.0033352. PubMed DOI
Lundt N.. Valley Polarized Relaxation and Upconversion Luminescence from Tamm-Plasmon Trion−Polaritons with a MoSe2 Monolayer. 2D Mater. 2017;4:025096. doi: 10.1088/2053-1583/aa6ef2. DOI
Sidler M., Back P., Cotlet O., Srivastava A., Fink T., Kroner M., Demler E., Imamoglu A.. Fermi Polaron-Polaritons in Charge-Tunable Atomically Thin Semiconductors. Nat. Phys. 2017;13:255–261. doi: 10.1038/nphys3949. DOI
Cotleţ O.. Transport of Neutral Optical Excitations Using Electric Fields. Phys. Rev. X. 2019;9:041019. doi: 10.1103/PhysRevX.9.041019. DOI
Zhang L., Wu F., Hou S., Zhang Z., Chou Y.-H., Watanabe K., Taniguchi T., Forrest S. R., Deng H.. Van der Waals Heterostructure Polaritons with moiré-Induced Nonlinearity. Nature. 2021;591:61–65. doi: 10.1038/s41586-021-03228-5. PubMed DOI
Han, B. ; et al. Infrared Magneto-Polaritons in MoTe DOI
Leisgang N., Shree S., Paradisanos I., Sponfeldner L., Robert C., Lagarde D., Balocchi A., Watanabe K., Taniguchi T., Marie X., Warburton R., Gerber I., Urbaszek B.. Giant Stark Splitting of an Exciton in Bilayer MoS2 . Nat. Nanotechnol. 2020;15:901–907. doi: 10.1038/s41565-020-0750-1. PubMed DOI
Lorchat E.. et al. Excitons in Bilayer MoS2 Displaying a Colossal Electric Field Splitting and Tunable Magnetic Response. Phys. Rev. Lett. 2021;126(3):037401. doi: 10.1103/PhysRevLett.126.037401. PubMed DOI
Datta B.. et al. Highly Nonlinear Dipolar Exciton-Polaritons in Bilayer MoS2 . Nat. Commun. 2022;13:6341. doi: 10.1038/s41467-022-33940-3. PubMed DOI PMC
Kang S.. et al. Coherent Many-Body Exciton in van der Waals Antiferromagnet NiPS3 . Nature. 2020;583:785–789. doi: 10.1038/s41586-020-2520-5. PubMed DOI
Dirnberger F.. et al. Spin-Correlated Exciton−Polaritons in a van der Waals Magnet. Nat. Nanotechnol. 2022;17:1060–1064. doi: 10.1038/s41565-022-01204-2. PubMed DOI
Telford E. J.. et al. Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the van der Waals Semiconductor CrSBr. Adv. Mater. 2020;32:2003240. doi: 10.1002/adma.202003240. PubMed DOI
Wilson N. P.. et al. Interlayer Electronic Coupling on Demand in a 2D Magnetic Semiconductor. Nat. Mater. 2021;20:1657–1662. doi: 10.1038/s41563-021-01070-8. PubMed DOI
Dirnberger F., Quan J., Bushati R., Diederich G. M., Florian M., Klein J., Mosina K., Sofer Z., Xu X., Kamra A., García-Vidal F. J., Alù A., Menon V. M.. Magneto-Optics in a van der Waals Magnet Tuned by Self-Hybridized Polaritons. Nature. 2023;620:533–537. doi: 10.1038/s41586-023-06275-2. PubMed DOI
Bae Y. J., Wang J., Scheie A., Xu J., Chica D. G., Diederich G. M., Cenker J., Ziebel M. E., Bai Y., Ren H., Dean C. R., Delor M., Xu X., Roy X., Kent A. D., Zhu X.. Exciton-Coupled Coherent Magnons in a 2D Semiconductor. Nature. 2022;609:282–286. doi: 10.1038/s41586-022-05024-1. PubMed DOI
Luo Y.. et al. Electrically Switchable Anisotropic Polariton Propagation in a Ferroelectric van der Waals Semiconductor. Nat. Nanotechnol. 2023;18:350–356. doi: 10.1038/s41565-022-01312-z. PubMed DOI
Deb S.. et al. Excitonic Signatures of Ferroelectric Order in Parallel-Stacked MoS2 . Nat. Commun. 2024;15:7595. doi: 10.1038/s41467-024-52011-3. PubMed DOI PMC
Syperek M.. et al. Observation of Room Temperature Excitons in an Atomically Thin Topological Insulator. Nat. Commun. 2022;13:6313. doi: 10.1038/s41467-022-33822-8. PubMed DOI PMC
Kyriienko O., Krizhanovskii D. N., Shelykh I. A.. Nonlinear Quantum Optics with Trion Polaritons in 2D Monolayers: Conventional and Unconventional Photon Blockade. Phys. Rev. Lett. 2020;125:197402. doi: 10.1103/PhysRevLett.125.197402. PubMed DOI
Gu J.. et al. Enhanced Nonlinear Interaction of Polaritons Via Excitonic Rydberg States in Monolayer WSe2 . Nat. Commun. 2021;12:2269. doi: 10.1038/s41467-021-22537-x. PubMed DOI PMC
Emmanuele R. P. A.. et al. Highly Nonlinear Trion-Polaritons in a Monolayer Semiconductor. Nat. Commun. 2020;11:3589. doi: 10.1038/s41467-020-17340-z. PubMed DOI PMC
Kavokin A.. et al. Polariton Condensates for Classical and Quantum Computing. Nat. Rev. Phys. 2022;4:435–451. doi: 10.1038/s42254-022-00447-1. DOI
Anton-Solanas C.. et al. Bosonic Condensation of Exciton−Polaritons in an Atomically Thin Crystal. Nat. Mater. 2021;20:1233–1239. doi: 10.1038/s41563-021-01000-8. PubMed DOI
JZhao J., Su R., Fieramosca A., Zhao W., Du Q., Liu X., Diederichs C., Sanvitto D., Liew T. C., Xiong Q.. Ultralow Threshold Polariton Condensate in a Monolayer Semiconductor Microcavity at Room Temperature. Nano Lett. 2021;21:3331–3339. doi: 10.1021/acs.nanolett.1c01162. PubMed DOI
Wurdack M., Estrecho E., Todd S., Schneider C., Truscott A., Ostrovskaya E.. Enhancing Ground-State Population and Macroscopic Coherence of Room-Temperature Polaritons through Engineered Confinement. Phys. Rev. Lett. 2022;129:147402. doi: 10.1103/PhysRevLett.129.147402. PubMed DOI
Dufferwiel S.. et al. Valley-Addressable Polaritons in Atomically Thin Semiconductors. Nat. Photonics. 2017;11:497–501. doi: 10.1038/nphoton.2017.125. DOI
Lundt N.. et al. Optical Valley Hall Effect for Highly Valley-Coherent Exciton-Polaritons in an Atomically Thin Semiconductor. Nat. Nanotechnol. 2019;14:770–775. doi: 10.1038/s41565-019-0492-0. PubMed DOI
Liu W.. et al. Generation of Helical Topological Exciton-Polaritons. Science. 2020;370:600–604. doi: 10.1126/science.abc4975. PubMed DOI
Li Q.. et al. Magnetic exciton-polariton with strongly coupled atomic and photonic anisotropies. Phys. Rev. Lett. 2024;133:266901. doi: 10.1103/PhysRevLett.133.266901. PubMed DOI
Li Q.. et al. Macroscopic Transition Metal Dichalcogenides Monolayers with Uniformly High Optical Quality. Nat. Commun. 2023;14:1837. doi: 10.1038/s41467-023-37500-1. PubMed DOI PMC
Cotleţ O.. et al. Superconductivity and Other Collective Phenomena in a Hybrid Bose-Fermi Mixture Formed by a Polariton Condensate and an Electron System in Two Dimensions. Phys. Rev. B. 2016;93:054510. doi: 10.1103/PhysRevB.93.054510. DOI
Hassan K.. et al. Functional Inks and Extrusion-Based 3D Printing of 2D Materials: A Review of Current Research and Applications. Nanoscale. 2020;12:19007–19042. doi: 10.1039/D0NR04933F. PubMed DOI
Wang G., Chernikov A., Glazov M. M., Heinz T. F., Marie X., Amand T., Urbaszek B.. Colloquium: Excitons in Atomically Thin Transition Metal Dichalcogenides. Rev. Mod. Phys. 2018;90:021001. doi: 10.1103/RevModPhys.90.021001. DOI
Mak K., He K., Lee C., Lee G., Hone J., Heinz T., Shan J.. Tightly Bound Trions in Monolayer MoS2 . Nat. Mater. 2013;12:207–211. doi: 10.1038/nmat3505. PubMed DOI
Berkelbach T., Hybertsen M., Reichman D.. Theory of Neutral and Charged Excitons in Monolayer Transition Metal Dichalcogenides. Phys. Rev. B. 2013;88:045318. doi: 10.1103/PhysRevB.88.045318. DOI
Glazov M.. Optical Properties of Charged Excitons in Two-Dimensional Semiconductors. J. Chem. Phys. 2020;153:034703. doi: 10.1063/5.0012475. PubMed DOI
Deilmann T., Rohlfing M., Thygesen K.. Optical Excitations in 2D Semiconductors. Electronic Struct. 2023;5:033002. doi: 10.1088/2516-1075/ace86c. DOI
Christiansen D., Selig M., Berghäuser G., Schmidt R., Niehues I., Schneider R., Arora A., de Vasconcellos S., Bratschitsch R., Malic E., Knorr A.. Phonon Sidebands in Monolayer Transition Metal Dichalcogenides. Phys. Rev. Lett. 2017;119:187402. doi: 10.1103/PhysRevLett.119.187402. PubMed DOI
Splendiani A., Sun L., Zhang Y., Li T., Kim J., Chim C., Galli G., Wang F.. Emerging Photoluminescence in Monolayer MoS2 . Nano Lett. 2010;10:1271–1275. doi: 10.1021/nl903868w. PubMed DOI
Mak K., Lee C., Hone J., Shan J., Heinz T.. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010;105:136805. doi: 10.1103/PhysRevLett.105.136805. PubMed DOI
Rytova N. S.. Screened Potential of a Point Charge in a Thin Film. Proc. MSU Phys. Astron. 1967;3:30.
Trolle M., Pedersen T., Véniard V.. Model Dielectric Function for 2D Semiconductors Including Substrate Screening. Sci. Rep. 2017;7:39844. doi: 10.1038/srep39844. PubMed DOI PMC
Drüppel M., Deilmann T., Krüger P., Rohlfing M.. Diversity of Trion States and Substrate Effects in the Optical Properties of an MoS2 Monolayer. Nat. Commun. 2017;8:2117. doi: 10.1038/s41467-017-02286-6. PubMed DOI PMC
Riis-Jensen A., Gjerding M., Russo S., Thygesen K.. Anomalous Exciton Rydberg Series in Two-Dimensional Semiconductors on High-κ Dielectric Substrates. Phys. Rev. B. 2020;102:201402. doi: 10.1103/PhysRevB.102.201402. DOI
Xu X., Yao W., Xiao D., Heinz T.. Spin and Pseudospins in Layered Transition Metal Dichalcogenides. Nat. Phys. 2014;10:343–350. doi: 10.1038/nphys2942. DOI
Goryca M., Li J., Stier A., Taniguchi T., Watanabe K., Courtade E., Shree S., Robert C., Urbaszek B., Marie X., Crooker S.. Revealing Exciton Masses and Dielectric Properties of Monolayer Semiconductors with High Magnetic Fields. Nat. Commun. 2019;10:4172. doi: 10.1038/s41467-019-12180-y. PubMed DOI PMC
Echeverry J., Urbaszek B., Amand T., Marie X., Gerber I.. Splitting between Bright and Dark Dxcitons in Transition Metal Dichalcogenide Monolayers. Phys. Rev. B. 2016;93:121107. doi: 10.1103/PhysRevB.93.121107. DOI
Deilmann T., Thygesen K.. Dark Excitations in Monolayer Transition Metal Dichalcogenides. Phys. Rev. B. 2017;96:201113. doi: 10.1103/PhysRevB.96.201113. DOI
Barré E., Karni O., Liu E., O’Beirne A., Chen X., Ribeiro H., Yu L., Kim B., Watanabe K., Taniguchi T., Barmak K., Lui C., Refaely-Abramson S., da Jornada F., Heinz T.. Optical Absorption of Interlayer Excitons in Transition-Metal Dichalcogenide Heterostructures. Science. 2022;376:406–410. doi: 10.1126/science.abm8511. PubMed DOI
Wietek E., Florian M., Göser J., Taniguchi T., Watanabe K., Högele A., Glazov M., Steinhoff A., Chernikov A.. Nonlinear and Negative Effective Diffusivity of Interlayer Excitons in Moiré-Free Heterobilayers. Phys. Rev. Lett. 2024;132:016202. doi: 10.1103/PhysRevLett.132.016202. PubMed DOI
Peimyoo N., Deilmann T., Withers F., Escolar J., Nutting D., Taniguchi T., Watanabe K., Taghizadeh A., Craciun M., Thygesen K., Russo S.. Electrical Tuning of Optically Active Interlayer Excitons in Bilayer MoS2 . Nat. Nanotechnol. 2021;16:888–893. doi: 10.1038/s41565-021-00916-1. PubMed DOI
Jauregui L. A., Joe A. Y., Pistunova K., Wild D. S., High A. A., Zhou Y., Scuri G., de Greve K., Sushko A., Yu C. H., Taniguchi T., Watanabe K., Needleman D. J., Lukin M. D., Park H., Kim P.. Electrical Control of Interlayer Exciton Dynamics in Atomically Thin Heterostructures. Science. 2019;366:870–875. doi: 10.1126/science.aaw4194. PubMed DOI
Calman E., Fowler-Gerace L., Choksy D., Butov L., Nikonov D., Young I., Hu S., Mishchenko A., Geim A.. Indirect Excitons and Trions in MoSe2/WSe2 van der Waals Heterostructures. Nano Lett. 2020;20:1869–1875. doi: 10.1021/acs.nanolett.9b05086. PubMed DOI
Deilmann T., Sommer Thygesen K.. Quadrupolar and Dipolar Excitons in Symmetric Trilayer Heterostructures: Insights from First Principles Theory. 2D Mater. 2024;11:035032. doi: 10.1088/2053-1583/ad5739. DOI
Zhao S., Li Z., Huang X., Rupp A., Göser J., Vovk I., Kruchinin S., Watanabe K., Taniguchi T., Bilgin I., Baimuratov A., Högele A.. Excitons in Mesoscopically Reconstructed Moiré Heterostructures. Nat. Nanotechnol. 2023;18:572–579. doi: 10.1038/s41565-023-01356-9. PubMed DOI PMC
Liu E., Barré E., van Baren J., Wilson M., Taniguchi T., Watanabe K., Cui Y., Gabor N., Heinz T., Chang Y., Lui C.. Signatures of Moiré Trions in WSe2/MoSe2 Heterobilayers. Nature. 2021;594:46–50. doi: 10.1038/s41586-021-03541-z. PubMed DOI
Wu F., Lovorn T., MacDonald A.. Topological Exciton Bands in Moiré Heterojunctions. Phys. Rev. Lett. 2017;118:147401. doi: 10.1103/PhysRevLett.118.147401. PubMed DOI
Smoleński T., Dolgirev P. E., Kuhlenkamp C., Popert A., Shimazaki Y., Back P., Lu X., Kroner M., Watanabe K., Taniguchi T., Esterlis I., Demler E., Imamoǧlu A.. Signatures of Wigner Crystal of Electrons in a Monolayer Semiconductor. Nature. 2021;595:53–57. doi: 10.1038/s41586-021-03590-4. PubMed DOI
Xu Y., Liu S., Rhodes D. A., Watanabe K., Taniguchi T., Hone J., Elser V., Mak K. F., Shan J.. Correlated Insulating States at Fractional Fillings of Moiré Superlattices. Nature. 2020;587:214–218. doi: 10.1038/s41586-020-2868-6. PubMed DOI
Xie T., Xu S., Dong Z., Cui Z., Ou Y., Erdi M., Watanabe K., Taniguchi T., Tongay S., Levitov L., Jin C.. Long-Lived Isospin Excitations in Magic-Angle Twisted Bilayer Graphene. Nature. 2024;633:77–82. doi: 10.1038/s41586-024-07880-5. PubMed DOI
Chen-Esterlit Z., Lifshitz E., Cohen E., Pfeiffer L.. Microwave Modulation of Circularly Polarized Exciton Photonluminescence in GaAs/AlAs Multiple Quantum Wells. Phys. Rev. B. 1996;53:10921–10927. doi: 10.1103/PhysRevB.53.10921. PubMed DOI
Rice W., Kono J., Zybell S., Winnerl S., Bhattacharyya J., Schneider H., Helm M., Ewers B., Chernikov A., Koch M., Chatterjee S., Khitrova G., Gibbs H., Schneebeli L., Breddermann B., Kira M., Koch S.. Observation of Forbidden Exciton Transitions Mediated by Coulomb Interactions in Photoexcited Semiconductor Quantum Wells. Phys. Rev. Lett. 2013;110:137404. doi: 10.1103/PhysRevLett.110.137404. PubMed DOI
Venanzi T., Cuccu M., Perea-Causin R., Sun X., Brem S., Erkensten D., Taniguchi T., Watanabe K., Malic E., Helm M., Winnerl S., Chernikov A.. Ultrafast Switching of Trions in 2D Materials by Terahertz Photons. Nat. Photonics. 2024;18:1344–1349. doi: 10.1038/s41566-024-01512-0. DOI
Zhang T., Fujisawa K., Zhang F., Liu M., Lucking M. C., Gontijo R. N., Lei Y., Liu H., Crust K., Granzier-Nakajima T., Terrones H., Elías A. L., Terrones M.. Universal In Situ Substitutional Doping of Transition Metal Dichalcogenides by Liquid-Phase Precursor-Assisted Synthesis. ACS Nano. 2020;14:4326–4335. doi: 10.1021/acsnano.9b09857. PubMed DOI
Lv R., Robinson J. A., Schaak R. E., Sun D., Sun Y., Mallouk T. E., Terrones M.. Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets. Acc. Chem. Res. 2015;48:56–64. doi: 10.1021/ar5002846. PubMed DOI
Coleman J. N., Lotya M., O’Neill A., Bergin S. D., King P. J., Khan U., Young K., Gaucher A., De S., Smith R. J., Shvets I. V., Arora S. K., Stanton G., Kim H.-Y., Lee K., Kim G. T., Duesberg G. S., Hallam T., Boland J. J., Wang J. J., Donegan J. F., Grunlan J. C., Moriarty G., Shmeliov A., Nicholls R. J., Perkins J. M., Grieveson E. M., Theuwissen K., McComb D. W., Nellist P. D., Nicolosi V.. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science. 2011;331:568–571. doi: 10.1126/science.1194975. PubMed DOI
Kang J., Sangwan V. K., Wood J. D., Hersam M. C.. Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials. Acc. Chem. Res. 2017;50:943–951. doi: 10.1021/acs.accounts.6b00643. PubMed DOI
Rajapakse M., Karki B., Abu U. O., Pishgar S., Musa M. R. K., Riyadh S. M. S., Yu M., Sumanasekera G., Jasinski J. B.. Intercalation as a Versatile Tool for Fabrication, Property Tuning, and Phase Transitions in 2D Materials. npj 2D Mater. Appl. 2021;5:30. doi: 10.1038/s41699-021-00211-6. DOI
Zhao M., Casiraghi C., Parvez K.. Electrochemical Exfoliation of 2D Materials Beyond Graphene. Chem. Soc. Rev. 2024;53:3036–3064. doi: 10.1039/D3CS00815K. PubMed DOI
Dresselhaus M. S., Dresselhaus G.. Intercalation Compounds of Graphite. Adv. Phys. 2002;51:1–186. doi: 10.1080/00018730110113644. DOI
Lin Z., Liu Y., Halim U., Ding M., Liu Y., Wang Y., Jia C., Chen P., Duan X., Wang C., Song F., Li M., Wan C., Huang Y., Duan X.. Solution-Processable 2D Semiconductors for High-Performance Large-Area Electronics. Nature. 2018;562:254–258. doi: 10.1038/s41586-018-0574-4. PubMed DOI
Wang C., He Q., Halim U., Liu Y., Zhu E., Lin Z., Xiao H., Duan X., Feng Z., Cheng R., Weiss N. O., Ye G., Huang Y.-C., Wu H., Cheng H.-C., Shakir I., Liao L., Chen X., Goddard W. A. Iii, Huang Y., Duan X.. Monolayer Atomic Crystal Molecular Superlattices. Nature. 2018;555:231–236. doi: 10.1038/nature25774. PubMed DOI
Pereira J. M., Tezze D., Ormaza M., Hueso L. E., Gobbi M.. Engineering Magnetism and Superconductivity in van der Waals Materials via Organic-Ion Intercalation. Adv. Phys. Res. 2023;2:2200084. doi: 10.1002/apxr.202200084. DOI
Zhu H., Gan X., McCreary A., Lv R., Lin Z., Terrones M.. Heteroatom Doping of Two-Dimensional Materials: From Graphene to Chalcogenides. Nano Today. 2020;30:100829. doi: 10.1016/j.nantod.2019.100829. DOI
Liu X., Hersam M. C.. Interface Characterization and Control of 2D Materials and Heterostructures. Adv. Mater. 2018;30:1801586. doi: 10.1002/adma.201801586. PubMed DOI
Ghafariasl M., Zhang T., Ward Z. D., Zhou D., Sanchez D., Swaminathan V., Terrones H., Terrones M., Abate Y.. Sulfur Vacancy Related Optical Transitions in Graded Alloys of MoxW1-xS2 Monolayers. Adv. Opt. Mater. 2024;12:2302326. doi: 10.1002/adom.202302326. DOI
Park K.-D., Khatib O., Kravtsov V., Clark G., Xu X., Raschke M. B.. Hybrid Tip-Enhanced Nanospectroscopy and Nanoimaging of Monolayer WSe2 with Local Strain Control. Nano Lett. 2016;16:2621–2627. doi: 10.1021/acs.nanolett.6b00238. PubMed DOI
He Z., Han Z., Yuan J., Sinyukov A. M., Eleuch H., Niu C., Zhang Z., Lou J., Hu J., Voronine D. V., Scully M. O.. Quantum Plasmonic Control of Trions in a Picocavity with Monolayer WS2 . Sci. Adv. 2019;5:eaau8763. doi: 10.1126/sciadv.aau8763. PubMed DOI PMC
Dolui K., Rungger I., Das Pemmaraju C., Sanvito S.. Possible Doping Strategies for MoS2 Monolayers: An ab initio Study. Phys. Rev. B. 2013;88:075420. doi: 10.1103/PhysRevB.88.075420. DOI
Karthikeyan J., Komsa H.-P., Batzill M., Krasheninnikov A. V.. Which Transition Metal Atoms Can Be Embedded into Two-Dimensional Molybdenum Dichalcogenides and Add Magnetism? Nano Lett. 2019;19:4581–4587. doi: 10.1021/acs.nanolett.9b01555. PubMed DOI
Zhang R., Waters J., Geim A. K., Grigorieva I. V.. Intercalant-Independent Transition Temperature in Superconducting Black Phosphorus. Nat. Commun. 2017;8:15036. doi: 10.1038/ncomms15036. PubMed DOI PMC
Yu Y., Yang F., Lu X. F., Yan Y. J., Cho Y. H., Ma L., Niu X., Kim S., Son Y. W., Feng D., Li S., Cheong S. W., Chen X. H., Zhang Y.. Gate-Tunable Phase Transitions in Thin Flakes of 1T-TaS2 . Nat. Nanotechnol. 2015;10:270–276. doi: 10.1038/nnano.2014.323. PubMed DOI
Wang M., Koski K. J.. Reversible Chemochromic MoO3 Nanoribbons through Zerovalent Metal Intercalation. ACS Nano. 2015;9:3226–3233. doi: 10.1021/acsnano.5b00336. PubMed DOI
Utama M. I. B., Zeng H., Sadhukhan T., Dasgupta A., Gavin S. C., Ananth R., Lebedev D., Wang W., Chen J.-S., Watanabe K., Taniguchi T., Marks T. J., Ma X., Weiss E. A., Schatz G. C., Stern N. P., Hersam M. C.. Chemomechanical Modification of Quantum Emission in Monolayer WSe2 . Nat. Commun. 2023;14:2193. doi: 10.1038/s41467-023-37892-0. PubMed DOI PMC
Singh A. K., Kumbhakar P., Krishnamoorthy A., Nakano A., Sadasivuni K. K., Vashishta P., Roy A. K., Kochat V., Tiwary C. S.. Review of Strategies Toward the Development of Alloy Two-Dimensional (2D) Transition Metal Dichalcogenides. iScience. 2021;24:103532. doi: 10.1016/j.isci.2021.103532. PubMed DOI PMC
Lien D.-H., Uddin S. Z., Yeh M., Amani M., Kim H., Ager J. W., Yablonovitch E., Javey A.. Electrical Suppression of All Nonradiative Recombination Pathways in Monolayer Semiconductors. Science. 2019;364:468–471. doi: 10.1126/science.aaw8053. PubMed DOI
Ansari S., Bianconi S., Kang C.-M., Mohseni H.. From Material to Cameras: Low-Dimensional Photodetector Arrays on CMOS. Small Meth. 2024;8:2300595. doi: 10.1002/smtd.202300595. PubMed DOI
Yang P., Zou X., Zhang Z., Hong M., Shi J., Chen S., Shu J., Zhao L., Jiang S., Zhou X., Huan Y., Xie C., Gao P., Chen Q., Zhang Q., Liu Z., Zhang Y.. Batch Production of 6-Inch Uniform Monolayer Molybdenum Disulfide Catalyzed by Sodium in Glass. Nat. Commun. 2018;9:979. doi: 10.1038/s41467-018-03388-5. PubMed DOI PMC
Lin Z., Carvalho B. R., Kahn E., Lv R., Rao R., Terrones H., Pimenta M. A., Terrones M.. Defect Engineering of Two-Dimensional Transition Metal Dichalcogenides. 2D Mater. 2016;3:022002. doi: 10.1088/2053-1583/3/2/022002. DOI
Kim I. S., Sangwan V. K., Jariwala D., Wood J. D., Park S., Chen K.-S., Shi F., Ruiz-Zepeda F., Ponce A., Jose-Yacaman M., Dravid V. P., Marks T. J., Hersam M. C., Lauhon L. J.. Influence of Stoichiometry on the Optical and Electrical Properties of Chemical Vapor Deposition Derived MoS2 . ACS Nano. 2014;8:10551–10558. doi: 10.1021/nn503988x. PubMed DOI PMC
Zhang T., Liu M., Fujisawa K., Lucking M., Beach K., Zhang F., Shanmugasundaram M., Krayev A., Murray W., Lei Y., Yu Z., Sanchez D., Liu Z., Terrones H., Elías A. L., Terrones M.. Spatial Control of Substitutional Dopants in Hexagonal Monolayer WS2: The Effect of Edge Termination. Small. 2023;19:2205800. doi: 10.1002/smll.202205800. PubMed DOI
Fujisawa K., Carvalho B. R., Zhang T., Perea-López N., Lin Z., Carozo V., Ramos S. L. L. M., Kahn E., Bolotsky A., Liu H., Elías A. L., Terrones M.. Quantification and Healing of Defects in Atomically Thin Molybdenum Disulfide: Beyond the Controlled Creation of Atomic Defects. ACS Nano. 2021;15:9658–9669. doi: 10.1021/acsnano.0c10897. PubMed DOI
Sangwan V. K., Hersam M. C.. Electronic Transport in Two-Dimensional Materials. Annu. Rev. Phys. Chem. 2018;69:299–325. doi: 10.1146/annurev-physchem-050317-021353. PubMed DOI
Liu X., Balla I., Bergeron H., Campbell G. P., Bedzyk M. J., Hersam M. C.. Rotationally Commensurate Growth of MoS2 on Epitaxial Graphene. ACS Nano. 2016;10:1067–1075. doi: 10.1021/acsnano.5b06398. PubMed DOI
Lam D., Lebedev D., Hersam M. C.. Morphotaxy of Layered van der Waals Materials. ACS Nano. 2022;16:7144–7167. doi: 10.1021/acsnano.2c00243. PubMed DOI
Pham Y. T. H., Liu M., Jimenez V. O., Yu Z., Kalappattil V., Zhang F., Wang K., Williams T., Terrones M., Phan M.-H.. Tunable Ferromagnetism and Thermally Induced Spin Flip in Vanadium-Doped Tungsten Diselenide Monolayers at Room Temperature. Adv. Mater. 2020;32:2003607. doi: 10.1002/adma.202003607. PubMed DOI
Ajayi T. M., Shirato N., Rojas T., Wieghold S., Cheng X., Latt K. Z., Trainer D. J., Dandu N. K., Li Y., Premarathna S., Sarkar S., Rosenmann D., Liu Y., Kyritsakas N., Wang S., Masson E., Rose V., Li X., Ngo A. T., Hla S.-W.. Characterization of Just One Atom using Synchrotron X-Rays. Nature. 2023;618:69–73. doi: 10.1038/s41586-023-06011-w. PubMed DOI
Qian Q., Ren H., Zhou J., Wan Z., Zhou J., Yan X., Cai J., Wang P., Li B., Sofer Z., Li B., Duan X., Pan X., Huang Y., Duan X.. Chiral Molecular Intercalation Superlattices. Nature. 2022;606:902–908. doi: 10.1038/s41586-022-04846-3. PubMed DOI
Gish J. T., Lebedev D., Song T. W., Sangwan V. K., Hersam M. C.. Van der Waals Opto-Spintronics. Nat. Elect. 2024;7:336–347. doi: 10.1038/s41928-024-01167-3. DOI
Kelly A. G., O’Suilleabhain D., Gabbett C., Coleman J. N.. The Electrical Conductivity of Solution-Processed Nanosheet Networks. Nat. Rev. Mater. 2022;7:217–234. doi: 10.1038/s41578-021-00386-w. DOI
Zhu J., Li F., Hou Y., Li H., Xu D., Tan J., Du J., Wang S., Liu Z., Wu H., Wang F., Su Y., Cheng H.-M.. Near-Room-Temperature Water-Mediated Densification of Bulk van der Waals Materials from Their Nanosheets. Nat. Mater. 2024;23:604–611. doi: 10.1038/s41563-024-01840-0. PubMed DOI
Pecunia V.. et al. Roadmap on Printable Electronic Materials for Next-Generation Sensors. Nano Futures. 2024;8:032001. doi: 10.1088/2399-1984/ad36ff. DOI
Rangnekar S. V., Sangwan V. K., Jin M., Khalaj M., Szydłowska B. M., Dasgupta A., Kuo L., Kurtz H. E., Marks T. J., Hersam M. C.. Electroluminescence from Megasonically Solution-Processed MoS2 Nanosheet Films. ACS Nano. 2023;17:17516–17526. doi: 10.1021/acsnano.3c06034. PubMed DOI
Li T., Guo W., Ma L., Li W., Yu Z., Han Z., Gao S., Liu L., Fan D., Wang Z., Yang Y., Lin W., Luo Z., Chen X., Dai N., Tu X., Pan D., Yao Y., Wang P., Nie Y., Wang J., Shi Y., Wang X.. Epitaxial Growth of Wafer-Scale Molybdenum Disulfide Semiconductor Single Crystals on Sapphire. Nat. Nanotechnol. 2021;16:1201–1207. doi: 10.1038/s41565-021-00963-8. PubMed DOI
Liu Y., Weiss N. O., Duan X., Cheng H.-C., Huang Y., Duan X.. Van der Waals Heterostructures and Devices. Nat. Rev. Mater. 2016;1:1–17. doi: 10.1038/natrevmats.2016.42. DOI
Scuri G., Zhou Y., High A. A., Wild D. S., Shu C., De Greve K., Jauregui L. A., Taniguchi T., Watanabe K., Kim P., Lukin M. D., Park H.. Large Excitonic Reflectivity of Monolayer MoSe2 Encapsulated in Hexagonal Boron Nitride. Phys. Phys. Lett. 2018;120:037402. doi: 10.1103/PhysRevLett.120.037402. PubMed DOI
Back P., Zeytinoglu S., Ijaz A., Kroner M., Imamoglu A.. Realization of an Electrically Tunable Narrow-Bandwidth Atomically Thin Mirror Using Monolayer MoSe2 . Phys. Phys. Lett. 2018;120:037401. doi: 10.1103/PhysRevLett.120.037401. PubMed DOI
Wang S., Li S., Chervy T., Shalabney A., Azzini S., Orgiu E., Hutchison J. A., Genet C., Samorì P., Ebbesen T. W.. Coherent Coupling of WS2 Monolayers with Metallic Photonic Nanostructures at Room Temperature. Nano Lett. 2016;16:4368–4374. doi: 10.1021/acs.nanolett.6b01475. PubMed DOI
Wei G., Czaplewski D. A., Lenferink E. J., Stanev T. K., Jung I. W., Stern N. P.. Size-Tunable Lateral Confinement in Monolayer Semiconductors. Sci. Rep. 2017;7:3324. doi: 10.1038/s41598-017-03594-z. PubMed DOI PMC
Klein J., Lorke M., Florian M., Sigger F., Sigl L., Rey S., Wierzbowski J., Cerne J., Müller K., Mitterreiter E., Zimmermann P., Taniguchi T., Watanabe K., Wurstbauer U., Kaniber M., Knap M., Schmidt R., Finley J. J., Holleitner A. W.. Site-Selectively Generated Photon Emitters in Monolayer MoS2 via Local Helium Ion Irradiation. Nat. Commun. 2019;10:2755. doi: 10.1038/s41467-019-10632-z. PubMed DOI PMC
Zhang L., Zhang Z., Wu F., Wang D., Gogna R., Hou S., Watanabe K., Taniguchi T., Kulkarni K., Kuo T., Forrest S. R., Deng H.. Twist-Angle Dependence of Moiré Excitons in WS2/MoSe2 Heterobilayers. Nat. Commun. 2020;11:5888. doi: 10.1038/s41467-020-19466-6. PubMed DOI PMC
Palacios-Berraquero C., Kara D. M., Montblanch A. R.-P., Barbone M., Latawiec P., Yoon D., Ott A. K., Loncar M., Ferrari A. C., Atatüre M.. Large-Scale Quantum-Emitter Arrays in Atomically Thin Semiconductors. Nat. Commun. 2017;8:15093. doi: 10.1038/ncomms15093. PubMed DOI PMC
Lenferink E. J., LaMountain T., Stanev T. K., Garvey E., Watanabe K., Taniguchi T., Stern N. P.. Tunable Emission from Localized Excitons Deterministically Positioned in Monolayer p−n Junctions. ACS Photonics. 2022;9:3067–3074. doi: 10.1021/acsphotonics.2c00811. DOI
Thureja D., Imamoglu A., Smoleński T., Amelio I., Popert A., Chervy T., Lu X., Liu S., Barmak K., Watanabe K., Taniguchi T., Norris D. J., Kroner M., Murthy P. A.. Electrically Tunable Quantum Confinement of Neutral Excitons. Nature. 2022;606:298–304. doi: 10.1038/s41586-022-04634-z. PubMed DOI
Hu J., Lorchat E., Chen X., Watanabe K., Taniguchi T., Heinz T. F., Murthy P. A., Chervy T.. Quantum Control of Exciton Wave Functions in 2D Semiconductors. Sci. Adv. 2024;10:eadk6369. doi: 10.1126/sciadv.adk6369. PubMed DOI PMC
Thureja D., Yazici F. E., Smolenski T., Kroner M., Norris D. J., Imamoglu A.. Electrically defined quantum dots for bosonic excitons. Phys. Rev. B. 2024;110:245425. doi: 10.1103/PhysRevB.110.245425. DOI
Branny A., Kumar S., Proux R., Gerardot B. D.. Deterministic Strain-Induced Arrays of Quantum Emitters in a Two-Dimensional Semiconductor. Nat. Commun. 2017;8:15053. doi: 10.1038/ncomms15053. PubMed DOI PMC
Rosenberger M. R., Dass C. K., Chuang H.-J., Sivaram S. V., McCreary K. M., Hendrickson J. R., Jonker B.. T Quantum Calligraphy: Writing Single-Photon Emitters in a Two-Dimensional Materials Platform. ACS Nano. 2019;13:904–912. doi: 10.1021/acsnano.8b08730. PubMed DOI
Yu L., Deng M., Zhang J. L., Borghardt S., Kardynal B., Vučković J., Heinz T. F.. Site-Controlled Quantum Emitters in Monolayer MoSe2 . Nano Lett. 2021;21:2376–2381. doi: 10.1021/acs.nanolett.0c04282. PubMed DOI
So J.-P., Kim H.-R., Baek H., Jeong K.-Y., Lee H.-C., Huh W., Kim Y. S., Watanabe K., Taniguchi T., Kim J., Lee C.-H., Park H.-G.. Electrically Driven Strain-Induced Deterministic Single-Photon Emitters in a van der Waals Heterostructure. Sci. Adv. 2021;7:eabj3176. doi: 10.1126/sciadv.abj3176. PubMed DOI PMC
Abramov A. N., Chestnov I. Y., Alimova E. S., Ivanova T., Mukhin I. S., Krizhanovskii D. N., Shelykh I. A., Iorsh I. V., Kravtsov V.. Photoluminescence Imaging of Single Photon Emitters within Nanoscale Strain Profiles in Monolayer WSe2 . Nat. Commun. 2023;14:5737. doi: 10.1038/s41467-023-41292-9. PubMed DOI PMC
Luo Y., Shepard G. D., Ardelean J. V., Rhodes D. A., Kim B., Barmak K., Hone J. C., Strauf S.. Deterministic Coupling of Site-Controlled Quantum Emitters in Monolayer WSe2 to Plasmonic Nanocavities. Nat. Nanotechnol. 2018;13:1137–1142. doi: 10.1038/s41565-018-0275-z. PubMed DOI
Sortino L., Zotev P. G., Phillips C. L., Brash A. J., Cambiasso J., Marensi E., Fox A. M., Maier S. A., Sapienza R., Tartakovskii A. I.. Bright Single Photon Emitters with Enhanced Quantum Efficiency in a Two-Dimensional Semiconductor Coupled with Dielectric Nano-Antennas. Nat. Commun. 2021;12:6063. doi: 10.1038/s41467-021-26262-3. PubMed DOI PMC
Li W., Lu X., Dubey S., Devenica L., Srivastava A.. Dipolar Interactions between Localized Interlayer Excitons in van der Waals Heterostructures. Nat. Mater. 2020;19:624–629. doi: 10.1038/s41563-020-0661-4. PubMed DOI
Zhao H., Zhu L., Li X., Chandrasekaran V., Baldwin J. K., Pettes M. T., Piryatinski A., Yang L., Htoon H.. Manipulating Interlayer Excitons for Near-Infrared Quantum Light Generation. Nano Lett. 2023;23:11006–11012. doi: 10.1021/acs.nanolett.3c03296. PubMed DOI
Unuchek D., Ciarrocchi A., Avsar A., Watanabe K., Taniguchi T., Kis A.. Room-Temperature Electrical Control of Exciton Flux in a van der Waals Heterostructure. Nature. 2018;560:340–344. doi: 10.1038/s41586-018-0357-y. PubMed DOI
Hotta T., Nakajima H., Chiashi S., Inoue T., Maruyama S., Watanabe K., Taniguchi T., Kitaura R.. Trion Confinement in Monolayer MoSe2 by Carbon Nanotube Local Gating. Appl. Phys. Express. 2023;16:015001. doi: 10.35848/1882-0786/aca642. DOI
Moon, H. ; Mennel, L. ; Chakraborty, C. ; Peng, C. ; Almutlaq, J. ; Taniguchi, T. ; Watanabe, K. ; Englund, D. . Nanoscale Confinement and Control of Excitonic Complexes in a Monolayer WSe2. arXiv 2023, 2311.18660. 10.48550/arXiv.2311.18660 DOI
Heithoff M., Moreno Á., Torre I., Feuer M. S. G., Purser C. M., Andolina G. M., Calajò G., Watanabe K., Taniguchi T., Kara D. M., Hays P., Tongay S. A., Fal’ko V. I., Chang D., Atatüre M., Reserbat-Plantey A., Koppens F. H. L.. Valley-Hybridized Gate-Tunable 1D Exciton Confinement in MoSe2 . ACS Nano. 2024;18:30283–30292. doi: 10.1021/acsnano.4c04786. PubMed DOI
Tabataba-Vakili F., Nguyen H. P. G., Rupp A., Mosina K., Papavasileiou A., Watanabe K., Taniguchi T., Maletinsky P., Glazov M. M., Sofer Z., Baimuratov A. S., Högele A.. Doping-Control of Excitons and Magnetism in Few-Layer CrSBr. Nat. Commun. 2024;15:4735. doi: 10.1038/s41467-024-49048-9. PubMed DOI PMC
Errando-Herranz C., Schöll E., Picard R., Laini M., Gyger S., Elshaari A. W., Branny A., Wennberg U., Barbat S., Renaud T., Sartison M., Brotons-Gisbert M., Bonato C., Gerardot B. D., Zwiller V., Jöns K. D.. Resonance Fluorescence from Waveguide-Coupled, Strain-Localized, Two-Dimensional Quantum Emitters. ACS Photonics. 2021;8:1069–1076. doi: 10.1021/acsphotonics.0c01653. PubMed DOI PMC
Mueller T., Malic E.. Exciton Physics and Device Application of Two-Dimensional Transition Metal Dichalcogenide Semiconductors. npj 2D Mater. Appl. 2018;2:29. doi: 10.1038/s41699-018-0074-2. DOI
Trovatello C., Katsch F., Li Q., Zhu X., Knorr A., Cerullo G., Dal Conte S.. Disentangling Many-Body Effects in the Coherent Optical Response of 2D Semiconductors. Nano Lett. 2022;22:5322–5329. doi: 10.1021/acs.nanolett.2c01309. PubMed DOI PMC
Dal Conte S., Trovatello C., Gadermaier C., Cerullo G.. Ultrafast Photophysics of 2D Semiconductors and Related Heterostructures. Trends in Chemistry. 2020;2:28–42. doi: 10.1016/j.trechm.2019.07.007. DOI
Hong X., Kim J., Shi S.-F., Zhang Y., Jin C., Sun Y., Tongay S., Wu J., Zhang Y., Wang F.. Ultrafast Charge Transfer in Atomically Thin MoS2/WS2 Heterostructures. Nat. Nanotechnol. 2014;9:682–686. doi: 10.1038/nnano.2014.167. PubMed DOI
Policht V. R., Russo M., Liu F., Trovatello C., Maiuri M., Bai Y., Zhu X., Dal Conte S., Cerullo G.. Dissecting Interlayer Hole and Electron Transfer in Transition Metal Dichalcogenide Heterostructures Via Two-Dimensional Electronic Spectroscopy. Nano Lett. 2021;21:4738–4743. doi: 10.1021/acs.nanolett.1c01098. PubMed DOI PMC
Kim J., Jin C., Chen B., Cai H., Zhao T., Lee P., Kahn S., Watanabe K., Taniguchi T., Tongay S., Crommie M. F., Wang F.. Observation of Ultralong Valley Lifetime in WSe2/MoS2 Heterostructures. Sci. Adv. 2017;3:e1700518. doi: 10.1126/sciadv.1700518. PubMed DOI PMC
Jiang Y., Chen S., Zheng W., Zheng B., Pan A.. Interlayer Exciton Formation, Relaxation, and Transport in TMD van der Waals Heterostructures. Light Sci. Appl. 2021;10:72. doi: 10.1038/s41377-021-00500-1. PubMed DOI PMC
Policht V. R., Mittenzwey H., Dogadov O., Katzer M., Villa A., Li Q., Kaiser B., Ross A. M., Scotognella F., Zhu X., Knorr A., Selig M., Cerullo G., Dal Conte S.. Time-Domain Observation of Interlayer Exciton Formation and Thermalization in a MoSe2/WSe2 Heterostructure. Nat. Commun. 2023;14:7273. doi: 10.1038/s41467-023-42915-x. PubMed DOI PMC
Karni O., Barré E., Pareek V., Georgaras J. D., Man M. K. L., Sahoo C., Bacon D. R., Zhu X., Ribeiro H. B., O’Beirne A. L., Hu J., Al-Mahboob A., Abdelrasoul M. M. M., Chan N. S., Karmakar A., Winchester A. J., Kim B., Watanabe K., Taniguchi T., Barmak K., Madéo J., da Jornada F. H., Heinz T. F., Dani K. M.. Structure of the Moiré Exciton Captured by Imaging Its Electron and Hole. Nature. 2022;603:247–252. doi: 10.1038/s41586-021-04360-y. PubMed DOI
Madéo J., Man M. K. L., Sahoo C., Campbell M., Pareek V., Wong E. L., Al-Mahboob A., Chan N. S., Karmakar A., Mariserla B. M. K., Li X., Heinz T. F., Cao T., Dani K. M.. Directly Visualizing the Momentum-Forbidden Dark Excitons and Their Dynamics in Atomically Thin Semiconductors. Science. 2020;370:1199–1204. doi: 10.1126/science.aba1029. PubMed DOI
Schmitt D., Bange J. P., Bennecke W., AlMutairi A., Meneghini G., Watanabe K., Taniguchi T., Steil D., Luke D. R., Weitz R. T., Steil S., Jansen G. S. M., Brem S., Malic E., Hofmann S., Reutzel M., Mathias S.. Formation of Moiré Interlayer Excitons in Space and Time. Nature. 2022;608:499–503. doi: 10.1038/s41586-022-04977-7. PubMed DOI
Bange J. P., Werner P., Schmitt D., Bennecke W., Meneghini G., AlMutairi A., Merboldt M., Watanabe K., Taniguchi T., Steil S., Steil D., Weitz R. T., Hofmann S., Jansen G. S. M., Brem S., Malic E., Reutzel M., Mathias S.. Ultrafast Dynamics of Bright and Dark Excitons in Monolayer WSe2 and Heterobilayer WSe2/MoS2 . 2D Mater. 2023;10:035039. doi: 10.1088/2053-1583/ace067. DOI
Huang D., Choi J., Shih C.-K., Li X.. Excitons in Semiconductor Moiré Superlattices. Nat. Nanotechnol. 2022;17:227–238. doi: 10.1038/s41565-021-01068-y. PubMed DOI
Choi J., Florian M., Steinhoff A., Erben D., Tran K., Kim D. S., Sun L., Quan J., Claassen R., Majumder S., Hollingsworth J. A., Taniguchi T., Watanabe K., Ueno K., Singh A., Moody G., Jahnke F., Li X.. Twist Angle-Dependent Interlayer Exciton Lifetimes in van der Waals Heterostructures. Phys. Rev. Lett. 2021;126:047401. doi: 10.1103/PhysRevLett.126.047401. PubMed DOI
Yuan L., Zheng B., Kunstmann J., Brumme T., Kuc A. B., Ma C., Deng S., Blach D., Pan A., Huang L.. Twist-Angle-Dependent Interlayer Exciton Diffusion in WS2−WSe2 Heterobilayers. Nat. Mater. 2020;19:617–623. doi: 10.1038/s41563-020-0670-3. PubMed DOI
Choi J., Hsu W.-T., Lu L.-S., Sun L., Cheng H.-Y., Lee M.-H., Quan J., Tran K., Wang C.-Y., Staab M., Jones K., Taniguchi T., Watanabe K., Chu M.-W., Gwo S., Kim S., Shih C.-K., Li X., Chang W.-H.. Moiré Potential Impedes Interlayer Exciton Diffusion in van der Waals Heterostructures. Sci. Adv. 2020;6:eaba8866. doi: 10.1126/sciadv.aba8866. PubMed DOI PMC
Andersen T. I., Scuri G., Sushko A., De Greve K., Sung J., Zhou Y., Wild D. S., Gelly R. J., Heo H., Bérubé D., Joe A. Y., Jauregui L. A., Watanabe K., Taniguchi T., Kim P., Park H., Lukin M. D.. Excitons in a Reconstructed Moiré Potential in Twisted WSe2/WSe2 Homobilayers. Nat. Mater. 2021;20:480–487. doi: 10.1038/s41563-020-00873-5. PubMed DOI
Hagel J., Brem S., Pineiro J. A., Malic E.. Impact of Atomic Reconstruction on Optical Spectra of Twisted TMD Homobilayers. Phys. Rev. Materials. 2024;8:034001. doi: 10.1103/PhysRevMaterials.8.034001. DOI
Arsenault E. A., Li Y., Yang B., Wang X., Park H., Mosconi E., Ronca E., Taniguchi T., Watanabe K., Gamelin D.. et al. Two-Dimensional Moiré Polaronic Electron Crystals. Phys. Rev. Lett. 2024;132:126501. doi: 10.1103/PhysRevLett.132.126501. PubMed DOI
Chen Y., Yu S., Jiang T., Liu X., Cheng X., Huang D.. Optical Two-Dimensional Coherent Spectroscopy of Excitons in Transition-Metal Dichalcogenides. Frontiers of Physics. 2024;19:23301. doi: 10.1007/s11467-023-1345-8. DOI
Silva R. E. F., Ivanov M., Jiménez-Galán Á.. All-Optical Valley Switch and Clock of Electronic Dephasing. Opt. Express. 2022;30:30347–30355. doi: 10.1364/OE.460291. PubMed DOI
Langer F., Schmid C. P., Schlauderer S., Gmitra M., Fabian J., Nagler P., Schüller C., Korn T., Hawkins P. G., Steiner J. T., Huttner U., Koch S. W., Kira M., Huber R.. Lightwave Valleytronics in a Monolayer of Tungsten Diselenide. Nature. 2018;557:76–80. doi: 10.1038/s41586-018-0013-6. PubMed DOI PMC
Wang Z., Altmann P., Gadermaier C., Yang Y., Li W., Ghirardini L., Trovatello C., Finazzi M., Duò L., Celebrano M., Long R., Akinwande D., Prezhdo O. V., Cerullo G., Dal Conte S.. Phonon-Mediated Interlayer Charge Separation and Recombination in a MoSe2/WSe2 Heterostructure. Nano Lett. 2021;21:2165–2173. doi: 10.1021/acs.nanolett.0c04955. PubMed DOI
Montblanch A. R.-P.. et al. Layered Materials as a Platform for Quantum Technologies. Nat. Nanotechnol. 2023;18:555–571. doi: 10.1038/s41565-023-01354-x. PubMed DOI
Drawer J.-C.. et al. Monolayer-Based Single-Photon Source in a Liquid-Helium-Free Open Cavity Featuring 65% Brightness and Quantum Coherence. Nano Lett. 2023;23:8683–8689. doi: 10.1021/acs.nanolett.3c02584. PubMed DOI PMC
Li, H. , et al. Optical Multidimensional Coherent Spectroscopy; Oxford University Press, 2023.
Fresch E.. et al. Two-Dimensional Electronic Spectroscopy. Nat. Rev. Meth- Primers. 2023;3:84. doi: 10.1038/s43586-023-00267-2. DOI
Timmer D.. et al. Plasmon Mediated Coherent Population Oscillations in Molecular Aggregates. Nat. Commun. 2023;14:8035. doi: 10.1038/s41467-023-43578-4. PubMed DOI PMC
Moody G.. et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun. 2015;6:8315. doi: 10.1038/ncomms9315. PubMed DOI PMC
Katsch F.. et al. Exciton-Scattering-Induced Dephasing in Two-Dimensional Semiconductors. Phys. Rev. Lett. 2020;124:257402. doi: 10.1103/PhysRevLett.124.257402. PubMed DOI
Hao K.. et al. Direct Measurement of Exciton Valley Coherence in Monolayer WSe2 . Nat. Phys. 2016;12:677–682. doi: 10.1038/nphys3674. DOI
Hao K.. et al. Coherent and Incoherent Coupling Dynamics between Neutral and Charged Excitons in Monolayer MoSe2 . Nano Lett. 2016;16:5109–5113. doi: 10.1021/acs.nanolett.6b02041. PubMed DOI PMC
Guo L.. et al. Exchange-Driven Intravalley Mixing of Excitons in Monolayer Transition Metal Dichalcogenides. Nat. Phys. 2019;15:228–232. doi: 10.1038/s41567-018-0362-y. DOI
Lloyd L. T.. et al. Sub-10 fs Intervalley Exciton Coupling in Monolayer MoS2 Revealed by Helicity-Resolved Two-Dimensional Electronic Spectroscopy. ACS Nano. 2021;15:10253–10263. doi: 10.1021/acsnano.1c02381. PubMed DOI
Timmer D.. et al. Ultrafast Coherent Exciton Couplings and Many-Body Interactions in Monolayer WS2 . Nano Lett. 2024;24:8117–8125. doi: 10.1021/acs.nanolett.4c01991. PubMed DOI PMC
Purz T.. et al. Imaging Dynamic Exciton Interactions and Coupling in Transition Metal Dichalcogenides. J. Chem. Phys. 2022;156:214704. doi: 10.1063/5.0087544. PubMed DOI
Conway M. A.. et al. Direct Measurement of Biexcitons in Monolayer WS2 . 2D Mater. 2022;9:021001. doi: 10.1088/2053-1583/ac4779. DOI
Huang D.. et al. Quantum Dynamics of Attractive and Repulsive Polarons in a Doped MoSe2 Monolayer. Phys. Rev. X. 2023;13:011029. doi: 10.1103/PhysRevX.13.011029. DOI
Li D.. et al. Exciton−Phonon Coupling Strength in Single-Layer MoSe2 at Room Temperature. Nat. Commun. 2021;12:954. doi: 10.1038/s41467-021-20895-0. PubMed DOI PMC
Li D.. et al. Hybridized Exciton-Photon-Phonon States in a Transition Metal Dichalcogenide van der Waals Heterostructure Microcavity. Phys. Rev. Lett. 2022;128:087401. doi: 10.1103/PhysRevLett.128.087401. PubMed DOI
Timmer D.. et al. Full Visible Range Two-Dimensional Electronic Spectroscopy with High Time Resolution. Opt. Express. 2024;32:835–847. doi: 10.1364/OE.511906. PubMed DOI
Pi Z.. et al. Petahertz-Scale Spectral Broadening and Few-Cycle Compression of Yb:KGW Laser Pulses in a Pressurized, Gas-Filled Hollow-Core Fiber. Opt. Lett. 2022;47:5865–5868. doi: 10.1364/OL.474872. PubMed DOI
Lomsadze B., Cundiff S. T.. Frequency Combs Enable Rapid and High-Resolution Multidimensional Coherent Spectroscopy. Science. 2017;357:1389–1391. doi: 10.1126/science.aao1090. PubMed DOI
Lomsadze B.. et al. Tri-Comb Spectroscopy. Nat. Photonics. 2018;12:676–680. doi: 10.1038/s41566-018-0267-4. DOI
Gruber, C. ; et al. High-Sensitivity Pump-Probe Spectroscopy with a Dual-Comb Laser and a PM-ANDi Supercontinuum. Opt. Lett. 2024, 49, 6445. 10.1364/OL.538105 PubMed DOI
Krumland J.. et al. Two-Dimensional Electronic Spectroscopy from First Principles. Appl. Phys. Rev. 2024;11:011305. doi: 10.1063/5.0172621. DOI
Kunin A.. et al. Momentum-Resolved Exciton Coupling and Valley Polarization Dynamics in Monolayer WS2 . Phys. Rev. Lett. 2023;130:046202. doi: 10.1103/PhysRevLett.130.046202. PubMed DOI
Aeschlimann M.. et al. Coherent Two-Dimensional Nanoscopy. Science. 2011;333:1723–1726. doi: 10.1126/science.1209206. PubMed DOI
Hong S. Y., Dadap J. I., Petrone N., Yeh P. C., Hone J., Osgood R. M.. Optical Third-Harmonic Generation in Graphene. Phys. Rev. X. 2013;3:021014. doi: 10.1103/PhysRevX.3.021014. DOI
Säynätjoki A., Karvonen L., Rostami H., Autere A., Mehravar S., Lombardo A., Norwood R. A., Hasan T., Peyghambarian N., Lipsanen H., Kieu K., Ferrari A. C., Polini M., Sun Z. P.. Ultra-Strong Nonlinear Optical Processes and Trigonal Warping in MoS2 Layers. Nat. Commun. 2017;8:893. doi: 10.1038/s41467-017-00749-4. PubMed DOI PMC
Autere A., Ryder C. R., Saynatjoki A., Karvonen L., Amirsolaimani B., Norwood R. A., Peyghambarian N., Kieu K., Lipsanen H., Hersam M. C.. Rapid and Large-Area Characterization of Exfoliated Black Phosphorus Using Third-Harmonic Generation Microscopy. J. Phys. Chem. Lett. 2017;8:1343–1350. doi: 10.1021/acs.jpclett.7b00140. PubMed DOI
Liang J., Tu T., Chen G. C., Sun Y. W., Qiao R. X., Ma H., Yu W. T., Zhou X., Ma C. J., Gao P., Peng H. L., Liu K. H., Yu D. P.. Unveiling the Fine Structural Distortion of Atomically Thin BiO2Se3 by Third-Harmonic Generation. Adv. Mater. 2020;32:2002831. doi: 10.1002/adma.202002831. PubMed DOI
Lv Y. Y., Xu J. L., Han S., Zhang C., Han Y. D.. et al. High-Harmonic Generation in Weyl Semimetal β-WP2 Crystals. Nat. Commun. 2021;12:6437. doi: 10.1038/s41467-021-26766-y. PubMed DOI PMC
Hendry E., Hale P. J., Moger J., Savchenko A. K., Mikhailov S. A.. Coherent Nonlinear Optical Response of Graphene. Phys. Rev. Lett. 2010;105:097401. doi: 10.1103/PhysRevLett.105.097401. PubMed DOI
Ji M. X., Cai H., Deng L. K., Huang Y., Huang Q. Z., Xia J. S., Li Z. Y., Yu J. Z., Wang Y.. Enhanced Parametric Frequency Conversion in a Compact Silicon-Graphene Microring Resonator. Opt. Express. 2015;23:18679–18685. doi: 10.1364/OE.23.018679. PubMed DOI
Wu Y., Yao B. C., Feng Q. Y., Cao X. L., Zhou X. Y., Rao Y. J., Gong Y., Zhang W. L., Wang Z. G., Chen Y. F., Chiang K. S.. Generation of Cascaded Four-Wave-Mixing with Graphene-Coated Microfiber. Photonics Research. 2015;3:A64–A68. doi: 10.1364/PRJ.3.000A64. DOI
Wang Y. C., Pelgrin V., Gyger S., Uddin G. M., Bai X. Y., Lafforgue C., Vivien L., Jöns K. D., Cassan E., Sun Z. P.. Enhancing Si3N4 Waveguide Nonlinearity with Heterogeneous Integration of Few-Layer WS2 . ACS Photonics. 2021;8:2713–2721. doi: 10.1021/acsphotonics.1c00767. PubMed DOI PMC
Das S., Uddin G. M., Li D., Wang Y. D., Dai Y. Y., Sun Z. P.. Nanoscale thickness Octave-spanning Coherent Supercontinuum Light Generation. Light Sci. Appl. 2025;14:41. doi: 10.1038/s41377-024-01660-6. PubMed DOI PMC
Gu T., Petrone N., McMillan J. F., van der Zande A., Yu M., Lo G. Q., Kwong D. L., Hone J., Wong C. W.. Regenerative Oscillation and Four-Wave Mixing in Graphene Optoelectronics. Nat. Photonics. 2012;6:554–559. doi: 10.1038/nphoton.2012.147. DOI
Autere A., Jussila H., Dai Y. Y., Wang Y. D., Lipsanen H., Sun Z. P.. Nonlinear Optics with 2D Layered Materials. Adv. Mater. 2018;30:1705963. doi: 10.1002/adma.201705963. PubMed DOI
Ye Z. L., Cao T., O’Brien K., Zhu H. Y., Yin X. B., Wang Y., Louie S. G., Zhang X.. Probing Excitonic Dark States in Single-Layer Tungsten Disulphide. Nature. 2014;513:214–218. doi: 10.1038/nature13734. PubMed DOI
Martinez A., Sun Z. P.. Nanotube and Graphene Saturable Absorbers for Fibre Lasers. Nat. Photonics. 2013;7:842–845. doi: 10.1038/nphoton.2013.304. DOI
Li W., Chen B. G., Meng C., Fang W., Xiao Y., Li X. Y., Hu Z. F., Xu Y. X., Tong L. M., Wang H. Q., Liu W. T., Bao J. M., Shen Y. R.. Ultrafast All-Optical Graphene Modulator. Nano Lett. 2014;14:955–959. doi: 10.1021/nl404356t. PubMed DOI
Yoshikawa N., Tamaya T., Tanaka K.. High-Harmonic Generation in Graphene Enhanced by Elliptically Polarized Light Excitation. Science. 2017;356:736–738. doi: 10.1126/science.aam8861. PubMed DOI
Liu H. Z., Li Y. L., You Y. S., Ghimire S., Heinz T. F., Reis D. A.. High-Harmonic Generation from an Atomically Thin Semiconductor. Nat. Phys. 2017;13:262–265. doi: 10.1038/nphys3946. DOI
Wang Y. D., Iyikanat F., Bai X. Y., Hu X. R., Das S., Dai Y. Y., Zhang Y., Du L. J., Li S. S., Lipsanen H., García de Abajo F. J., Sun Z. P.. Optical Control of High-Harmonic Generation at the Atomic Thickness. Nano Lett. 2022;22:8455–8462. doi: 10.1021/acs.nanolett.2c02711. PubMed DOI PMC
Langer F., Hohenleutner M., Schmid C. P., Poellmann C., Nagler P., Korn T., Schüller C., Sherwin M. S., Huttner U., Steiner J. T., Koch S. W., Kira M., Huber R.. Lightwave-Driven Quasiparticle Collisions on a Subcycle Timescale. Nature. 2016;533:225–229. doi: 10.1038/nature17958. PubMed DOI PMC
Seyler K. L., Schaibley J. R., Gong P., Rivera P., Jones A. M., Wu S. F., Yan J. Q., Mandrus D. G., Yao W., Xu X. D.. Electrical Control of Second-Harmonic Generation in a WSe2 Monolayer Transistor. Nat. Nanotechnol. 2015;10:407–411. doi: 10.1038/nnano.2015.73. PubMed DOI
Hong H., Wu C. C., Zhao Z. X., Zuo Y. G., Wang J. H.. et al. Giant Enhancement of Optical Nonlinearity in Two-Dimensional Materials by Multiphoton-Excitation Resonance Energy Transfer from Quantum Dots. Nat. Photonics. 2021;15:510–515. doi: 10.1038/s41566-021-00801-2. DOI
Du L. J., Huang Z. H., Zhang J., Ye F. W., Dai Q., Deng H., Zhang G. Y., Sun Z. P.. Nonlinear Physics of Moiré Superlattices. Nat. Mater. 2024;23:1179–1192. doi: 10.1038/s41563-024-01951-8. PubMed DOI
Dai Y. Y., Wang Y. D., Das S., Li S. S., Xue H., Mohsen A., Sun Z. P.. Broadband Plasmon-Enhanced Four-Wave Mixing in Monolayer MoS2 . Nano Lett. 2021;21:6321–6327. doi: 10.1021/acs.nanolett.1c02381. PubMed DOI PMC
Pelgrin V., Yoon H. H., Cassan E., Sun Z.. Hybrid Integration of 2D Materials for on-Chip Nonlinear Photonics. Light Adv. Manuf. 2023;4:168. doi: 10.37188/lam.2023.014. DOI
Chen K., Zhou X., Cheng X., Qiao R. X., Cheng Y., Liu C., Xie Y. D., Yu W. T., Yao F. R., Sun Z. P., Wang F., Liu K. H., Liu Z. F.. Graphene Photonic Crystal Fibre with Strong and Tunable Light-Matter Interaction. Nat. Photonics. 2019;13:754–759. doi: 10.1038/s41566-019-0492-5. DOI
Datta I., Chae S. H., Bhatt G. R., Tadayon M. A., Li B. C., Yu Y. L., Park C., Park J., Cao L. Y., Basov D. N., Hone J., Lipson M.. Low-Loss Composite Photonic Platform Based on 2D Semiconductor Monolayers. Nat. Photonics. 2020;14:256–262. doi: 10.1038/s41566-020-0590-4. DOI
Hong H., Huang C., Ma C. J., Qi J. J., Shi X. P., Liu C., Wu S. W., Sun Z. P., Wang E. G., Liu K. H.. Twist Phase Matching in Two-Dimensional Materials. Phys. Rev. Lett. 2023;131:233801. doi: 10.1103/PhysRevLett.131.233801. PubMed DOI
Higuchi T., Heide C., Ullmann K., Weber H. B., Hommelhoff P.. Light-Field-Driven Currents in Graphene. Nature. 2017;550:224–228. doi: 10.1038/nature23900. PubMed DOI
Heide C., Keathley P. D., Kling M. F.. Petahertz Electronics. Nat. Rev. Phys. 2024;6:648–662. doi: 10.1038/s42254-024-00764-7. DOI
Guo Q., Qi X.-Z., Zhang L., Gao M., Hu S., Zhou W., Zang W., Zhao X., Wang J., Yan B., Xu M., Wu Y.-K., Eda G., Xiao Z., Yang S. A., Gou H., Feng Y. P., Guo G.-C., Zhou W., Ren X.-F., Qiu C.-W., Pennycook S. J., Wee A. T. S.. Ultrathin Quantum Light Source with van der Waals NbOCl2 Crystal. Nature. 2023;613:53–59. doi: 10.1038/s41586-022-05393-7. PubMed DOI
Trovatello, C. ; Ferrante, C. ; Yang, B. ; Bajo, J. ; Braun, B. ; Xu, X. ; Peng, Z. H. ; Jenke, P. K. ; Ye, A. ; Delor, M. ; Basov, D. N. ; Park, J. ; Walther, P. ; Rozema, L. A. ; Dean, C. ; Marini, A. ; Cerullo, G. ; Schuck, P. J. . Quasi-Phase-Matched up- and down-Conversion in Periodically Poled Layered Semiconductors. Nat. Photon. 2025, 19, 291. 10.1038/s41566-024-01602-z DOI
Xu X., Trovatello C., Mooshammer F., Shao Y., Zhang S., Yao K., Basov D. N., Cerullo G., Schuck P. J.. Towards Compact Phase-Matched and Waveguided Nonlinear Optics in Atomically Layered Semiconductors. Nat. Photonics. 2022;16:698–706. doi: 10.1038/s41566-022-01053-4. DOI
Weissflog M. A., Fedotova A., Tang Y., Santos E. A., Laudert B., Shinde S., Abtahi F., Afsharnia M., Pérez I. P., Ritter S., Qin H., Janousek J., Shradha S., Staude I., Saravi S., Pertsch T., Setzpfandt F., Lu Y., Eilenberger F.. A Tunable Transition Metal Dichalcogenide Entangled Photon-Pair Source. Nat. Commun. 2024;15:7600. doi: 10.1038/s41467-024-51843-3. PubMed DOI PMC
Trovatello C., Marini A., Cotrufo M., Alù A., Schuck P. J., Cerullo G.. Tunable Optical Nonlinearities in Layered Materials. ACS Photonics. 2024;11:2860–2873. doi: 10.1021/acsphotonics.4c00521. DOI
Törmä P.. Essay: Where Can Quantum Geometry Lead Us? Phys. Rev. Lett. 2023;131:240001. doi: 10.1103/PhysRevLett.131.240001. PubMed DOI
Komissarov I., Holder T., Queiroz R.. The Quantum Geometric Origin of Capacitance in Insulators. Nat. Commun. 2024;15:4621. doi: 10.1038/s41467-024-48808-x. PubMed DOI PMC
Trovatello C., Marini A., Xu X., Lee C., Liu F., Curreli N., Manzoni C., Dal Conte S., Yao K., Ciattoni A., Hone J., Zhu X., Schuck P. J., Cerullo G.. Optical Parametric Amplification by Monolayer Transition Metal Dichalcogenides. Nat. Photonics. 2021;15:6–10. doi: 10.1038/s41566-020-00728-0. DOI
Ciattoni A., Marini A., Rizza C., Conti C.. Phase-Matching-Free Parametric Oscillators Based on Two-Dimensional Semiconductors. Light Sci. Appl. 2018;7:5. doi: 10.1038/s41377-018-0011-3. PubMed DOI PMC
You J., Luo Y., Yang J., Zhang J., Yin K., Wei K., Zheng X., Jiang T.. Hybrid/Integrated Silicon Photonics Based on 2D Materials in Optical Communication Nanosystems. Laser Photon. Rev. 2020;14:2000239. doi: 10.1002/lpor.202000239. DOI
Vyshnevyy A. A., Ermolaev G. A., Grudinin D. V., Voronin K. V., Kharichkin I., Mazitov A., Kruglov I. A., Yakubovsky D. I., Mishra P., Kirtaev R. V., Arsenin A. V., Novoselov K. S., Martin-Moreno L., Volkov V. S.. Van der Waals Materials for Overcoming Fundamental Limitations in Photonic Integrated Circuitry. Nano Lett. 2023;23:8057–8064. doi: 10.1021/acs.nanolett.3c02051. PubMed DOI
Datta I., Gil-Molina A., Chae S. H., Zhou V., Hone J., Lipson M.. 2D Material Platform for Overcoming the Amplitude−Phase Tradeoff in Ring Resonators. Optica. 2024;11:48–57. doi: 10.1364/OPTICA.498484. DOI
Abdelwahab I., Tilmann B., Wu Y., Giovanni D., Verzhbitskiy I., Zhu M., Berté R., Xuan F., Menezes L. de S., Eda G., Sum T. C., Quek S. Y., Maier S. A., Loh K. P.. Giant Second-Harmonic Generation in Ferroelectric NbOI2 . Nat. Photonics. 2022;16:644–650. doi: 10.1038/s41566-022-01021-y. DOI
Ye L., Zhou W., Huang D., Jiang X., Guo Q., Cao X., Yan S., Wang X., Jia D., Jiang D., Wang Y., Wu X., Zhang X., Li Y., Lei H., Gou H., Huang B.. Manipulation of Nonlinear Optical Responses in Layered Ferroelectric Niobium Oxide Dihalides. Nat. Commun. 2023;14:5911. doi: 10.1038/s41467-023-41383-7. PubMed DOI PMC
Veeralingam S., Durai L., Yadav P., Badhulika S.. Record-High Responsivity and Detectivity of a Flexible Deep-Ultraviolet Photodetector Based on Solid State-Assisted Synthesized hBN Nanosheets. ACS Appl. Electron. Mater. 2021;3:1162–1169. doi: 10.1021/acsaelm.0c01021. DOI
Fryett T. K., Seyler K. L., Zheng J., Liu C.-H., Xu X., Majumdar A.. Silicon Photonic Crystal Cavity Enhanced Second-Harmonic Generation from Monolayer WSe2 . 2D Mater. 2017;4:15031. doi: 10.1088/2053-1583/4/1/015031. DOI
Ngo G. Q., Najafidehaghani E., Gan Z., Khazaee S., Siems M. P., George A., Schartner E. P., Nolte S., Ebendorff-Heidepriem H., Pertsch T., Tuniz A., Schmidt M. A., Peschel U., Turchanin A., Eilenberger F.. In-Fibre Second-Harmonic Generation with Embedded Two-Dimensional Materials. Nat. Photonics. 2022;16:769–776. doi: 10.1038/s41566-022-01067-y. DOI
Zuo Y., Yu W., Liu C., Cheng X., Qiao R., Liang J., Zhou X., Wang J., Wu M., Zhao Y., Gao P., Wu S., Sun Z., Liu K., Bai X., Liu Z.. Optical Fibres with Embedded Two-Dimensional Materials for Ultrahigh Nonlinearity. Nat. Nanotechnol. 2020;15:987–991. doi: 10.1038/s41565-020-0770-x. PubMed DOI
Chen J.-H., Xiong Y.-F., Xu F., Lu Y.-Q.. Silica Optical Fiber Integrated with Two-Dimensional Materials: Towards Opto-Electro-Mechanical Technology. Light Sci. Appl. 2021;10:78. doi: 10.1038/s41377-021-00520-x. PubMed DOI PMC
Chen H., Corboliou V., Solntsev A. S., Choi D.-Y., Vincenti M. A., de Ceglia D., de Angelis C., Lu Y., Neshev D. N.. Enhanced Second-Harmonic Generation from Two-Dimensional MoSe2 on a Silicon Waveguide. Light Sci. Appl. 2017;6:e17060. doi: 10.1038/lsa.2017.60. PubMed DOI PMC
Liu N., Yang X., Zhu Z., Chen F., Zhou Y., Xu J., Liu K.. Silicon Nitride Waveguides with Directly Grown WS2 for Efficient Second-Harmonic Generation. Nanoscale. 2021;14:49–54. doi: 10.1039/D1NR06216F. PubMed DOI
Guo Q., Ou Z., Tang J., Zhang J., Lu F., Wu K., Zhang D., Zhang S., Xu H.. Efficient Frequency Mixing of Guided Surface Waves by Atomically Thin Nonlinear Crystals. Nano Lett. 2020;20:7956–7963. doi: 10.1021/acs.nanolett.0c02736. PubMed DOI
Ermolaev G. A., Grudinin D. V., Stebunov Y. V., Voronin K. V., Kravets V. G., Duan J., Mazitov A. B., Tselikov G. I., Bylinkin A., Yakubovsky D. I., Novikov S. M., Baranov D. G., Nikitin A. Y., Kruglov I. A., Shegai T., Alonso-González P., Grigorenko A. N., Arsenin A. V., Novoselov K. S., Volkov V. S.. Giant Optical Anisotropy in Transition Metal Dichalcogenides for Next-Generation Photonics. Nat. Commun. 2021;12:854. doi: 10.1038/s41467-021-21139-x. PubMed DOI PMC
Mooshammer F., Xu X., Trovatello C., Peng Z. H., Yang B., Amontree J., Zhang S., Hone J., Dean C. R., Schuck P. J., Basov D. N.. Enabling Waveguide Optics in Rhombohedral-Stacked Transition Metal Dichalcogenides with Laser-Patterned Grating Couplers. ACS Nano. 2024;18:4118–4130. doi: 10.1021/acsnano.3c08522. PubMed DOI
Sortino, L. ; Biechteler, J. ; Lafeta, L. ; Kühner, L. ; Hartschuh, A. ; Menezes, L. de S. ; Maier, S. A. ; Tittl, A. . Van der Waals Heterostructure Metasurfaces: Atomic-Layer Assembly of Ultrathin Optical Cavities. arXiv 2024, 2407.16480. 10.48550/arXiv.2407.16480 DOI
Zograf G., Polyakov A. Yu., Bancerek M., Antosiewicz T. J., Küçüköz B., Shegai T. O.. Combining Ultrahigh Index with Exceptional Nonlinearity in Resonant Transition Metal Dichalcogenide Nanodisks. Nat. Photonics. 2024;18:751–757. doi: 10.1038/s41566-024-01444-9. DOI
Lee J., Tymchenko M., Argyropoulos C., Chen P.-Y., Lu F., Demmerle F., Boehm G., Amann M.-C., Alù A., Belkin M. A.. Giant Nonlinear Response from Plasmonic Metasurfaces Coupled to Intersubband Transitions. Nature. 2014;511:65–69. doi: 10.1038/nature13455. PubMed DOI
Nefedkin N., Mekawy A., Krakofsky J., Wang Y., Belyanin A., Belkin M., Alù A.. Overcoming Intensity Saturation in Nonlinear Multiple-Quantum-Well Metasurfaces for High-Efficiency Frequency Upconversion. Adv. Mater. 2023;35:2106902. doi: 10.1002/adma.202106902. PubMed DOI
Munkhbat B., Baranov D. G., Stührenberg M., Wersäll M., Bisht A., Shegai T.. Self-Hybridized Exciton-Polaritons in Multilayers of Transition Metal Dichalcogenides for Efficient Light Absorption. ACS Photonics. 2019;6:139–147. doi: 10.1021/acsphotonics.8b01194. DOI
Weber T., Kühner L., Sortino L., Ben Mhenni A., Wilson N. P., Kühne J., Finley J. J., Maier S. A., Tittl A.. Intrinsic Strong Light-Matter Coupling with Self-Hybridized Bound States in the Continuum in van der Waals Metasurfaces. Nat. Mater. 2023;22:970–976. doi: 10.1038/s41563-023-01580-7. PubMed DOI PMC
Gaida J. H., Lourenço-Martins H., Sivis M., Rittmann T., Feist A., García de Abajo F. J., Ropers C.. Attosecond Electron Microscopy by Free-Electron Homodyne Detection. Nat. Photonics. 2024;18:509–515. doi: 10.1038/s41566-024-01380-8. DOI
Xu D., Mandal A., Baxter J. M., Cheng S.-W., Lee I., Su H., Liu S., Reichman D. R., Delor M.. Ultrafast Imaging of Polariton Propagation and Interactions. Nat. Commun. 2023;14:3881. doi: 10.1038/s41467-023-39550-x. PubMed DOI PMC
Busschaert S., Reimann R., Cavigelli M., Khelifa R., Jain A., Novotny L.. Transition Metal Dichalcogenide Resonators for Second Harmonic Signal Enhancement. ACS Photonics. 2020;7:2482–2488. doi: 10.1021/acsphotonics.0c00751. DOI
Karimi E., Schulz S. A., De Leon I., Qassim H., Upham J., Boyd R. W.. Generating Optical Orbital Angular Momentum at Visible Wavelengths Using a Plasmonic Metasurface. Light Sci. Appl. 2014;3:e167. doi: 10.1038/lsa.2014.48. DOI
Overvig A., Alù A.. Diffractive Nonlocal Metasurfaces. Laser Photon. Rev. 2022;16:2100633. doi: 10.1002/lpor.202100633. DOI
Nookala N., Lee J., Tymchenko M., Sebastian Gomez-Diaz J., Demmerle F., Boehm G., Lai K., Shvets G., Amann M.-C., Alu A., Belkin M.. Ultrathin Gradient Nonlinear Metasurface with a Giant Nonlinear Response. Optica. 2016;3:283. doi: 10.1364/OPTICA.3.000283. DOI
Graffitti F., D’Ambrosio V., Proietti M., Ho J., Piccirillo B., de Lisio C., Marrucci L., Fedrizzi A.. Hyperentanglement in Structured Quantum Light. Phys. Rev. Res. 2020;2:43350. doi: 10.1103/PhysRevResearch.2.043350. DOI
Dogadov O., Trovatello C., Yao B., Soavi B., Cerullo G.. Parametric Nonlinear Optics with Layered Materials and Related Heterostructures. Laser Photonic Rev. 2022;16:2100726. doi: 10.1002/lpor.202100726. DOI
Yao K., Finney N. R., Zhang J., Moore S. L., Xian L., Tancogne-Dejean N., Liu F., Ardelean J., Xu X., Halbertal D., Watanabe K., Taniguchi T., Ochoa H., Asenjo-Garcia A., Zhu X., Basov D. N., Rubio A., Dean C. R., Hone J., Schuck P. J.. Enhanced Tunable Second Harmonic Generation from Twistable Interfaces and Vertical Superlattices in Boron Nitride Homostructures. Sci. Adv. 2021;7:10. doi: 10.1126/sciadv.abe8691. PubMed DOI PMC
Masson S. J., Asenjo-Garcia A.. Universality of Dicke Superradiance in Arrays of Quantum Emitters. Nat. Commun. 2022;13:2285. doi: 10.1038/s41467-022-29805-4. PubMed DOI PMC
Rainò G., Becker M. A., Bodnarchuk M. I., Mahrt R. F., Kovalenko M. V., Stöferle T.. Superfluorescence from Lead Halide Perovskite Quantum Dot Superlattices. Nature. 2018;563:671–675. doi: 10.1038/s41586-018-0683-0. PubMed DOI
Kauranen M., Zayats A. V.. Nonlinear Plasmonics. Nat. Photonics. 2012;6:737–748. doi: 10.1038/nphoton.2012.244. DOI
Khurgin J. B.. Nonlinear Optics from the Viewpoint of Interaction Time. Nat. Photonics. 2023;17:545–551. doi: 10.1038/s41566-023-01191-3. DOI
Mikhailov S. A.. Quantum Theory of the Third-Order Nonlinear Electrodynamic Effects of Graphene. Phys. Rev. B. 2016;93:085403. doi: 10.1103/PhysRevB.93.085403. DOI
Mikhailov S. A.. Theory of the Giant Plasmon-Enhanced Second-Harmonic Generation in Graphene and Semiconductor Two-Dimensional Electron Systems. Phys. Rev. B. 2011;84:045432. doi: 10.1103/PhysRevB.84.045432. DOI
Cox J. D., García de Abajo F. J.. Nonlinear Graphene Nanoplasmonics. Acc. Chem. Res. 2019;52:2536–2547. doi: 10.1021/acs.accounts.9b00308. PubMed DOI
Kundys D., Van Duppen B., Marshall O. P., Rodriguez F., Torre I., Tomadin A., Polini M., Grigorenko A. N.. Nonlinear Light Mixing by Graphene Plasmons. Nano Lett. 2018;18:282–287. doi: 10.1021/acs.nanolett.7b04114. PubMed DOI
Constant T. J., Hornett S. M., Chang D. E., Hendry E.. All-Optical Generation of Surface Plasmons in Graphene. Nat. Phys. 2016;12:124–127. doi: 10.1038/nphys3545. DOI
Jadidi M. M., König-Otto J. C., Winnerl S., Sushkov A. B., Drew H. D., Murphy T. E., Mittendorff M.. Nonlinear Terahertz Absorption of Graphene Plasmons. Nano Lett. 2016;16:2734–2738. doi: 10.1021/acs.nanolett.6b00405. PubMed DOI
Dias E. J. C., Yu R., García de Abajo F. J.. Thermal Manipulation of Plasmons in Atomically Thin Films. Light Sci. Appl. 2020;9:87. doi: 10.1038/s41377-020-0322-z. PubMed DOI PMC
Iyikanat F., Konečná A., García de Abajo F. J.. Nonlinear Tunable Vibrational Response in Hexagonal Boron Nitride. ACS Nano. 2021;15:13415–13426. doi: 10.1021/acsnano.1c03775. PubMed DOI PMC
Ginsberg J. S., Jadidi M. M., Zhang J., Chen C. Y., Tancogne-Dejean N., Chae S. H., Patwardhan G. N., Xian L., Watanabe K., Taniguchi T., Hone J., Rubio A., Gaeta A. L.. Phonon-Enhanced Nonlinearities in Hexagonal Boron Nitride. Nat. Commun. 2023;14:7685. doi: 10.1038/s41467-023-43501-x. PubMed DOI PMC
Morozov S., Wolff C., Mortensen N. A.. Room-Temperature Low-Voltage Control of Excitonic Emission in Transition Metal Dichalcogenide Monolayers. Adv. Opt. Mater. 2021;9:2101305. doi: 10.1002/adom.202101305. DOI
Xu D., Peng Z. H., Trovatello C., Cheng S.-W., Xu X., Sternbach A., Basov D. N., Schuck P. J., Delor M.. Spatiotemporal imaging of nonlinear optics in van der Waals waveguides. Nat. Nanotechnol. 2025;20:374–380. doi: 10.1038/s41565-024-01849-1. PubMed DOI
Zhang Y., Wang Y., Dai Y., Bai X., Hu X., Du L., Hu H., Yang X., Li D., Dai Q., Hasan T., Sun Z.. Chirality Logic Gates. Sci. Adv. 2022;8:eabq8246. doi: 10.1126/sciadv.abq8246. PubMed DOI PMC
Qian H., Xiao Y., Liu Z.. Giant Kerr Response of Ultrathin Gold Films from Quantum Size Effect. Nat. Commun. 2016;7:13153. doi: 10.1038/ncomms13153. PubMed DOI PMC
Rodríguez Echarri Á., Cox J. D., Iyikanat F., García de Abajo F. J.. Nonlinear Plasmonic Response in Atomically Thin Metal Films. Nanophotonics. 2021;10:4149–4159. doi: 10.1515/nanoph-2021-0422. PubMed DOI PMC
Pan C., Tong Y., Qian H., Krasavin A. V., Li J., Zhu J., Zhang Y., Cui B., Li Z., Wu C., Liu L., Li L., Guo X., Zayats A. V., Tong L., Wang P.. Large Area Single Crystal Gold of Single Nanometer Thickness for Nanophotonics. Nat. Commun. 2024;15:2840. doi: 10.1038/s41467-024-47133-7. PubMed DOI PMC
Liu X., Yi J., Li Q., Yang S., Bao W., Ropp C., Lan S., Wang Y., Zhang X.. Nonlinear Optics at Excited States of Exciton Polaritons in Two-Dimensional Atomic Crystals. Nano Lett. 2020;20:1676–1685. doi: 10.1021/acs.nanolett.9b04811. PubMed DOI
Li Y., Kang M., Shi J., Wu K., Zhang S., Xu H.. Transversely Divergent Second Harmonic Generation by Surface Plasmon Polaritons on Single Metallic Nanowires. Nano Lett. 2017;17:7803–7808. doi: 10.1021/acs.nanolett.7b04016. PubMed DOI
Calajó G., Jenke P. K., Rozema L. A., Walther P., Chang D. E., Cox J. D.. Nonlinear Quantum Logic with Colliding Graphene Plasmons. Phys. Rev. Research. 2023;5:013188. doi: 10.1103/PhysRevResearch.5.013188. DOI
Jelver L., Cox J. D.. Nonlinear Thermoplasmonics in Graphene Nanostructures. Nano Lett. 2024;24:13775–13782. doi: 10.1021/acs.nanolett.4c04048. PubMed DOI
Menabde S. G., Heiden J. T., Cox J. D., Mortensen N. A., Jang M. S.. Image Polaritons in van der Waals Crystals. Nanophotonics. 2022;11:2433–2452. doi: 10.1515/nanoph-2021-0693. PubMed DOI PMC
Khestanova E., Shahnazaryan S., Kozin V. K., Kondratyev V. I., Krizhanovskii D. N., Skolnick M. S., Shelykh I. A., Iorsh I. V., Kravtsov V.. Electrostatic Control of Nonlinear Photonic-Crystal Polaritons in a Monolayer Semiconductor. Nano Lett. 2024;24:7350–7357. doi: 10.1021/acs.nanolett.4c01475. PubMed DOI
Sun Z., Basov D. N., Fogler M. M.. Graphene as a Source of Entangled Plasmons. Phys. Rev. Research. 2022;4:023208. doi: 10.1103/PhysRevResearch.4.023208. DOI
Rodríguez Echarri Á., Cox J. D., García de Abajo F. J.. Direct generation of entangled photon pairs in nonlinear optical waveguides. Nanophotonics. 2022;11:1021–1032. doi: 10.1515/nanoph-2021-0736. PubMed DOI PMC
Rasmussen T. P., Rodríguez Echarri Á., Cox J. D., García de Abajo F. J.. Generation of Entangled Waveguided Photon Pairs by Free Electrons. Sci. Adv. 2024;10:eadn6312. doi: 10.1126/sciadv.adn6312. PubMed DOI
Cox J. D., García de Abajo F. J.. Electrically Tunable Nonlinear Plasmonics in Graphene Nanoislands. Nat. Commun. 2014;5:5725. doi: 10.1038/ncomms6725. PubMed DOI
Cox J. D., Marini A., García de Abajo F. J.. Plasmon-Assisted High-Harmonic Generation in Graphene. Nat. Commun. 2017;8:14380. doi: 10.1038/ncomms14380. PubMed DOI PMC
Cox J. D., García de Abajo F. J.. Single-Plasmon Thermo-Optical Switching in Graphene. Nano Lett. 2019;19:3743–3750. doi: 10.1021/acs.nanolett.9b00879. PubMed DOI
Mak K. F.. et al. Light-Valley Interactions in 2D Semiconductors. Nat. Photon. 2018;12:451–460. doi: 10.1038/s41566-018-0204-6. DOI
Mak K. F.. et al. The Valley Hall Effect in MoS2 Transistors. Science. 2014;344:1489–1492. doi: 10.1126/science.1250140. PubMed DOI
Sie E.. et al. Large, Valley-Exclusive Bloch-Siegert Shift in Monolayer WS2 . Science. 2017;355:1066–1069. doi: 10.1126/science.aal2241. PubMed DOI
Mak K. F.. et al. Control of Valley Polarization in Monolayer MoS2 by Optical Helicity. Nat. Nanotechnol. 2012;7:494–498. doi: 10.1038/nnano.2012.96. PubMed DOI
Wang G.. et al. Giant Enhancement of the Optical Second-Harmonic Emission of WSe2 Monolayers by Excitation at Exciton Resonances. Phys. Rev. Lett. 2015;114:097403. doi: 10.1103/PhysRevLett.114.097403. PubMed DOI
Zhu C. R.. et al. Exciton Valley Dynamics Probed by Kerr Rotation in WSe2 Monolayers. Phys. Rev. B. 2014;90:161302. doi: 10.1103/PhysRevB.90.161302. DOI
LaMountain T.. et al. Valley-Selective Optical Stark Effect Probed by Kerr Rotation. Phys. Rev. B. 2018;97:045307. doi: 10.1103/PhysRevB.97.045307. DOI
Ho Y. W.. et al. Measuring Valley Polarization in Two-Dimensional Materials with Second-Harmonic Spectroscopy. ACS Photonics. 2020;7:925–931. doi: 10.1021/acsphotonics.0c00174. DOI
Herrmann P.. et al. Nonlinear All-Optical Coherent Generation and Read-Out of Valleys in Atomically Thin Semiconductors. Small. 2023;19:2301126. doi: 10.1002/smll.202301126. PubMed DOI
Wu S., Fei Z., Sun Z., Yi Y., Xia W., Yan D., Guo Y., Shi Y., Yan J., Cobden D. H.. et al. Extrinsic Nonlinear Kerr Rotation in Topological Materials under a Magnetic Field. ACS Nano. 2023;17:18905–18913. doi: 10.1021/acsnano.3c04153. PubMed DOI
Groot Koerkamp M., Rasing T.. Giant Nonlinear Kerr Effects. J. Magn. Magn. Mater. 1996;156:213–214. doi: 10.1016/0304-8853(95)00844-6. DOI
Herrmann P.. et al. Nonlinear valley selection rules and all-optical probe of broken time-reversal symmetry in monolayer WSe2 . Nat. Photonics. 2025;19:300–306. doi: 10.1038/s41566-024-01591-z. DOI
Ahn Y.. et al. Electric Quadrupole Second-Harmonic Generation Revealing Dual Magnetic Orders in a Magnetic Weyl Semimetal. Nat. Photonics. 2024;18:26–31. doi: 10.1038/s41566-023-01300-2. DOI
Tyulnev I.. et al. Valleytronics in Bulk MoS2 with a Topological Field. Nature. 2024;628:746–751. doi: 10.1038/s41586-024-07156-y. PubMed DOI
McIver J. W., Schulte B., Stein F.-U., Matsuyama T., Jotzu G., Meier G., Cavalleri A.. Light-Induced Anomalous Hall Effect in Graphene. Nat. Phys. 2020;16:38–41. doi: 10.1038/s41567-019-0698-y. PubMed DOI PMC
Haldane F. D. M., Raghu S.. Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry. Phys. Rev. Lett. 2008;100:013904. doi: 10.1103/PhysRevLett.100.013904. PubMed DOI
Morimoto T., Nagaosa N.. Topological Nature of Nonlinear Optical Effects in Solids. Sci. Adv. 2016;2:e1501524. doi: 10.1126/sciadv.1501524. PubMed DOI PMC
Matsubara M.. et al. Giant Third-Order Magneto-Optical Rotation in Ferromagnetic EuO. Phys. Rev. B. 2012;86:195127. doi: 10.1103/PhysRevB.86.195127. DOI
Xiao D.. et al. Berry Phase Effects on Electronic Properties. Rev. Mod. Phys. 2010;82:1959–2007. doi: 10.1103/RevModPhys.82.1959. DOI
Huang B., Clark G., Navarro-Moratalla E., Klein D. R., Cheng R., Seyler K. L., Zhong D., Schmidgall E., McGuire M. A., Cobden D. H., Yao W., Xiao D., Jarillo-Herrero P., Xu X.. Layer-Dependent Ferromagnetism in a Van der Waals Crystal Down to the Monolayer Limit. Nature. 2017;546:270–273. doi: 10.1038/nature22391. PubMed DOI
Gong C., Li L., Li Z., Ji H., Stern A., Xia Y., Cao T., Bao W., Wang C., Wang Y., Qiu Z. Q., Cava R. J., Louie S. G., Xia J., Zhang X.. Discovery of Intrinsic Ferromagnetism in Two-Dimensional Van der Waals Crystals. Nature. 2017;546:265–269. doi: 10.1038/nature22060. PubMed DOI
Fiebig M., Pavlov V. V., Pisarev R. V.. Second-Harmonic Generation as a Tool for Studying Electronic and Magnetic Structures of Crystals: Review. J. Opt. Soc. Am. B. 2005;22:96–118. doi: 10.1364/JOSAB.22.000096. DOI
Kirilyuk A., Rasing T.. Magnetization-Induced-Second-Harmonic Generation from Surfaces and Interfaces. J. Opt. Soc. Am. B. 2005;22:148–167. doi: 10.1364/JOSAB.22.000148. DOI
Reif J., Zink J. C., Schneider C.-M., Kirschner J.. Effects of Surface Magnetism on Optical Second Harmonic Generation. Phys. Rev. Lett. 1991;67:2878–2881. doi: 10.1103/PhysRevLett.67.2878. PubMed DOI
Pan R.-P., Wei H. D., Shen Y. R.. Optical Second-Harmonic Generation from Magnetized Surfaces. Phys. Rev. B. 1989;39:1229–1234. doi: 10.1103/PhysRevB.39.1229. PubMed DOI
Fiebig M., Fröhlich D., Krichevtsov B. B., Pisarev R. V.. Second Harmonic Generation and Magnetic-Dipole-Electric-Dipole Interference in Antiferromagnetic Cr2O3 . Phys. Rev. Lett. 1994;73:2127–2130. doi: 10.1103/PhysRevLett.73.2127. PubMed DOI
Sun Z., Yi Y., Song T., Clark G., Huang B., Shan Y., Wu S., Huang D., Gao C., Chen Z., McGuire M., Cao T., Xiao D., Liu W.-T., Yao W., Xu X., Wu S.. Giant Nonreciprocal Second-Harmonic Generation from Antiferromagnetic Bilayer CrI3 . Nature. 2019;572:497–501. doi: 10.1038/s41586-019-1445-3. PubMed DOI
Chu H., Roh C. J., Island J. O., Li C., Lee S., Chen J., Park J.-G., Young A. F., Lee J. S., Hsieh D.. Linear Magnetoelectric Phase in Ultrathin MnPS3 Probed by Optical Second Harmonic Generation. Phys. Rev. Lett. 2020;124:027601. doi: 10.1103/PhysRevLett.124.027601. PubMed DOI
Ni Z., Haglund A. V., Wang H., Xu B., Bernhard C., Mandrus D. G., Qian X., Mele E. J., Kane C. L., Wu L.. Imaging the Néel Vector Switching in the Monolayer Antiferromagnet MnPSe3 with Strain-Controlled Ising Order. Nat. Nanotechnol. 2021;16:782–787. doi: 10.1038/s41565-021-00885-5. PubMed DOI
Lee K., Dismukes A. H., Telford E. J., Wiscons R. A., Wang J., Xu X., Nuckolls C., Dean C. R., Roy X., Zhu X.. Magnetic Order and Symmetry in the 2D Semiconductor CrSBr. Nano Lett. 2021;21:3511–3517. doi: 10.1021/acs.nanolett.1c00219. PubMed DOI
Birss, R. R. Symmetry and Magnetism; North-Holland Publishing Company, 1964.
Kumar N., Najmaei S., Cui Q., Ceballos F., Ajayan P. M., Lou J., Zhao H.. Second Harmonic Microscopy of Monolayer MoS2 . Phys. Rev. B. 2013;87:161403. doi: 10.1103/PhysRevB.87.161403. DOI
Malard L. M., Alencar T. V., Barboza A. P. M., Mak K. F., de Paula A. M.. Observation of Intense Second Harmonic Generation from MoS2 Atomic Crystals. Phys. Rev. B. 2013;87:201401. doi: 10.1103/PhysRevB.87.201401. DOI
Zhou X., Cheng J., Zhou Y., Cao T., Hong H., Liao Z., Wu S., Peng H., Liu K., Yu D.. Strong Second-Harmonic Generation in Atomic Layered GaSe. J. Am. Chem. Soc. 2015;137:7994–997. doi: 10.1021/jacs.5b04305. PubMed DOI
Zur Y., Noah A., Boix-Constant C., Mañas-Valero S., Fridman N., Rama-Eiroa R., Huber M. E., Santos E. J. G., Coronado E., Anahory Y.. Magnetic Imaging and Domain Nucleation in CrSBr Down to the 2D Limit. Adv. Mater. 2023;35:2307195. doi: 10.1002/adma.202307195. PubMed DOI
Thiel L., Wang Z., Tschudin M., Rohner D., Gutiérrez-Lezama I., Ubrig N., Gibertini M., Giannini E., Morpurgo A., Maletinsky P.. Probing Magnetism in 2D Materials at the Nanoscale with Single-Spin Microscopy. Science. 2019;364:973–976. doi: 10.1126/science.aav6926. PubMed DOI
Wang Z., Hong C., Sun Z., Wu S., Liang B., Duan X., Liu W.-T., Wu S.. Contrast-Enhanced Phase-Resolved Second Harmonic Generation Microscopy. Opt. Lett. 2024;49:2117–2120. doi: 10.1364/OL.520814. PubMed DOI
Sun Z., Hong C., Chen Y., Sheng Z., Wu S., Wang Z., Liang B., Liu W.-T., Yuan Z., Wu Y.. et al. Resolving and Routing the Magnetic Polymorphs in 2D Layered Antiferromagnet. Nat. Mater. 2025;24:226–233. doi: 10.1038/s41563-024-02074-w. PubMed DOI
Koopmans B., Koerkamp M. G., Rasing T., van den Berg H.. Observation of Large Kerr Angles in the Nonlinear Optical Response from Magnetic Multilayers. Phys. Rev. Lett. 1995;74:3692–3695. doi: 10.1103/PhysRevLett.74.3692. PubMed DOI
Ogawa Y., Yamada H., Ogasawara T., Arima T., Okamoto H., Kawasaki M., Tokura Y.. Nonlinear Magneto-Optical Kerr Rotation of an Oxide Superlattice with Artificially Broken Symmetry. Phys. Rev. Lett. 2003;90:217403. doi: 10.1103/PhysRevLett.90.217403. PubMed DOI
Zhang Y., Huang D., Shan Y., Jiang T., Zhang Z., Liu K., Shi L., Cheng J., Sipe J. E., Liu W.-T.. et al. Doping-Induced Second-Harmonic Generation in Centrosymmetric Graphene from Quadrupole Response. Phys. Rev. Lett. 2019;122:047401. doi: 10.1103/PhysRevLett.122.047401. PubMed DOI
Yao W., Xiao D., Niu Q.. Valley-Dependent Optoelectronics from Inversion Symmetry Breaking. Phys. Rev. B. 2008;77:235406. doi: 10.1103/PhysRevB.77.235406. DOI
Arora A., Rudner M. S., Song J. C. W.. Quantum Plasmonic Nonreciprocity in Parity-Violating Magnets. Nano Lett. 2022;22:9351–9357. doi: 10.1021/acs.nanolett.2c03126. PubMed DOI
Xiong Y., Shi L.-K., Song J. C. W.. Atomic Configuration Controlled Photocurrent in van der Waals Homostructures. 2D Mater. 2021;8:035008. doi: 10.1088/2053-1583/abe762. DOI
Ahn J., Guo G.-Y., Nagaosa N., Vishwanath A.. Riemannian Geometry of Resonant Optical Responses. Nat. Phys. 2022;18:290–295. doi: 10.1038/s41567-021-01465-z. DOI
Akamatsu T.. et al. A van der Waals Interface that Creates In-Plane Polarization and a Spontaneous Photovoltaic Effect. Science. 2021;372:68–72. doi: 10.1126/science.aaz9146. PubMed DOI
Dong Y., Yang M.-M., Yoshii M., Matsuoka S., Kitamura S., Hasegawa T., Ogawa N., Morimoto T., Ideue T., Iwasa Y.. Giant Bulk Piezophotovoltaic Effect in 3R-MoS2 . Nat. Nanotechnol. 2023;18:36–41. doi: 10.1038/s41565-022-01252-8. PubMed DOI
Kumar, R. K. ; et al. Terahertz Photocurrent Probe of Quantum Geometry and Interactions in Magic-Angle Twisted Bilayer Graphene. Nat. Mater. 2025, 10.1038/s41563-025-02180-3. PubMed DOI
Sodemann I., Fu L.. Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials. Phys. Rev. Lett. 2015;115:216806. doi: 10.1103/PhysRevLett.115.216806. PubMed DOI
Ma Q.. et al. Observation of the Nonlinear Hall Effect under Time-Reversal-Symmetric Conditions. Nature. 2019;565:337–342. doi: 10.1038/s41586-018-0807-6. PubMed DOI
Gao Y., Yang S. A., Niu Q.. Field Induced Positional Shift of Bloch Electrons and Its Dynamical Implications. Phys. Rev. Lett. 2014;112:166601. doi: 10.1103/PhysRevLett.112.166601. PubMed DOI
Gao A.. et al. Quantum Metric Nonlinear Hall Effect in a Topological Antiferromagnetic Heterostructure. Science. 2023;381:181–186. doi: 10.1126/science.adf1506. PubMed DOI
Watanabe H., Yanase Y.. Chiral Photocurrent in Parity-Violating Magnet and Enhanced Response in Topological Antiferromagnet. Phys. Rev. X. 2021;11:011001. doi: 10.1103/PhysRevX.11.011001. DOI
König E. J., Dzero M., Levchenko A., Pesin D. A.. Gyrotropic Hall Effect in Berry-Curved Materials. Phys. Rev. B. 2019;99:155404. doi: 10.1103/PhysRevB.99.155404. DOI
Du Z. Z., Wang C. M., Li S., Lu H.-Z., Xie X. C.. Disorder-Induced Nonlinear Hall Effect with Time-Reversal Symmetry. Nat. Commun. 2019;10:3047. doi: 10.1038/s41467-019-10941-3. PubMed DOI PMC
He P., Koon G. K. W., Isobe H., Tan J. Y., Hu J., Castro Neto A. H., Fu L., Yang H.. Graphene Moiré Superlattices with Giant Quantum Nonlinearity of Chiral Bloch Electrons. Nat. Nanotechnol. 2022;17:378–383. doi: 10.1038/s41565-021-01060-6. PubMed DOI
Ma D., Arora A., Vignale G., Song J. C. W.. Anomalous Skew-Scattering Nonlinear Hall Effect and Chiral Photocurrents in PT-Symmetric Antiferromagnets. Phys. Rev. Lett. 2023;131:076601. doi: 10.1103/PhysRevLett.131.076601. PubMed DOI
Shi L.-K., Matsyshyn O., Song J. C. W., Villadiego I. S.. Berry-Dipole Photovoltaic Demon and the Thermodynamics of Photocurrent Generation within the Optical Gap of Metals. Phys. Rev. B. 2023;107:125151. doi: 10.1103/PhysRevB.107.125151. DOI
Rappoport T. G., Morgado T. A., Lannebère S., Silveirinha M. G.. Engineering Transistorlike Optical Gain in Two-Dimensional Materials with Berry Curvature Dipoles. Phys. Rev. Lett. 2023;130:076901. doi: 10.1103/PhysRevLett.130.076901. PubMed DOI
Ma D., Xiong Y., Song J. C. W.. Metallic Electro-Optic Effect in Gapped Bilayer Graphene. Nano Lett. 2025;25:1260–1265. doi: 10.1021/acs.nanolett.4c03771. PubMed DOI
Shi L.-K., Matsyshyn O., Song J. C. W., Villadiego I. S.. Floquet Fermi Liquid. Phys. Rev. Lett. 2024;132:146402. doi: 10.1103/PhysRevLett.132.146402. PubMed DOI
Gao Y., Zhang Y., Xiao D.. Tunable Layer Circular Photogalvanic Effect in Twisted Bilayers. Phys. Rev. Lett. 2020;124:077401. doi: 10.1103/PhysRevLett.124.077401. PubMed DOI
Matsyshyn O., Xiong Y., Arora A., Song J. C. W.. Layer Photovoltaic Effect in van der Waals Heterostructures. Phys. Rev. B. 2023;107:205306. doi: 10.1103/PhysRevB.107.205306. DOI
Gao, Y. ; Wang, C. ; Xiao, D. . Topological Inverse Faraday Effect in Weyl Semimetals. arXiv 2020, 2009.13392. 10.48550/arXiv.2009.13392 DOI
Xiong Y., Rudner M. S., Song J. C. W.. Antiscreening and Nonequilibrium Layer Electric Phases in Graphene Multilayers. Phys. Rev. Lett. 2024;133:136901. doi: 10.1103/PhysRevLett.133.136901. PubMed DOI
Rudner M. S., Song J. C. W.. Self-Induced Berry Flux and Spontaneous Non-Equilibrium Magnetism. Nat. Phys. 2019;15:1017–1021. doi: 10.1038/s41567-019-0578-5. DOI
Chaudhary S., Lewandowski C., Refael G.. Shift-Current Response as a Probe of Quantum Geometry and Electron-Electron Interactions in Twisted Bilayer Graphene. Phys. Rev. Research. 2022;4:013164. doi: 10.1103/PhysRevResearch.4.013164. DOI
Chan Y.-H., Qiu D. Y., da Jornada F. H., Louie S. G.. Giant Exciton-Enhanced Shift Currents and Direct Current Conduction with Subbandgap Photo Excitations Produced by Many-Electron Interactions. Proc. Natl. Acad. Sci. U. S. A. 2021;118:e1906938118. doi: 10.1073/pnas.1906938118. PubMed DOI PMC
Shi L.-K., Zhang D., Chang K., Song J. C. W.. Geometric Photon-Drag Effect and Nonlinear Shift Current in Centrosymmetric Crystals. Phys. Rev. Lett. 2021;126:197402. doi: 10.1103/PhysRevLett.126.197402. PubMed DOI
Xiong Y., Shi L.-K., Song J. C. W.. Polariton Drag Enabled Quantum Geometric Photocurrents in High-Symmetry Materials. Phys. Rev. B. 2022;106:205423. doi: 10.1103/PhysRevB.106.205423. DOI
Ji Z., Zhao Y., Chen Y., Zhu Z., Wang Y., Liu W., Modi G., Mele E. J., Jin S., Agarwal R.. Opto-Twistronic Hall Effect in a Three-Dimensional Spiral Lattice. Nature. 2024;634:69–73. doi: 10.1038/s41586-024-07949-1. PubMed DOI
Nye J. F., Berry M. V.. Dislocations in Wave Trains. Proc. R. Soc. London A. 1974;336:165–190. doi: 10.1098/rspa.1974.0012. DOI
Nye, J. F. Natural focusing and Fine Structure of Light: Caustics and Wave Dislocations. CRC Press, 1999.
Bauer F. T.. et al. Observation of Optical Polarization Möbius Strips. Science. 2015;347:964–966. doi: 10.1126/science.1260635. PubMed DOI
Dennis M. R.. et al. Isolated Optical Vortex Knots. Nat. Phys. 2010;6:118–121. doi: 10.1038/nphys1504. DOI
Donati S.. et al. Twist of Generalized Skyrmions and Spin Vortices in a Polariton Superfluid. Proc. Natl. Acad. Sci. U. S. A. 2016;113:14926–14931. doi: 10.1073/pnas.1610123114. PubMed DOI PMC
Sugic D.. et al. Particle-Like Topologies in Light. Nat. Commun. 2021;12:6785. doi: 10.1038/s41467-021-26171-5. PubMed DOI PMC
Allen L.. et al. Orbital Angular Momentum of Light and the Transformation of Laguerre-Gaussian Laser Modes. Phys. Rev. A. 1992;45:8185. doi: 10.1103/PhysRevA.45.8185. PubMed DOI
Berry M. V., Dennis M. R.. Polarization Singularities in Isotropic Random Vector Waves. Proc. R. Soc. London A. 2001;457:141–155. doi: 10.1098/rspa.2000.0660. DOI
Bazhenov V. Y., Vasnetsov M. V., Soskin M. S.. Laser Beams with Screw Dislocations in Their Wavefronts. JETP Lett. 52.8. 1990:429–431.
Andersen M. F.. et al. Quantized Rotation of Atoms from Photons with Orbital Angular Momentum. Phys. Rev. Lett. 2006;97:170406. doi: 10.1103/PhysRevLett.97.170406. PubMed DOI
Simpson N. B.. et al. Mechanical Equivalence of Spin and Orbital Angular Momentum of Light: An Optical Spanner. Opt. Lett. 1997;22:52–54. doi: 10.1364/OL.22.000052. PubMed DOI
Söllner I.. et al. Deterministic Photon−Emitter Coupling in Chiral Photonic Circuits. Nat. Nanotechnol. 2015;10:775–778. doi: 10.1038/nnano.2015.159. PubMed DOI
Vanacore G. M.. et al. Ultrafast Generation and Control of an Electron Vortex Beam Via Chiral Plasmonic Near Fields. Nat. Mater. 2019;18:573–579. doi: 10.1038/s41563-019-0336-1. PubMed DOI
Tsesses S.. et al. Tunable Photon-Induced Spatial Modulation of Free Electrons. Nat. Mater. 2023;22:345–352. doi: 10.1038/s41563-022-01449-1. PubMed DOI
Fang Y.. et al. Structured Electrons with Chiral Mass and Charge. Science. 2024;385:183–187. doi: 10.1126/science.adp9143. PubMed DOI
Willig K. I.. et al. STED Microscopy Reveals that Synaptotagmin Remains Clustered After Synaptic Vesicle Exocytosis. Nature. 2006;440:935–939. doi: 10.1038/nature04592. PubMed DOI
Gibson G.. et al. Free-Space Information Transfer Using Light Beams Carrying Orbital Angular Momentum. Opt. Express. 2004;12:5448–5456. doi: 10.1364/OPEX.12.005448. PubMed DOI
Mair A.. et al. Entanglement of the Orbital Angular Momentum States of Photons. Nature. 2001;412:313–316. doi: 10.1038/35085529. PubMed DOI
Ostrovsky E.. et al. Nanoscale Control over Optical Singularities. Optica. 2018;5:283–288. doi: 10.1364/OPTICA.5.000283. DOI
Machado F.. et al. Shaping Polaritons to Reshape Selection Rules. ACS Photonics. 2018;5:3064–3072. doi: 10.1021/acsphotonics.8b00325. DOI
Gorodetski Y.. et al. Observation of the Spin-Based Plasmonic Effect in Nanoscale Structures. Phys. Rev. Lett. 2008;101:043903. doi: 10.1103/PhysRevLett.101.043903. PubMed DOI
Tsesses S., Ostrovsky E., Cohen K., Gjonaj B., Lindner N. H., Bartal G.. Optical Skyrmion Lattice in Evanescent Electromagnetic Fields. Science. 2018;361:993–996. doi: 10.1126/science.aau0227. PubMed DOI
Davis T. J., Janoschka D., Dreher P., Frank B., Meyer zu Heringdorf F. J., Giessen H.. Ultrafast Vector Imaging of Plasmonic Skyrmion Dynamics with Deep Subwavelength Resolution. Science. 2020;368:eaba6415. doi: 10.1126/science.aba6415. PubMed DOI
Spektor G.. et al. Revealing the Subfemtosecond Dynamics of Orbital Angular Momentum in Nanoplasmonic Vortices. Science. 2017;355:1187–1191. doi: 10.1126/science.aaj1699. PubMed DOI
Wang M.. et al. Spin-Orbit-Locked Hyperbolic Polariton Vortices Carrying Reconfigurable Topological Charges. eLight. 2022;2:12. doi: 10.1186/s43593-022-00018-y. DOI
Gibertini M.. et al. Magnetic 2D Materials and Heterostructures. Nat. Nanotechnol. 2019;14:408–419. doi: 10.1038/s41565-019-0438-6. PubMed DOI
Kurman Y.. et al. Dynamics of Optical Vortices in van der Waals Materials. Optica. 2023;10:612–618. doi: 10.1364/OPTICA.485120. DOI
Berry M. V.. Disruption of Wavefronts: Statistics of Dislocations in Incoherent Gaussian Random Waves. J. Phys. A: Math. Gen. 1978;11:27. doi: 10.1088/0305-4470/11/1/007. DOI
Berry M. V., Dennis M. R.. Phase Singularities in Isotropic Random Waves. Proc. R. Soc. London A. 2000;456:2059–2079. doi: 10.1098/rspa.2000.0602. DOI
De Angelis L.. et al. Spatial Distribution of Phase Singularities in Optical Random Vector Waves. Phys. Rev. Lett. 2016;117:093901. doi: 10.1103/PhysRevLett.117.093901. PubMed DOI
De Angelis L.. et al. Persistence and Lifelong Fidelity of Phase Singularities in Optical Random Waves. Phys. Rev. Lett. 2017;119:203903. doi: 10.1103/PhysRevLett.119.203903. PubMed DOI
Bucher T.. et al. Coherently Amplified Ultrafast Imaging Using a Free-Electron Interferometer. Nat. Photonics. 2024;18:809–815. doi: 10.1038/s41566-024-01451-w. DOI
Kosterlitz, J. M. ; Thouless, D. J. . Ordering, Metastability and Phase Transitions in Two-Dimensional Systems. Basic Notions Of Condensed Matter Physics. CRC Press, 2018; pp 493−515.
Dai Y., Zhou Z., Ghosh A., Mong R. S. K., Kubo A., Huang C. B., Petek H.. Plasmonic Topological Quasiparticle on the Nanometre and Femtosecond Scales. Nature. 2020;588:616–619. doi: 10.1038/s41586-020-3030-1. PubMed DOI
Dreher P., Neuhaus A., Janoschka D., Roedl A., Meiler T., Frank B., Davis T. J., Giessen H., Meyer zu Heringdorf F.-J.. Spatio-Temporal Topology of Plasmonic Spin Meron Pairs Revealed by Polarimetric Photo-Emission Microscopy. Adv. Photonics. 2024;6:066007. doi: 10.1117/1.AP.6.6.066007. DOI
Skyrme T. H. R.. A Unified Field Theory of Mesons and Baryons. Nucl. Phys. 1962;31:556–569. doi: 10.1016/0029-5582(62)90775-7. DOI
Shen Y., Zhang Q., Shi P., Du L., Yuan X., Zayats A. V.. Optical Skyrmions and Other Topological Quasiparticles of Light. Nat. Photonics. 2024;18:15–25. doi: 10.1038/s41566-023-01325-7. DOI
Schwab J., Neuhaus A., Dreher P., Tsesses S., Cohen K., Mangold F., Mantha A., Frank B., Bartal G., Meyer zu Heringdorf F.-J., Davis T. J., Giessen H.. Skyrmion bags of light in plasmonic moiré superlattices. Nat. Phys. 2025 doi: 10.1038/s41567-025-02873-1. DOI
Rößler U. K., Bogdanov A. N., Pfleiderer C.. Spontaneous Skyrmion Ground States in Magnetic Metals. Nature. 2006;442:797–801. doi: 10.1038/nature05056. PubMed DOI
Chen, P. ; Lee, K. X. ; Meiler, T. C. ; Shen, Y. . Topological Momentum Skyrmions in Mie Scattering Fields. Nanophotonics 2025, 10.1515/nanoph-2025-0071. PubMed DOI PMC
Du L., Yang A., Zayats A. V., Yuan X.. Deep-Subwavelength Features of Photonic Skyrmions in a Confined Electromagnetic Field with Orbital Angular Momentum. Nat. Phys. 2019;15:650–654. doi: 10.1038/s41567-019-0487-7. DOI
Zheludev N. I., Yuan G.. Optical Superoscillation Technologies beyond the Diffraction Limit. Nat. Rev. Phys. 2022;4:16–32. doi: 10.1038/s42254-021-00382-7. DOI
Frank B., Kahl P., Podbiel D., Spektor G., Orenstein M., Fu L., Weiss T., Von Hoegen M. H., Davis T. J., Meyer zu Heringdorf F.-J., Giessen H.. Short-Range Surface Plasmonics: Localized Electron Emission Dynamics from a 60-nm Spot on an Atomically Flat Single-Crystalline Gold Surface. Sci. Adv. 2017;3:e1700721. doi: 10.1126/sciadv.1700721. PubMed DOI PMC
Low T., Chaves A., Caldwell J. D., Kumar A., Fang N. X., Avouris P., Heinz T. F., Guinea F., Martin-Moreno L., Koppens F. H. L.. Polaritons in Layered Two-Dimensional Materials. Nat. Mater. 2017;16:182–194. doi: 10.1038/nmat4792. PubMed DOI
Tian B., Jiang J., Zheng Z., Wang X., Liu S., Huang W., Jiang T., Chen H., Deng S.. Néel-Type Optical Target Skyrmions Inherited from Evanescent Electromagnetic Fields with Rotational Symmetry. Nanoscale. 2023;15:13224–13232. doi: 10.1039/D3NR02143B. PubMed DOI
Hillenbrand R., Taubner T., Keilmann F.. Phonon-Enhanced Light−Matter Interaction at the Nanometre Scale. Nature. 2002;418:159–162. doi: 10.1038/nature00899. PubMed DOI
Taubner T., Korobkin D., Urzhumov Y., Shvets G., Hillenbrand R.. Near-Field Microscopy Through a SiC Superlens. Science. 2006;313:1595. doi: 10.1126/science.1131025. PubMed DOI
Caldwell J. D., Glembocki O. J., Francescato Y., Sharac N., Giannini V., Bezares F. J., Long J. P., Owrutsky J. C., Vurgaftman I., Tischler J. G., Wheeler V. D., Bassim N. D., Shirey L. M., Kasica R., Maier S. A.. Low-Loss, Extreme Subdiffraction Photon Confinement via Silicon Carbide Localized Surface Phonon Polariton Resonators. Nano Lett. 2013;13:3690–3697. doi: 10.1021/nl401590g. PubMed DOI
Mancini A., Nan L., Wendisch F. J., Berté R., Ren H., Cortés E., Maier S. A.. Near-Field Retrieval of the Surface Phonon Polariton Dispersion in Free-Standing Silicon Carbide Thin Films. ACS Photonics. 2022;9:3696–3704. doi: 10.1021/acsphotonics.2c01270. DOI
Mancini A., Nan L., Berté R., Cortés E., Ren H., Maier S. A.. Multiplication of the Orbital Angular Momentum of Phonon Polaritons via Sublinear Dispersion. Nat. Photonics. 2024;18:677–684. doi: 10.1038/s41566-024-01410-5. DOI
Hillenbrand, R. Private communication.
Andrei E. Y., MacDonald A. H.. Graphene Bilayers with a Twist. Nat. Mater. 2020;19:1265–1275. doi: 10.1038/s41563-020-00840-0. PubMed DOI
Suárez Morell E., Chico L., Brey L.. Twisting dirac fermions: circular dichroism in bilayer graphene. 2D Mater. 2017;4:035015. doi: 10.1088/2053-1583/aa7eb6. DOI
Stauber T., Low T., Gómez-Santos G.. Linear Response of Twisted Bilayer Graphene: Continuum Versus Tight-Binding Models. Phys. Rev. B. 2018;98:195414. doi: 10.1103/PhysRevB.98.195414. PubMed DOI
Khaliji K., Martín-Moreno L., Avouris P., Oh S. H., Low T.. Twisted Two-Dimensional Material Stacks for Polarization Optics. Phys. Rev. Lett. 2022;128:193902. doi: 10.1103/PhysRevLett.128.193902. PubMed DOI
Ma C., Yuan S., Cheung P., Watanabe K., Taniguchi T., Zhang F., Xia F.. Intelligent Infrared Sensing Enabled by Tunable Moiré Quantum Geometry. Nature. 2022;604:266–272. doi: 10.1038/s41586-022-04548-w. PubMed DOI
Stauber T., González J., Gómez-Santos G.. Change of Chirality at Magic Angles of Twisted Bilayer Graphene. Phys. Rev. B. 2020;102:081404(R) doi: 10.1103/PhysRevB.102.081404. DOI
Lin X., Liu Z., Stauber T., Gómez-Santos T., Gao F., Chen H., Zhang G., Low T.. Chiral Plasmons with Twisted Atomic Bilayers. Phys. Rev. Lett. 2020;125:077401. doi: 10.1103/PhysRevLett.125.077401. PubMed DOI
Margetis D., Stauber T.. Theory of Plasmonic Edge States in Chiral Bilayer System. Phys. Rev. B. 2021;104:115422. doi: 10.1103/PhysRevB.104.115422. DOI
Stauber T., Low T., Gómez-Santos G.. Plasmon-Enhanced Near-Field Chirality in Twisted van der Waals Heterostructures. Nano Lett. 2020;20:8711–8718. doi: 10.1021/acs.nanolett.0c03519. PubMed DOI
Yu Y., Zhang K., Parks H., Babar M., Carr S., Craig I. M., Van Winkle M., Lyssenko A., Taniguchi T., Watanabe K., Viswanathan V., Bediako D. K.. Tunable Angle-Dependent Electrochemistry at Twisted Bilayer Graphene with Moiré Flat Bands. Nat. Chem. 2022;14:267–273. doi: 10.1038/s41557-021-00865-1. PubMed DOI
Stauber T., Wackerl M., Wenk P., Margetis D., González J., Gómez-Santos G., Schliemann J.. Neutral Magic-Angle Bilayer Graphene: Condon Instability and Chiral Resonances. Small Sci. 2023;3:2200080. doi: 10.1002/smsc.202200080. PubMed DOI PMC
Zhu H., Yakobson B. I.. Creating Chirality in the Nearly Two Dimensions. Nat. Mater. 2024;23:316–322. doi: 10.1038/s41563-024-01814-2. PubMed DOI
Park J. M., Cao Y., Xia L.-Q., Sun S., Watanabe K., Taniguchi T., Jarillo-Herrero P.. Robust Superconductivity in Magic-Angle Multilayer Graphene Family. Nat. Mater. 2022;21:877–883. doi: 10.1038/s41563-022-01287-1. PubMed DOI
Bahamon D. A., Gómez-Santos G., Efetov D. K., Stauber T.. Chirality Probe of Twisted Bilayer Graphene in the Linear Transport Regime. Nano Lett. 2024;24:4478–4484. doi: 10.1021/acs.nanolett.4c00371. PubMed DOI PMC
Mannix A. J., Ye A., Sung S. H., Ray A., Mujid F., Park C., Lee M., Kang J.-H., Shreiner R., High A. A., Muller D. A., Hovden R., Park J.. Robotic Four-Dimensional Pixel Assembly of van der Waals Solids. Nat. Nanotechnol. 2022;17:361–366. doi: 10.1038/s41565-021-01061-5. PubMed DOI
Ji Z., Zhao Y., Chen Y., Zhu Z., Wang Y., Liu W., Modi G., Mele E. J., Jin S., Agarwal R.. Opto-Twistronic Hall Effect in a Three-Dimensional Spiral Lattice. Nature. 2024;634:69–73. doi: 10.1038/s41586-024-07949-1. PubMed DOI
de Sousa D. J. P., Ascencio C. O., Low T.. Linear Magnetoelectric Electro-Optical Effect. Phys. Rev. B. 2024;110:115421. doi: 10.1103/PhysRevB.110.115421. DOI
Huang T., Tu X., Shen C., Zheng B., Wang J., Wang H., Khaliji K., Park S. H., Liu Z., Yang T., Zhang Z., Shao L., Li X., Low T., Shi Y., Wang X.. Observation of Chiral and Slow Plasmons in Twisted Bilayer Graphene. Nature. 2022;605:63–68. doi: 10.1038/s41586-022-04520-8. PubMed DOI
Zheng Z.. et al. Phonon Polaritons in Twisted Double-Layers of Hyperbolic van der Waals Crystals. Nano Lett. 2020;20:5301–5308. doi: 10.1021/acs.nanolett.0c01627. PubMed DOI
Chen M., Lin X., Dinh T. H., Zheng Z., Shen J., Ma Q., Chen H., Jarillo-Herrero P., Dai S.. Configurable Phonon Polaritons in Twisted α-MoO3 . Nat. Mater. 2020;19:1307–1311. doi: 10.1038/s41563-020-0732-6. PubMed DOI
Hu G.. et al. Moiré Hyperbolic Metasurfaces. Nano Lett. 2020;20:3217–3224. doi: 10.1021/acs.nanolett.9b05319. PubMed DOI
Duan J.. et al. Multiple and Spectrally Robust Photonic Magic Angles in Reconfigurable α-MoO3 Trilayers. Nat. Mater. 2023;22:867–872. doi: 10.1038/s41563-023-01582-5. PubMed DOI
Matveeva O.. et al. Twist-Tunable Polaritonic Nanoresonators in a van der Waals Crystal. npj 2D Mater. Appl. 2023;7:31. doi: 10.1038/s41699-023-00387-z. PubMed DOI PMC
Capote-Robayna, N. ; et al. Low-Loss Twist-Tunable in-Plane Anisotropic Polaritonic Crystals. arXiv 2024, 2409.07861. 10.48550/arXiv.2409.07861 DOI
Yin, Y. ; et al. Selective Excitation of Bloch Modes in Canalized Polaritonic Crystals. Advanced Optical Materials 2025, 10.1002/adom.202403536. DOI
Capote-Robayna N.. et al. Twisted Polaritonic Crystals in Thin van der Waals Slabs. Laser Photonics Rev. 2022;16:2200428. doi: 10.1002/lpor.202270045. DOI
Sahoo N. R.. et al. Polaritons in Photonic Hypercrystals of van der Waals Materials. Adv. Funct. Mater. 2024;34:2316863. doi: 10.1002/adfm.202470240. DOI
Du L.. et al. Moiré Photonics and Optoelectronics. Science. 2023;379:eadg0014. doi: 10.1126/science.adg0014. PubMed DOI
Yao K.. et al. Enhanced Tunable Second Harmonic Generation from Twistable Interfaces and Vertical Superlattices in Boron Nitride Homostructures. Sci. Adv. 2021;7:eabe8691. doi: 10.1126/sciadv.abe8691. PubMed DOI PMC
Álvarez-Pérez G.. et al. Active Tuning of Highly Anisotropic Phonon Polaritons in van der Waals Crystal Slabs by Gated Graphene. ACS Photonics. 2022;9:383–390. doi: 10.1021/acsphotonics.1c01549. DOI
Zhou Z.. et al. Gate-Tuning Hybrid Polaritons in Twisted α-MoO3/Graphene Heterostructures. Nano Lett. 2023;23:11252–11259. doi: 10.1021/acs.nanolett.3c03769. PubMed DOI
Kapfer M.. et al. Programming Twist Angle and Strain Profiles in 2D Materials. Science. 2023;381:677–681. doi: 10.1126/science.ade9995. PubMed DOI
Tang H.. et al. On-Chip Multi-Degree-of-Freedom Control of Two-Dimensional Materials. Nature. 2024;632:1038–1044. doi: 10.1038/s41586-024-07826-x. PubMed DOI
Obst M.. et al. Terahertz Twistoptics−Engineering Canalized Phonon Polaritons. ACS Nano. 2023;17:19313–19322. doi: 10.1021/acsnano.3c06477. PubMed DOI
Álvarez-Cuervo J.. et al. Unidirectional Ray Polaritons in Twisted Asymmetric Stacks. Nat. Commun. 2024;15:9042. doi: 10.1038/s41467-024-52750-3. PubMed DOI PMC
Lou B.. et al. Free-Space Beam Steering with Twisted Bilayer Photonic Crystal Slabs. ACS Photonics. 2024;11:3636–3643. doi: 10.1021/acsphotonics.4c00736. DOI
Enders, M. T. ; et al. Intrinsic Mid-IR Chirality and Chiral Thermal Emission from Twisted Bilayers. arXiv 2024, 2409.02641. 10.48550/arXiv.2409.02641 DOI
Galiffi E., Carini G., Ni X., Álvarez-Pérez G., Yves S., Renzi E. M., Nolen R., Wasserroth S., Wolf M., Alonso-Gonzalez P., Paarmann A., Alù A.. Extreme Light Confinement and Control in Low-Symmetry Phonon-Polaritonic Crystals. Nat. Rev. Mater. 2024;9:9–28. doi: 10.1038/s41578-023-00620-7. DOI
Wang H.. et al. Planar Hyperbolic Polaritons in 2D van der Waals Materials. Nat. Commun. 2024;15:69. doi: 10.1038/s41467-023-43992-8. PubMed DOI PMC
Wu Y., Duan J., Ma W., Ou Q., Li P., Alonso-González P., Caldwell J. D., Bao Q.. Manipulating Polaritons at the Extreme Scale in van der Waals Materials. Nat. Rev. Phys. 2022;4:578–594. doi: 10.1038/s42254-022-00472-0. DOI
Li X.. et al. Review of Anisotropic 2D Materials: Controlled Growth, Optical Anisotropy Modulation, and Photonic Applications. Laser Phot. Rev. 2021;15:2100322. doi: 10.1002/lpor.202100322. DOI
Slavich A. S.. et al. Exploring van der Waals Materials with High Anisotropy: Geometrical and Optical Approaches. Light Sci. Appl. 2024;13:68. doi: 10.1038/s41377-024-01407-3. PubMed DOI PMC
Guo Q.. et al. Colossal in-Plane Optical Anisotropy in a Two-Dimensional van der Waals Crystal. Nat. Photonics. 2024;18:1170–1175. doi: 10.1038/s41566-024-01501-3. DOI
Nemilentsau A.. et al. Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics. Phys. Rev. Lett. 2016;116:066804. doi: 10.1103/PhysRevLett.116.066804. PubMed DOI
Ermolaev G. A.. et al. Wandering Principal Optical Axes in van der Waals Triclinic Materials. Nat. Commun. 2024;15:1552. doi: 10.1038/s41467-024-45266-3. PubMed DOI PMC
Venturi G.. et al. Visible-Frequency Hyperbolic Plasmon Polaritons in a Natural van der Waals Crystal. Nat. Commun. 2024;15:9727. doi: 10.1038/s41467-024-53988-7. PubMed DOI PMC
Li L.. et al. Emerging in-Plane Anisotropic Two-Dimensional Materials. InfoMat. 2019;1:54–73. doi: 10.1002/inf2.12005. DOI
Mounet N.. et al. Two-Dimensional Materials from High-Throughput Computational Exfoliation of Experimentally Known Compounds. Nat. Nanotechnol. 2018;13:246–252. doi: 10.1038/s41565-017-0035-5. PubMed DOI
Zhang T.. et al. Spatiotemporal Beating and Vortices of van der Waals Hyperbolic Polaritons. Proc. Natl. Acad. Sci. U. S. A. 2024;121:e2319465121. doi: 10.1073/pnas.2319465121. PubMed DOI PMC
Sternbach A. J., Chae S. H., Latini S., Rikhter A. A., Shao Y., Li B., Rhodes D., Kim B., Schuck P. J., Xu X., Zhu X.-Y., Averitt R. D., Hone J., Fogler M. M., Rubio A., Basov D. N.. Programmable Hyperbolic Polaritons in van der Waals Semiconductors. Science. 2021;371:617–620. doi: 10.1126/science.abe9163. PubMed DOI
McKeown-Green A. S.. et al. Millimeter-Scale Exfoliation of hBN with Tunable Flake Thickness for Scalable Encapsulation. ACS Appl. Nano Mater. 2024;7:6574–6582. doi: 10.1021/acsanm.4c00412. DOI
Calandrini E.. et al. Near- and Far-Field Observation of Phonon Polaritons in Wafer-Scale Multilayer Hexagonal Boron Nitride Prepared by Chemical Vapor Deposition. Adv. Mater. 2023;35:2302045. doi: 10.1002/adma.202302045. PubMed DOI
Herzig Sheinfux H.. et al. High-Quality Nanocavities Through Multimodal Confinement of Hyperbolic Polaritons in Hexagonal Boron Nitride. Nat. Mater. 2024;23:499–505. doi: 10.1038/s41563-023-01785-w. PubMed DOI
Wang H.. et al. Strain-Tunable Hyperbolic Exciton Polaritons in Monolayer Black Arsenic with Two Exciton Resonances. Nano Lett. 2024;24:2057–2062. doi: 10.1021/acs.nanolett.3c04730. PubMed DOI
Vázquez-Lozano J. E., Liberal I.. Review on the Scientific and Technological Breakthroughs in Thermal Emission Engineering. ACS Appl. Opt. Mater. 2024;2:898–927. doi: 10.1021/acsaom.4c00030. PubMed DOI PMC
Lu G.. et al. Engineering the Spectral and Spatial Dispersion of Thermal Emission Via Polariton−Phonon Strong Coupling. Nano Lett. 2021;21:1831–1838. doi: 10.1021/acs.nanolett.0c04767. PubMed DOI
Sarkar M.. et al. Lithography-Free Directional Control of Thermal Emission. Nanophotonics. 2024;13:763–771. doi: 10.1515/nanoph-2023-0595. PubMed DOI PMC
Pan Z.. et al. Remarkable Heat Conduction Mediated by Non-Equilibrium Phonon Polaritons. Nature. 2023;623:307–312. doi: 10.1038/s41586-023-06598-0. PubMed DOI
Hutchins, W. ; et al. Ultrafast Evanescent Heat Transfer Across Solid Interfaces Via Hyperbolic Phonon-Polaritons in Hexagonal Boron Nitride. Nat. Mater. 2025, 24, 698 10.1038/s41563-025-02154-5. PubMed DOI PMC
Sun T.. et al. Van der Waals Quaternary Oxides for Tunable Low-Loss Anisotropic Polaritonics. Nat. Nanotechnol. 2024;19:758–765. doi: 10.1038/s41565-024-01628-y. PubMed DOI
Nguyen H. M. D., Bouteyre P., Trippé-Allard G., Chevalier C., Deleporte E., Drouard E., Seassal C., Nguyen H. S.. Nanoimprinted Exciton-Polaritons Metasurfaces: Cost-Effective, Large-Scale, High Homogeneity, and Room Temperature Operation. Opt. Mater. Expr. 2024;14:1655–1669. doi: 10.1364/OME.512255. DOI
Guddala S., Komissarenko F., Kiriushechkina S., Vakulenko A., Li M., Menon V. M., Alù A., Khanikaev A. B.. Topological Phonon-Polariton Funneling in Midinfrared Metasurfaces. Science. 2021;374:225–227. doi: 10.1126/science.abj5488. PubMed DOI
Zhang Q., Hu G., Ma W., Li P., Krasnok A., Hillenbrand R., Alù A., Qiu C. W.. Interface Nano-Optics with van der Waals Polaritons. Nature. 2021;597:187–195. doi: 10.1038/s41586-021-03581-5. PubMed DOI
Tymchenko M., Gomez-Diaz J. S., Lee J., Belkin M. A., Alù A.. Gradient Nonlinear Pancharatnam-Berry Metasurfaces. Phys. Rev. Lett. 2015;115:207403. doi: 10.1103/PhysRevLett.115.207403. PubMed DOI
Lynch J., Guarneri L., Jariwala D., van de Groep J.. Exciton Resonances for Atomically-Thin Optics. J. Appl. Phys. 2022;132:091102. doi: 10.1063/5.0101317. DOI
Verre G., Baranov D. G., Munkhbat B., Cuadra J., Käll M., Shegai T.. Transition Metal Dichalcogenide Nanodisks as High-Index Dielectric Mie Nanoresonators. Nat. Nanotechnol. 2019;14:679–683. doi: 10.1038/s41565-019-0442-x. PubMed DOI
Munkhbat B., Küçüköz B., Baranov D. G., Antosiewicz T. J., Shegai T. O.. Nanostructured Transition Metal Dichalcogenide Multilayers for Advanced Nanophotonics. Laser Photonics Rev. 2023;17:2200057. doi: 10.1002/lpor.202200057. DOI
Zhang H., Abhiraman B., Zhang Q., Miao J., Jo K., Roccasecca S., Knight M. W., Davoyan A., Jariwala D.. Hybrid Exciton-Plasmon-Polaritons in van der Waals Semiconductor Gratings. Nat. Commun. 2020;11:3552. doi: 10.1038/s41467-020-17313-2. PubMed DOI PMC
Munkhbat B., Yankovich A. B., Baranov D. G., Verre R., Olsson E., Shegai T. O.. Transition Metal Dichalcogenide Metamaterials with Atomic Precision. Nat. Commun. 2020;11:4604. doi: 10.1038/s41467-020-18428-2. PubMed DOI PMC
Kumar P., Lynch J., Song B., Ling H., Barrera F., Kisslinger K., Zhang H., Anantharaman S., Digani J., Zhu H., Choudhury T., McAleese C., Wang X., Conran B., Whear O., Motala M., Snure M., Muratore C., Redwing J., Glavin N., Stach E., Davoyan A., Jariwala D.. Light−Matter Coupling in Large-Area van der Waals Superlattices. Nat. Nanotechnol. 2022;17:182–189. doi: 10.1038/s41565-021-01023-x. PubMed DOI
Feng J., Wu Y. K., Duan R., Wang J., Chen W., Qin J., Liu Z., Guo G. C., Ren X. F., Qiu C. W.. Polarization-Entangled Photon-Pair Source with van der Waals 3R-WS2 Crystal. eLight. 2024;4:16. doi: 10.1186/s43593-024-00074-6. DOI
Chernikov A., Berkelback T. C., Hill H. M., Rigosi A., Li Y., Aslon B., Reichman D. R., Hybertsen M. S., Heinz T.. Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2 . Phys. Rev. Lett. 2014;113:076802. doi: 10.1103/PhysRevLett.113.076802. PubMed DOI
Van de Groep J., Song J. H., Celano U., Li Q., Kik P., Brongersma M. L.. Exciton Resonance Tuning of an Atomically Thin Lens. Nat. Photonics. 2020;14:426–430. doi: 10.1038/s41566-020-0624-y. DOI
Guarneri L., Li Q., Bauer T., Song J. H., Saunders A. P., Liu F., Brongersma M. L., Van de Groep J.. Temperature-Dependent Excitonic Light Manipulation with Atomically Thin Optical Elements. Nano Lett. 2024;24:6240–6246. doi: 10.1021/acs.nanolett.4c00694. PubMed DOI PMC
Li M., Hail C., Biswas S., Atwater H.. Excitonic Beam Steering in an Active van der Waals Metasurface. Nano Lett. 2023;23:2771–2777. doi: 10.1021/acs.nanolett.3c00032. PubMed DOI
Lynch J., Kumar P., Chen C., Trainor N., Kumari S., Peng T. Y., Chen C. Y., Lu Y. J., Redwing J., Jariwala D.. >2π Phase Modulation using Exciton-Polaritons in a Two-Dimensional Superlattice. Device. 2025;3:100639. doi: 10.1016/j.device.2024.100639. DOI
Liu F., Wu W., Bai Y., Chae S. H., Li Q., Wang J., Hone J., Zhu X. Y.. Disassembling 2D van der Waals Crystals Into Macroscopic Monolayers and Reassembling Into Artificial Lattices. Science. 2020;367:903–906. doi: 10.1126/science.aba1416. PubMed DOI
Qin B., Ma C., Guo Q., Li X., Wei W., Ma C., Wang Q., Liu F., Zhao M., Xue G., Qi J., Wu M., Hong H., Du L., Zhao Q., Gao P., Wang X., Wang E., Zhang G., Liu C., Liu K.. Interfacial Epitaxy of Multilayer Rhombohedral Transition-Metal Dichalcogenide Single Crystals. Science. 2024;385:99–104. doi: 10.1126/science.ado6038. PubMed DOI
Ling H., Li R., Davoyan A. R.. All van der Waals Integrated Nanophotonics with Bulk Transition Metal Dichalcogenides. ACS Photonics. 2021;8:721–730. doi: 10.1021/acsphotonics.0c01964. DOI
Masubuchi S., Morimoto M., Morikawa S., Onodera S., Asakawa Y., Watanabe K., Taniguchi T., Machida T.. Autonomous Robotic Searching and Assembly of Two-Dimensional Crystals to Build van der Waals Superlattices. Nat. Commun. 2018;9:1413. doi: 10.1038/s41467-018-03723-w. PubMed DOI PMC
Xiong F., Wang H., Liu X., Sun J., Brongersma M. L., Pop E., Cui Y.. Li Intercalation in MoS2: In Situ Observation of Its Dynamics and Tuning Optical and Electrical Properties. Nano Lett. 2015;15:6777–6784. doi: 10.1021/acs.nanolett.5b02619. PubMed DOI
Ling H., Manna A., Shen J., Tung H. T., Sharp D., Fröch J., Dai S., Majumdar A., Davoyan A. R.. Deeply Subwavelength Integrated Excitonic van der Waals Nanophotonics. Optica. 2023;10:1345–1352. doi: 10.1364/OPTICA.499059. DOI
Funke S., Miller B., Parzinger E., Thiesen P., Holleitner A. W., Wurstbauer U.. Imaging Spectroscopic Ellipsometry of MoS2 . J. Phys. Cond. Matter. 2016;28:385301. doi: 10.1088/0953-8984/28/38/385301. PubMed DOI
Li M., Biswas S., Hail C. L., Atwater H. A.. Refractive Index Modulation in Monolayer Molybdenum Diselenide. Nano Lett. 2021;21:7602–7608. doi: 10.1021/acs.nanolett.1c02199. PubMed DOI
Munkhbat B., Wróbel P., Antosiewicz T. J., Shegai T. O.. Optical Constants of Several Multilayer Transition Metal Dichalcogenides Measured by Spectroscopic Ellipsometry in the 300−1700 nm Range: High Index, Anisotropy, and Hyperbolicity. ACS Photonics. 2022;9:2398–2407. doi: 10.1021/acsphotonics.2c00433. PubMed DOI PMC
Schinke C., Peest P. C., Schmidt J., Brendel R., Bothe K., Vogt M. R., Kröger I., Winter S., Schirmacher A., Lim S., Nguyen T., MacDonald D.. Uncertainty Analysis for the Coefficient of Band-to-Band Absorption of Crystalline Silicon. AIP Adv. 2015;5:067168. doi: 10.1063/1.4923379. DOI
Papatryfonos K., Angelova T., Brimont A., Reid B., Guldin S., Smith P. R., Tang M., Li K., Seeds A. J., Liu H., Selviah D. R.. Refractive Indices of MBE-Grown AlxGa(1−x) as Ternary Alloys in the Transparent Wavelength Region. AIP Adv. 2021;11:025327. doi: 10.1063/5.0039631. DOI
Hsu C., Frisenda R., Schimdt R., Arora A., Michaelis de Vasconcellos S., Bratschitsch R., van der Zant H. S. J., Castellanos-Gomez A.. Thickness-Dependent Refractive Index of 1L, 2L, and 3L MoS2, MoSe2, WS2, and WSe2 . Adv. Opt. Mater. 2019;7:1900239. doi: 10.1002/adom.201900239. DOI
Yu Y., Yu Y., Huang L., Peng H., Xiong L., Cao L. A.. Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers. Nano Lett. 2017;17:3613–1618. doi: 10.1021/acs.nanolett.7b00768. PubMed DOI
Marquezini M. V., Tignon J., Hasche T., Chemia D. S.. Refractive Index and Absorption of GaAs Quantum Wells Across Excitonic Resonances. Appl. Phys. Lett. 1998;73:2313–2315. doi: 10.1063/1.121808. DOI
Wigner E.. On the Interaction of Electrons in Metals. Phys. Rev. 1934;46:1002–1011. doi: 10.1103/PhysRev.46.1002. DOI
Goldman V., Santos M., Shayegan M., Cunningham J.. Evidence for Two-Dimensional Quantum Wigner crystal. Phys. Rev. Lett. 1990;65:2189–2192. doi: 10.1103/PhysRevLett.65.2189. PubMed DOI
Jang J., Hunt B. M., Pfeiffer L. N., West K. W., Ashoori R. C.. Sharp Tunnelling Resonance from the Vibrations of an Electronic Wigner Crystal. Nat. Phys. 2017;13:340–344. doi: 10.1038/nphys3979. DOI
Zhou H., Zhou H., Polshyn H., Taniguchi T., Watanabe K., Young A. F.. Solids of Quantum Hall Skyrmions in Graphene. Nat. Phys. 2020;16:154–158. doi: 10.1038/s41567-019-0729-8. DOI
Shapir I., Hamo A., Pecker S., Moca C. P., Legeza Ö., Zarand G., Ilani S.. Imaging the Electronic Wigner Crystal in One Dimension. Science. 2019;364:870–875. doi: 10.1126/science.aat0905. PubMed DOI
Regan E. C., Wang D., Jin C. M., Utama I. B., Gao B., Wei X., Zhao S., Zhao W., Zhang Z., Yumigeta K., Blei M., Carlström J. D., Watanabe K., Taniguchi T., Tongay S., Crommie M., Zettl A., Wang F.. Mott and Generalized Wigner Crystal States in WSe2/WS2 Moiré Superlattices. Nature. 2020;579:359–363. doi: 10.1038/s41586-020-2092-4. PubMed DOI
Jin C., Tao Z., Li T., Xu Y., Tang Y., Zhu J., Liu S., Watanabe K., Taniguchi T., Hone J. C., Fu L., Shan J., Mak K. F.. Stripe Phases in WSe2/WS2 Moiré Superlattices. Nat. Mater. 2021;20:940–944. doi: 10.1038/s41563-021-00959-8. PubMed DOI
Huang X., Wang T., Miao S., Wang C., Li Z., Lian Z., Taniguchi T., Watanabe K., Okamoto S., Xiao D., Shi S.-F., Cui Y.-T.. Correlated Insulating States at Fractional Fillings of the WS2/WSe2 Moiré Lattice. Nat. Phys. 2021;17:715–719. doi: 10.1038/s41567-021-01171-w. DOI
Deshpande V. V., Bockrath M.. The One-Dimensional Wigner Crystal in Carbon Nanotubes. Nat. Phys. 2008;4:314–318. doi: 10.1038/nphys895. DOI
Crandall R., Williams R.. Crystallization of Electrons on the Surface of Liquid Helium. Phys. Lett. A. 1971;34:404–405. doi: 10.1016/0375-9601(71)90938-8. DOI
Williams R., Crandall R., Willis A.. Surface States of Electrons on Liquid Helium. Phys. Rev. Lett. 1971;26:7–9. doi: 10.1103/PhysRevLett.26.7. DOI
Grimes C., Adams G.. Evidence for a Liquid-to-Crystal Phase Transition in a Classical, Two-Dimensional Sheet of Electrons. Phys. Rev. Lett. 1979;42:795–798. doi: 10.1103/PhysRevLett.42.795. DOI
Williams F.. Collective Aspects of Charged-Particle Systems at Helium Interfaces. Surf. Sci. 1982;113:371–378. doi: 10.1016/0039-6028(82)90619-7. DOI
Li H., Li S., Regan E. C., Wang D., Zhao W., Kahn S., Yumigeta K., Blei M., Taniguchi T., Watanabe K., Tongay S., Zettl A., Crommie M. F., Wang F.. Imaging Two-Dimensional Generalized Wigner Crystals. Nature. 2021;597:650–654. doi: 10.1038/s41586-021-03874-9. PubMed DOI
Li H., Xiang Z., Regan E. C., Zhao W., Sailus R., Banerjee R., Taniguchi T., Watanabe K., Tongay S., Zettl A., Crommie M. F., Wang F.. Mapping Charge Excitations in Generalized Wigner Crystals. Nat. Nanotechnol. 2024;19:618–623. doi: 10.1038/s41565-023-01594-x. PubMed DOI
Zhou Y., Sung J., Brutschea E., Esterlis I., Wang Y., Scuri G., Gelly R. J., Heo H., Taniguchi T., Watanabe K., Zaránd G., Lukin M. D., Kim P., Demler E., Park H.. Bilayer Wigner Crystals in a Transition Metal Dichalcogenide Heterostructure. Nature. 2021;595:48–52. doi: 10.1038/s41586-021-03560-w. PubMed DOI
Joglekar Y. N., Balatsky A. V., Das Sarma S.. Wigner Supersolid of Excitons in Electron-Hole Bilayers. Phys. Rev. B. 2006;74:233302. doi: 10.1103/PhysRevB.74.233302. DOI
Bondarev I. V., Berman O. L., Kezerashvili R. Y., Lozovik Y. E.. Crystal Phases of Charged Interlayer Excitons in van der Waals Heterostructures. Commun. Phys. 2021;4:134. doi: 10.1038/s42005-021-00624-1. DOI
Ma L., Nguyen P. X., Wang Z., Zeng Y., Watanabe K., Taniguchi T., MacDonald A. H., Mak K. F., Shan J.. Strongly Correlated Excitonic Insulator in Atomic Double Layers. Nature. 2021;598:585–589. doi: 10.1038/s41586-021-03947-9. PubMed DOI
Bondarev I. V., Lozovik Y. E.. Magnetic-Field-Induced Wigner Crystallization of Charged Interlayer Excitons in van der Waals Heterostructures. Commun. Phys. 2022;5:315. doi: 10.1038/s42005-022-01095-8. DOI
Dai D. D., Fu L.. Strong-Coupling Phases of Trions and Excitons in Electron-Hole Bilayers at Commensurate Densities. Phys. Rev. Lett. 2024;132:196202. doi: 10.1103/PhysRevLett.132.196202. PubMed DOI
Boltasseva A., Shalaev V. M.. Transdimensional Photonics. ACS Photonics. 2019;6:1–3. doi: 10.1021/acsphotonics.8b01570. DOI
Maniyara R. A., Rodrigo D., Yu R., Canet-Ferrer J., Ghosh D. S., Yongsunthon R., Baker D. E., Rezikyan A., García de Abajo F. J., Pruneri V.. Tunable Plasmons in Ultrathin Metal Films. Nat. Photonics. 2019;13:328–333. doi: 10.1038/s41566-019-0366-x. DOI
Manjavacas A., García de Abajo F. J.. Tunable Plasmons in Atomically Thin Gold Nanodisks. Nat. Commun. 2014;5:3548. doi: 10.1038/ncomms4548. PubMed DOI
Maier S. A., Atwater H. A.. Plasmonics: Localization and Guiding of Electromagnetic Energy in Metal/Dielectric Structures. J. Appl. Phys. 2005;98:011101. doi: 10.1063/1.1951057. DOI
Naik G. V., Shalaev V. M., Boltasseva A.. Alternative Plasmonic Materials: Beyond Gold and Silver. Adv. Mater. 2013;25:3264–3294. doi: 10.1002/adma.201205076. PubMed DOI
Bondarev I. V., Shalaev V. M.. Universal Features of the Optical Properties of Ultrathin Plasmonic Films. Opt. Mater. Express. 2017;7:3731–3740. doi: 10.1364/OME.7.003731. DOI
Shah D., Yang M., Kudyshev Z., Xu X., Shalaev V. M., Bondarev I. V., Boltasseva A.. Thickness-Dependent Drude Plasma Frequency in Transdimensional Plasmonic TiN. Nano Lett. 2022;22:4622–4629. doi: 10.1021/acs.nanolett.1c04692. PubMed DOI
Salihoglu H., Shi J., Li Z., Wang Z., Luo X., Bondarev I. V., Biehs S.-A., Shen S.. Nonlocal Near-Field Radiative Heat Transfer by Transdimensional Plasmonics. Phys. Rev. Lett. 2023;131:086901. doi: 10.1103/PhysRevLett.131.086901. PubMed DOI
Das P., Rudra S., Rao D., Banerjee S., Kamalasanan Pillai A. I., Garbrecht M., Boltasseva A., Bondarev I. V., Shalaev V. M., Saha B.. Electron Confinement-Induced Plasmonic Breakdown in Metals. Sci. Adv. 2024;10:eadr2596. doi: 10.1126/sciadv.adr2596. PubMed DOI
Platzman P. M., Fukuyama H.. Phase Diagram of the Two-Dimensional Electron Liquid. Phys. Rev. B. 1974;10:3150–3158. doi: 10.1103/PhysRevB.10.3150. DOI
Keldysh L. V.. Coulomb Interaction in Thin Semiconductor and Semimetal Films. Pis’ma Zh. Eksp. Teor. Fiz. 1979, 29, 716−719 [Engl. translation: JETP Lett. 1979, 29, 658−661]; Rytova, N.S. Screened Potential of a Point Charge in a Thin Film. Moscow University Physics Bulletin. 1967;3:30.
Qi Y., Sadi M. A., Hu D., Zheng M., Wu Z., Jiang Y., Chen Y. P.. Recent Progress in Strain Engineering on Van der Waals 2D Materials: Tunable Electrical, Electrochemical, Magnetic, and Optical Properties. Adv. Mater. 2023;35:2205714. doi: 10.1002/adma.202205714. PubMed DOI
Fukuyama H., Platzman P. M., Anderson P. W.. Two-Dimensional Electron Gas in a Strong Magnetic Field. Phys. Rev. B. 1979;19:5211–5217. doi: 10.1103/PhysRevB.19.5211. DOI
Lozovik Yu.E., Farztdinov V. M., Abdullaev B.. 2D Electron Crystal in Quantized Magnetic Field: Melting Induced by Zero-Point Oscillations. J. Phys. C. 1985;18:L807–L811. doi: 10.1088/0022-3719/18/26/007. DOI
Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M. W.. Two-Dimensional Nanocrystals: Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 . Adv. Mater. 2011;23:4207. doi: 10.1002/adma.201190147. PubMed DOI
Vahid Mohammadi A., Rosen J., Gogotsi Y.. The World of Two-Dimensional Carbides and Nitrides (MXenes) J. Sci. 2021;372:eabf1581. doi: 10.1126/science.abf1581. PubMed DOI
Mauchamp V., Bugnet M., Bellido E. P., Botton G. A., Moreau P., Magne D., Naguib M., Cabioc’h T., Barsoum M. W.. Enhanced and Tunable Surface Plasmons in Two-Dimensional Ti3C2 Stacks: Electronic Structure Versus Boundary Effects. Phys. Rev. B. 2014;89:235428. doi: 10.1103/PhysRevB.89.235428. DOI
El-Demellawi J. K., Lopatin S., Yin J., Mohammed O. F., Alshareef H. N.. Tunable Multipolar Surface Plasmons in 2D Ti3C2Tx MXene Flakes. ACS Nano. 2018;12:8485–8493. doi: 10.1021/acsnano.8b04029. PubMed DOI
Jiang X., Liu S., Liang W., Luo S., He Z., Ge Y., Wang H., Cao R., Zhang F., Wen Q., Li J.. Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH) Laser Photon. Rev. 2018;12:1700229. doi: 10.1002/lpor.201700229. DOI
Jhon Y. I., Koo J., Anasori B., Seo M., Lee J. H., Gogotsi Y., Jhon Y. M.. Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers. Adv. Mater. 2017;29:1702496. doi: 10.1002/adma.201702496. PubMed DOI
Li H., Chen S., Boukhvalov D. W., Yu Z., Humphrey M. G., Huang Z., Zhang C.. Switching the Nonlinear Optical Absorption of Titanium Carbide MXene by Modulation of the Surface Terminations. ACS Nano. 2022;16:394–404. doi: 10.1021/acsnano.1c07060. PubMed DOI
Wang G., Bennett D., Zhang C., ÓCoileáin C., Liang M., McEvoy N., Wang J. J., Wang J., Wang K., Nicolosi V., Blau W. J.. Two-Photon Absorption in Monolayer MXenes. Adv. Opt. Mater. 2020;8:1902021. doi: 10.1002/adom.201902021. DOI
Nemani S. K., Zhang B., Wyatt B. C., Hood Z. D., Manna S., Khaledialidusti R., Hong W., Sternberg M. G., Sankaranarayanan S. K., Anasori B.. High-Entropy 2D Carbide MXenes: TiVNbMoC3 and TiVCrMoC3 . ACS Nano. 2021;15:12815–12825. doi: 10.1021/acsnano.1c02775. PubMed DOI
Zhang D., Shah D., Boltasseva A., Gogotsi Y.. MXenes for Photonics. ACS Photonics. 2022;9:1108–1116. doi: 10.1021/acsphotonics.2c00040. DOI
Jiang X., Kuklin A. V., Baev A., Ge Y., Ågren H., Zhang H., Prasad P. N.. Two-Dimensional MXenes: From Morphological to Optical, Electric, and Magnetic Properties and Applications. Phys. Rep. 2020;848:1–58. doi: 10.1016/j.physrep.2019.12.006. DOI
Frey N. C., Bandyopadhyay A., Kumar H., Anasori B., Gogotsi Y., Shenoy V. B.. Surface-Engineered MXenes: Electric Field Control of Magnetism and Enhanced Magnetic Anisotropy. ACS Nano. 2019;13:2831–2839. doi: 10.1021/acsnano.8b09201. PubMed DOI
Kim H., Wang Z., Alshareef H. N.. MXetronics: Electronic and Photonic Applications of MXenes. Nano Energy. 2019;60:179–197. doi: 10.1016/j.nanoen.2019.03.020. DOI
Zhou C., Wang D., Lagunas F., Atterberry B., Lei M., Hu H., Zhou Z., Filatov A. S., Jiang D. E., Rossini A. J., Klie R. F.. Hybrid Organic−Inorganic Two-Dimensional Metal Carbide MXenes with Amido-and Imido-Terminated Surfaces. Nat. Chem. 2023;15:1722–1729. doi: 10.1038/s41557-023-01288-w. PubMed DOI
Valurouthu G., Maleski K., Kurra N., Han M., Hantanasirisakul K., Sarycheva A., Gogotsi Y.. Tunable Electrochromic Behavior of Titanium-Based MXenes. Nanoscale. 2020;12:14204–14212. doi: 10.1039/D0NR02673E. PubMed DOI
Aftab S., Abbas A., Iqbal M. Z., Hussain S., Kabir F., Hegazy H. H., Xu F., Kim J. H., Goud B. S.. 2D MXene Incorporating for Electron and Hole Transport in High-Performance Perovskite Solar Cells. Mater. Today Energy. 2023;36:101366. doi: 10.1016/j.mtener.2023.101366. DOI
Chaudhuri K., Alhabeb M., Wang Z., Shalaev V. M., Gogotsi Y., Boltasseva A.. Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene) ACS Photonics. 2018;5:1115–1122. doi: 10.1021/acsphotonics.7b01439. DOI
Reshef O., De Leon I., Alam M. Z., Boyd R. W.. Nonlinear Optical Effects in Epsilon-Near-Zero Media. Nat. Rev. Mater. 2019;4:535–551. doi: 10.1038/s41578-019-0120-5. DOI
Han M., Maleski K., Shuck C. E., Yang Y., Glazar J. T., Foucher A. C., Hantanasirisakul K., Sarycheva A., Frey N. C., May S. J., Shenoy V. B., Stach E. A., Gogotsi Y.. Tailoring Electronic and Optical Properties of MXenes Through Forming Solid Solutions. J. Am. Chem. Soc. 2020;142:19110–19118. doi: 10.1021/jacs.0c07395. PubMed DOI
Simon, J. ; Reigle, B. ; Fruhling, C. ; Zhang, D. ; Ippolito, S. ; Kim, H. ; Shalaev, V. ; Gogotsi, Y. ; Boltasseva, A. . Anisotropic and Nonlinear Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes). Proceedings of CLEO: Science and Innovations, May 5−10, 2024; Charolette, NC, 2024; pp SF2R-7.
Talapin, D. Inorganic, Organic, and Organometallic Surface Chemistry of MXenes. In Book of Abstracts, 2024 MXene Conference, Philadelphia, PA, August 5−7, 2024; pp 14.
Wu Z.. et al. Anisotropic Plasmon Resonance in Ti3C2Tx MXene Enables Site-Selective Plasmonic Catalysis. ACS Nano. 2025;19:1832–1844. doi: 10.1021/acsnano.4c17316. PubMed DOI
Simon, J. ; Choi, K. R. ; Ippolito, S. ; Prokopeva, L. ; Fruhling, C. ; Shalaev, V. M. ; Kildishev, A. V. ; Gogotsi, Y. ; Boltasseva, A. . Tailoring Optical Response of MXene Thin Films. Nanophotonics 2025, 10.1515/nanoph-2024-0769. DOI
Yan L., Xu Y., Si J., Li Y., Hou X.. Enhanced Optical Nonlinearity of Mxene Ti3C2Tx Nanosheets Decorated with Silver Nanoparticles. Opt. Mater. Express. 2021;11:1401–1409. doi: 10.1364/OME.422189. DOI
Little J., Chen A., Kamali A., Akash T., Park C. S., Liu D., Das S., Woehl T. J., Chen P. Y.. Drying Controlled Synthesis of Catalytic Metal Nanocrystals Within 2D-Material Nanoconfinements. Adv. Funct. Mater. 2025;35:241746. doi: 10.1002/adfm.202414746. DOI
Cao F., Zhang Y., Wang H., Khan K., Tareen A. K., Qian W., Zhang H., Ågren H.. Recent Advances in Oxidation Stable Chemistry of 2D MXenes. Adv. Mater. 2022;34:2107554. doi: 10.1002/adma.202107554. PubMed DOI
Zhang L., Su W., Shu H., Lü T., Fu L., Song K., Huang X., Yu J., Lin C. T., Tang Y.. Tuning the Photoluminescence of Large Ti3C2Tx MXene Flakes. Ceram. Int. 2019;45:11468–11474. doi: 10.1016/j.ceramint.2019.03.014. DOI
Thakur A., Chandran B. S. N., Davidson K., Bedford A., Fang H., Im Y., Kanduri V., Wyatt B. C., Nemani S. K., Poliukhova V., Kumar R.. Step-by-Step Guide for Synthesis and Delamination of Ti3C2Tx MXene. Small Meth. 2023;7:2300030. doi: 10.1002/smtd.202370045. PubMed DOI
Thakur A.. et al. Synthesis of a 2D Tungsten MXene for Electrocatalysis. Nat. Synth. 2025:1–13. doi: 10.1038/s44160-025-00773-z. DOI
Wang D., Zhou C., Filatov A. S., Cho W., Lagunas F., Wang M., Vaikuntanathan S., Liu C., Klie R. F., Talapin D. V.. Direct Synthesis and Chemical Vapor Deposition of 2D Carbide and Nitride MXenes. Science. 2023;379:1242–1247. doi: 10.1126/science.add9204. PubMed DOI
Chen Y., Ge Y., Huang W., Li Z., Wu L., Zhang H., Li X.. Refractive Index Sensors Based on Ti3C2Tx MXene Fibers. ACS Appl. Nano Mater. 2020;3:303–311. doi: 10.1021/acsanm.9b01889. DOI
Anasori B., Gogotsi Y.. MXenes: Trends, Growth, and Future Directions. Graphene 2D Mater. 2022;7:75–79. doi: 10.1007/s41127-022-00053-z. DOI
Simon J., Fruhling C., Kim H., Gogotsi Y., Boltasseva A.. MXenes for Optics and Photonics. Opt. Photonics News. 2023;34:42–49. doi: 10.1364/OPN.34.11.000042. DOI
Yuan C., Chen C., Yang Z., Cheng J., Weng J., Tan S., Hou R., Cao T., Tang Z., Chen W., Xu B., Wang X., Tang J.. Acidic “Water-in-Salt” Electrolyte Enables a High-Energy Symmetric Supercapacitor Based on Titanium Carbide MXene. ACS Nano. 2024;18:16027–16040. doi: 10.1021/acsami.4c08094. PubMed DOI
Alhabeb M., Maleski K., Anasori B., Lelyukh P., Clark L., Sin S., Gogotsi Y.. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2T x MXene) Chem. Mater. 2017;29:7633–7644. doi: 10.1021/acs.chemmater.7b02847. DOI
Salles P., Quain E., Kurra N., Sarycheva A., Gogotsi Y.. Automated Scalpel Patterning of Solution Processed Thin Films for Fabrication of Transparent MXene Microsupercapacitors. Small. 2018;14:1802864. doi: 10.1002/smll.201802864. PubMed DOI
Dillon A. D., Ghidiu M. J., Krick A. L., Griggs J., May S. J., Gogotsi Y., Barsoum M. W., Fafarman A. T.. Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide. Adv. Funct. Mater. 2016;26:4162–4168. doi: 10.1002/adfm.201600357. DOI
Zhang G., Huang S., Wang F., Yan H.. Layer-Dependent Electronic and Optical Properties of 2D Black Phosphorus: Fundamentals and Engineering. Laser Phot. Rev. 2021;15:2000399. doi: 10.1002/lpor.202000399. DOI
Carvalho A., Wang M., Zhu X., Rodin A. S., Su H., Castro Neto A. H.. Phosphorene: From Theory to Applications. Nat. Rev. Mater. 2016;1:16061. doi: 10.1038/natrevmats.2016.61. DOI
Wu J., Koon G. K. W., Xiang D., Han C., Toh C. T., Kulkarni E. S., Verzhbitskiy I., Carvalho A., Rodin A. S., Koenig S. P., Eda G., Chen W., Castro Neto A. H., Özyilmaz B.. Colossal Ultraviolet Photoresponsivity of Few-Layer Black Phosphorus. ACS Nano. 2015;9:8070–8077. doi: 10.1021/acsnano.5b01922. PubMed DOI
Tran V., Fei R., Yang L.. Quasiparticle Energies, Excitons, and Optical Spectra of Few-Layer Black Phosphorus. 2D Mater. 2015;2:044014. doi: 10.1088/2053-1583/2/4/044014. DOI
Zhou S., Bao C., Fan B., Zhou H., Gao Q., Zhong H., Lin T., Liu H., Yu P., Tang P., Meng S., Duan W., Zhou S.. Pseudospin-Selective Floquet Band Engineering in Black Phosphorus. Nature. 2023;614:75–80. doi: 10.1038/s41586-022-05610-3. PubMed DOI
Shen G., Tian X., Cao L., Guo H., Li X., Tian Y., Cui X., Feng M., Zhao J., Wang B., Petek H., Tan S.. Ultrafast Energizing the Parity-Forbidden Dark Exciton in Black Phosphorus. Nat. Commun. 2025;16:3992. doi: 10.1038/s41467-025-58930-z. PubMed DOI PMC
Cudazzo P., Tokatly I. V., Rubio A.. Dielectric Screening in Two-Dimensional Insulators: Implications for Excitonic and Impurity States in Graphane. Phys. Rev. B. 2011;84:085406. doi: 10.1103/PhysRevB.84.085406. DOI
Rodin A., Trushin M., Carvalho A., Castro Neto A. H.. Collective Excitations in 2D Materials. Nat. Rev. Phys. 2020;2:524–537. doi: 10.1038/s42254-020-0214-4. DOI
Carvalho A., Ribeiro R. M., Castro Neto A. H.. Band Nesting and the Optical Response of Two-Dimensional Semiconducting Transition Metal Dichalcogenides. Phys. Rev. B. 2013;88:115205. doi: 10.1103/PhysRevB.88.115205. DOI
Kamandi M., Guclu C., Luk T. S., Wang G. T., Capolino F.. Giant Field Enhancement in Longitudinal Epsilon-Near-Zero Films. Phys. Rev. B. 2017;95:161105. doi: 10.1103/PhysRevB.95.161105. DOI
van Veen E., Nemilentsau A., Kumar A., Roldán R., Katsnelson M. I., Low T., Yuan S.. Tuning Two-Dimensional Hyperbolic Plasmons in Black Phosphorus. Phys. Rev. Applied. 2019;12:014011. doi: 10.1103/PhysRevApplied.12.014011. DOI
Novko D., Lyon K., Mowbray D. J., Despoja V.. Ab Initio Study of Electromagnetic Modes in Two-Dimensional Semiconductors: Application to Doped Phosphorene. Phys. Rev. B. 2021;104:115421. doi: 10.1103/PhysRevB.104.115421. DOI
Tzoar N., Klein A.. Absorption of Electromagnetic Radiation by an Electron Gas. Phys. Rev. 1961;124:1297–1306. doi: 10.1103/PhysRev.124.1297. DOI
Holstein T.. Theory of Transport Phenomena in an Electron-Phonon Gas. Ann. Phys. 1964;29:410–535. doi: 10.1016/0003-4916(64)90008-9. DOI
Allen P. B.. Electron-Phonon Effects in the Infrared Properties of Metals. Phys. Rev. B. 1971;3:305–320. doi: 10.1103/PhysRevB.3.305. DOI
Götze W., Wölfle P.. Homogeneous Dynamical Conductivity of Simple Metals. Phys. Rev. B. 1972;6:1226. doi: 10.1103/PhysRevB.6.1226. DOI
Mahan, G. D. Many Particle Physics; Plenum Press: New York and London, 1981; pp 1−781.
Awa K., Yasuhara H.. Many-Body Effect on the Interband Optical Absorption of Alkali Metals. J. Phys. C. 1983;16:3297–3304. doi: 10.1088/0022-3719/16/17/015. DOI
Hopfield J. J.. Effect of Electron-Electron Interactions on Photoemission in Simple Metals. Phys. Rev. 1965;139:A419–A424. doi: 10.1103/PhysRev.139.A419. DOI
Persson B. N. J., Andersson S.. Dynamical Processes at Surfaces: Excitation of Electron-Hole Pairs. Phys. Rev. B. 1984;29:4382. doi: 10.1103/PhysRevB.29.4382. DOI
Hopfield J. J.. Infrared divergences, X-ray edges, and all that. Comm. Solid State Phys. 1969;2:40–49.
Novko D., Despoja V., Reutzel M., Li A., Petek H., Gumhalter B.. Plasmonically Assisted Channels of Photoemission from Metals. Phys. Rev. B. 2021;103:205401. doi: 10.1103/PhysRevB.103.205401. DOI
Gumhalter B., Novko D.. Complementary Perturbative and Nonperturbative Pictures of Plasmonically Induced Electron Emission from Flat Metal Surfaces. Prog. Surf. Sci. 2023;98:100706. doi: 10.1016/j.progsurf.2023.100706. DOI
Petek H., Li A., Li X., Tan S., Reutzel M.. Plasmonic Decay Into Hot Electrons in Silver. Prog. Surf. Sci. 2023;98:100707. doi: 10.1016/j.progsurf.2023.100707. DOI
Reutzel M., Li A., Petek H.. Coherent Two-Dimensional Multiphoton Photoelectron Spectroscopy of Metal Surfaces. Phys. Rev. X. 2019;9:011044. doi: 10.1103/PhysRevX.9.011044. DOI
Li A., Reutzel M., Wang Z., Schmitt D., Keunecke M., Bennecke W., Matthijs Jansen G. S., Steil D., Steil S., Novko D., Gumhalter B., Mathias S., Petek H.. Multidimensional Multiphoton Momentum Microscopy of the Anisotropic Ag(110) Surface. Phys. Rev. B. 2022;105:075105. doi: 10.1103/PhysRevB.105.075105. DOI
Cui X., Wang C., Argondizzo A., Garrett-Roe S., Gumhalter B., Petek H.. Transient Excitons at Metal Surfaces. Nat. Phys. 2014;10:505–509. doi: 10.1038/nphys2981. DOI
Echenique P. M., Pitarke J. M., Chulkov E. V., Rubio A.. Theory of Inelastic Lifetimes of Low-Energy Electrons in Metals. Chem. Phys. 2000;251:1–35. doi: 10.1016/S0301-0104(99)00313-4. DOI
Giuliani G. F., Quinn J. J.. Lifetime of a Quasiparticle in a Two-Dimensional Electron Gas. Phys. Rev. B. 1982;26:4421. doi: 10.1103/PhysRevB.26.4421. DOI
Schuster R., Trinckauf J., Habenicht C., Knupfer M., Buchner B.. Anisotropic Particle-Hole Excitations in Black Phosphorus. Phys. Rev. Lett. 2015;115:026404. doi: 10.1103/PhysRevLett.115.026404. PubMed DOI
Wang F., Wang C., Chaves A., Song C., Zhang G., Huang S., Lei Y., Xing Q., Mu L., Xie Y., Yan H.. Prediction of Hyperbolic Exciton-Polaritons in Monolayer Black Phosphorus. Nat. Commun. 2021;12:5628. doi: 10.1038/s41467-021-25941-5. PubMed DOI PMC
Kumar A.. et al. Black Phosphorus Unipolar Transistor, Memory, and Photodetector. J. Mater. Sci. 2023;58:2689–2699. doi: 10.1007/s10853-023-08169-0. DOI
Petersen R., Pedersen T. G., García de Abajo F. J.. Nonlocal Plasmonic Response of Doped and Optically Pumped Graphene, MoS2 and Black Phosphorus. Phys. Rev. B. 2017;96:205430. doi: 10.1103/PhysRevB.96.205430. DOI
Tao A. R., Habas S., Yang P.. Shape Control of Colloidal Metal Nanocrystals. Small. 2008;4:310–325. doi: 10.1002/smll.200701295. DOI
Nagao T., Yaginuma S., Inaoka T., Sakurai T.. One-Dimensional Plasmon in an Atomic-Scale Metal Wire. Phys. Rev. Lett. 2006;97:116802. doi: 10.1103/PhysRevLett.97.116802. PubMed DOI
Johnson P. B., Christy R. W.. Optical Constants of the Noble Metals. Phys. Rev. B. 1972;6:4370–4379. doi: 10.1103/PhysRevB.6.4370. DOI
Zundel L., Gieri P., Sanders S., Manjavacas A.. Comparative Analysis of the Near- and Far-Field Optical Response of Thin Plasmonic Nanostructures. Adv. Opt. Mater. 2022;10:2102550. doi: 10.1002/adom.202102550. DOI
García de Abajo F. J., Manjavacas A.. Plasmonics in Atomically Thin Materials. Faraday Discuss. 2015;178:87–107. doi: 10.1039/C4FD00216D. PubMed DOI
Yu R., Pruneri F., García de Abajo F. J.. Active Modulation of Visible Light with Graphene-Loaded Ultrathin Metal Plasmonic Antennas. Sci. Rep. 2016;6:32144. doi: 10.1038/srep32144. PubMed DOI PMC
Lofton C., Sigmund W.. Mechanisms Controlling Crystal Habits of Gold and Silver Colloids. Adv. Funct. Mater. 2005;15:1197–1208. doi: 10.1002/adfm.200400091. DOI
Millstone J. E., Hurst S. J., Métraux G. S., Cutler J. I., Mirkin C. A.. Colloidal Gold and Silver Triangular Nanoprisms. Small. 2009;5:646–664. doi: 10.1002/smll.200801480. PubMed DOI
Kiani F., Tagliabue G.. High Aspect Ratio Au Microflakes Via Gap-Assisted Synthesis. Chem. Mater. 2022;34:1278–1288. doi: 10.1021/acs.chemmater.1c03908. DOI
Scarabelli L., Sun M., Zhuo X., Yoo S., Millstone J. E., Jones M. R., Liz-Marzán L. M.. Plate-Like Colloidal Metal Nanoparticles. Chem. Rev. 2023;123:3493–3542. doi: 10.1021/acs.chemrev.3c00033. PubMed DOI PMC
Ye S., Brown A. P., Stammers A. C., Thomson N. H., Wen J., Roach L., Bushby R. J., Coletta P. L., Critchley K., Connell S. D., Markham A. F., Brydson R.. Sub-Nanometer Thick Gold Nanosheets as Highly Efficient Catalysts. Adv. Sci. 2019;6:1900911. doi: 10.1002/advs.201900911. PubMed DOI PMC
Wang L., Zhu Y., Wang J.-Q., Liu F., Huang J., Meng X., Basset J.-M., Han Y., Xiao F.-S.. Two-Dimensional Gold Nanostructures with High Activity for Selective Oxidation of Carbon−Hydrogen Bonds. Nat. Commun. 2015;6:6957. doi: 10.1038/ncomms7957. PubMed DOI PMC
Mironov M. S., Yakubovsky D. I., Ermolaev G. A., Khramtsov I. A., Kirtaev R. V., Slavich A. S., Tselikov G. I., Vyshnevyy A. A., Arsenin A. V., Volkov V. S., Novoselov K. S.. Graphene-Inspired Wafer-Scale Ultrathin Gold Films. Nano Lett. 2024;24:16270–16275. doi: 10.1021/acs.nanolett.4c04311. PubMed DOI PMC
Speer N. J., Tang S.-J., Miller T., Chiang T.-C.. Coherent Electronic Fringe Structure in Incommensurate Silver-Silicon Quantum Wells. Science. 2006;314:804–806. doi: 10.1126/science.1132941. PubMed DOI
Green A., Bauer E.. Gold Monolayers on Silicon Single Crystal Surfaces. Surf. Sci. 1981;103:L127–L133. doi: 10.1016/0167-2584(81)90627-7. DOI
Yu R., Guo Q., Xia F., García de Abajo F. J.. Photothermal Engineering of Graphene Plasmons. Phys. Rev. Lett. 2018;121:057404. doi: 10.1103/PhysRevLett.121.057404. PubMed DOI
Meng Y.. et al. Photonic van der Waals Integration from 2D Materials to 3D Nanomembranes. Nat. Rev. Mater. 2023;8:498–517. doi: 10.1038/s41578-023-00558-w. DOI
Sun Z., Hasan T., Torrisi F., Popa D., Privitera G., Wang F., Bonaccorso F., Basko D. M., Ferrari A. C.. Graphene Mode-Locked Ultrafast Laser. ACS Nano. 2010;4:803–810. doi: 10.1021/nn901703e. PubMed DOI
Jiang B.. et al. High-efficiency Second-order Nonlinear Processes in an Optical Microfibre Assisted by Few-layer GaSe. Light Sci. Appl. 2020;9:63. doi: 10.1038/s41377-020-0304-1. PubMed DOI PMC
Bao Q.. et al. Broadband Graphene Polarizer. Nat. Photonics. 2011;5:411–415. doi: 10.1038/nphoton.2011.102. DOI
Wu Y., Yao B., Yu C., Rao Y.. Optical Graphene Gas Sensors Based on Microfibers: A Review. Sensors. 2018;18:941. doi: 10.3390/s18040941. PubMed DOI PMC
Xie J.. et al. Critical-Layered MoS2 for the Enhancement of Supercontinuum Generation in Photonic Crystal Fibre. Adv. Mater. 2024;36:2403696. doi: 10.1002/adma.202403696. PubMed DOI
Phare C. T., Lee Y., Cardenas J., Lipson M.. Graphene Electro-Optic Modulator with 30 GHz Bandwidth. Nat. Photonics. 2015;9:511–514. doi: 10.1038/nphoton.2015.122. DOI
Ma P.. et al. Plasmonically Enhanced Graphene Photodetector Featuring 100 Gbit/s Data Reception, High Responsivity, and Compact Size. ACS Photonics. 2019;6:154–161. doi: 10.1021/acsphotonics.8b01234. DOI
Gonzalez Marin J. F., Unuchek D., Watanabe K., Taniguchi T., Kis A.. MoS2 Photodetectors Integrated with Photonic Circuits. npj 2D Mater. Appl. 2019;3:14. doi: 10.1038/s41699-019-0096-4. DOI
Lin H.. et al. Chalcogenide Glass-on-Graphene Photonics. Nat. Photonics. 2017;11:798–805. doi: 10.1038/s41566-017-0033-z. DOI
Lin H.. et al. A 90-nm-thick Graphene Metamaterial for Strong and Extremely Broadband Absorption of Unpolarized Light. Nat. Photonics. 2019;13:270–276. doi: 10.1038/s41566-019-0389-3. DOI
Qu Y.. et al. Enhanced Four-Wave Mixing in Silicon Nitride Waveguides Integrated with 2D Layered Graphene Oxide Films. Adv. Optical Mater. 2020;8:2001048. doi: 10.1002/adom.202001048. DOI
Wang Y.. et al. Enhancing Si3N4 Waveguide Nonlinearity with Heterogeneous Integration of Few-Layer WS2 . ACS Photonics. 2021;8:2713–2721. doi: 10.1021/acsphotonics.1c00767. PubMed DOI PMC
Ono M.. et al. Ultrafast and Energy-efficient All-Optical Switching with Graphene-loaded Deep-Subwavelength Plasmonic Waveguides. Nat. Photonics. 2020;14:37–43. doi: 10.1038/s41566-019-0547-7. DOI
Yao B.. et al. Gate-Tunable Frequency Combs in Graphene-Nitride Microresonators. Nature. 2018;558:410–414. doi: 10.1038/s41586-018-0216-x. PubMed DOI
Kim K.. et al. A Role for Graphene in Silicon-Based Semiconductor Devices. Nature. 2011;479:338–344. doi: 10.1038/nature10680. PubMed DOI
Cui X.. et al. On-chip Photonics and Optoelectronics with a van der Waals Material Dielectric Platform. Nanoscale. 2022;14:9459–9465. doi: 10.1039/D2NR01042A. PubMed DOI PMC
Wang Y., Lee J., Zheng X., Xie Y., Feng P. X.-L. Hexagonal Boron Nitride Phononic Crystal Waveguides. ACS Photonics. 2019;6:3225–3232. doi: 10.1021/acsphotonics.9b01094. DOI
Kȩdziora M.. et al. Predesigned Perovskite Crystal Waveguides for Room-Temperature Exciton-Polariton Condensation and Edge Lasing. Nat. Mater. 2024;23:1515–1522. doi: 10.1038/s41563-024-01980-3. PubMed DOI
Cui X.. et al. Miniaturized Spectral Sensing with a Tunable Optoelectronic Interface. Sci. Adv. 2025;11:eado6886. doi: 10.1126/sciadv.ado6886. PubMed DOI PMC
Theis T. N., Wong H.-S. P.. The End of Moore’s Law: A New Beginning for Information Technology. Comput. Sci. Eng. 2017;19:41–50. doi: 10.1109/MCSE.2017.29. DOI
Thomson D., Zilkie A., Bowers J. E., Komljenovic T., Reed G. T., Vivien L., Marris-Morini D., Cassan E., Virot L., Fédéli J.-M.. Roadmap on Silicon Photonics. J. Opt. 2016;18:073003. doi: 10.1088/2040-8978/18/7/073003. DOI
Boes A., Chang L., Langrock C., Yu M., Zhang M., Lin Q., Lončar M., Fejer M., Bowers J., Mitchell A.. Lithium Niobate Photonics: Unlocking the Electromagnetic Spectrum. Science. 2023;379:eabj4396. doi: 10.1126/science.abj4396. PubMed DOI
Yuvaraja S., Khandelwal V., Tang X., Li X.. Wide Bandgap Semiconductor-Based Integrated Circuits. Chip. 2023;2:100072. doi: 10.1016/j.chip.2023.100072. DOI
Smajic, J. ; Leuthold, J. . Plasmonic Electro-Optic Modulators−A Review. IEEE J. Sel. Top. Quantum Electron. 2024, 30, 1. 10.1109/JSTQE.2024.3396549 DOI
Giles A. J., Dai S., Vurgaftman I., Hoffman T., Liu S., Lindsay L., Ellis C. T., Assefa N., Chatzakis I., Reinecke T. L.. Ultralow-Loss Polaritons in Isotopically Pure Boron Nitride. Nat. Mater. 2018;17:134–139. doi: 10.1038/nmat5047. PubMed DOI
Hu H., Chen N., Teng H., Yu R., Qu Y., Sun J., Xue M., Hu D., Wu B., Li C.. Doping-Driven Topological Polaritons in Graphene/α-MoO3 Heterostructures. Nat. Nanotechnol. 2022;17:940–946. doi: 10.1038/s41565-022-01185-2. PubMed DOI PMC
Ayata M., Fedoryshyn Y., Heni W., Baeuerle B., Josten A., Zahner M., Koch U., Salamin Y., Hoessbacher C., Haffner C.. High-Speed Plasmonic Modulator in a Single Metal Layer. Science. 2017;358:630–632. doi: 10.1126/science.aan5953. PubMed DOI
Woessner A., Gao Y., Torre I., Lundeberg M. B., Tan C., Watanabe K., Taniguchi T., Hillenbrand R., Hone J., Polini M.. Electrical 2π Phase Control of Infrared Light in a 350-nm Footprint Using Graphene Plasmons. Nat. Photonics. 2017;11:421–424. doi: 10.1038/nphoton.2017.98. DOI
Bandurin D. A., Svintsov D., Gayduchenko I., Xu S. G., Principi A., Moskotin M., Tretyakov I., Yagodkin D., Zhukov S., Taniguchi T.. Resonant Terahertz Detection Using Graphene Plasmons. Nat. Commun. 2018;9:5392. doi: 10.1038/s41467-018-07848-w. PubMed DOI PMC
Freitag M., Low T., Zhu W., Yan H., Xia F., Avouris P.. Photocurrent in Graphene Harnessed by Tunable Intrinsic Plasmons. Nat. Commun. 2013;4:1951. doi: 10.1038/ncomms2951. PubMed DOI
Koepfli S. M., Baumann M., Koyaz Y., Gadola R., Güngör A., Keller K., Horst Y., Nashashibi S., Schwanninger R., Doderer M.. Metamaterial Graphene Photodetector with Bandwidth Exceeding 500 Gigahertz. Science. 2023;380:1169–1174. doi: 10.1126/science.adg8017. PubMed DOI
Liu A., Zhang X., Liu Z., Li Y., Peng X., Li X., Qin Y., Hu C., Qiu Y., Jiang H.. The Roadmap of 2D Materials and Devices Toward Chips. Nano-Micro Lett. 2024;16:119. doi: 10.1007/s40820-023-01273-5. PubMed DOI PMC
Nikitin A. Y., Guinea F., García-Vidal F., Martín-Moreno L.. Edge and Waveguide Terahertz Surface Plasmon Modes in Graphene Microribbons. Phys. Rev. B. 2011;84:161407. doi: 10.1103/PhysRevB.84.161407. DOI
Lundeberg M. B., Gao Y., Woessner A., Tan C., Alonso-González P., Watanabe K., Taniguchi T., Hone J., Hillenbrand R., Koppens F. H.. Thermoelectric Detection and Imaging of Propagating Graphene Plasmons. Nat. Mater. 2017;16:204–207. doi: 10.1038/nmat4755. PubMed DOI
Sloan J.. et al. Controlling Spins with Surface Magnon Polaritons. Phys. Rev. B. 2019;100:235453. doi: 10.1103/PhysRevB.100.235453. DOI
Kampfrath T.. et al. Resonant and Nonresonant Control over Matter and Light by Intense Terahertz transients. Nat. Photonics. 2013;7:680–690. doi: 10.1038/nphoton.2013.184. DOI
Kurman Y.. et al. Spatiotemporal Imaging of 2D Polariton Wave Packet Dynamics Using Free Electrons. Science. 2021;372:1181–1186. doi: 10.1126/science.abg9015. PubMed DOI
Liu M.. et al. Terahertz-Field-Induced Insulator-to-Metal Transition in Vanadium Dioxide Metamaterial. Nature. 2012;487:345–348. doi: 10.1038/nature11231. PubMed DOI
Henstridge M.. et al. Nonlocal Nonlinear Phononics. Nat. Phys. 2022;18:457–461. doi: 10.1038/s41567-022-01512-3. DOI
High A. A.. et al. Visible-Frequency Hyperbolic Metasurface. Nature. 2015;522:192–196. doi: 10.1038/nature14477. PubMed DOI
Sie E. J.. et al. Valley-Selective Optical Stark Effect in Monolayer WS2 . Nat. Mater. 2015;14:290–294. doi: 10.1038/nmat4156. PubMed DOI
Bao C.. et al. Light-Induced Emergent Phenomena in 2D Materials and Topological Materials. Nat. Rev. Phys. 2022;4:33–48. doi: 10.1038/s42254-021-00388-1. DOI
de la Torre A.. et al. Colloquium: Nonthermal Pathways to Ultrafast Control in Quantum Materials. Rev. Mod. Phys. 2021;93:041002. doi: 10.1103/RevModPhys.93.041002. DOI
Kim H.. et al. Optical Imprinting of Superlattices in Two-Dimensional Materials. Phys. Rev. Research. 2020;2:043004. doi: 10.1103/PhysRevResearch.2.043004. DOI
Ghazaryan A.. et al. Light-Induced Fractional Quantum Hall Phases in Graphene. Phys. Rev. Lett. 2017;119:247403. doi: 10.1103/PhysRevLett.119.247403. PubMed DOI
Michael M. H.. et al. Generalized Fresnel-Floquet Equations for Driven Quantum Materials. Phys. Rev. B. 2022;105:174301. doi: 10.1103/PhysRevB.105.174301. DOI
Jarc G.. et al. Cavity-Mediated Thermal Control of Metal-to-Insulator Transition in 1T-TaS2 . Nature. 2023;622:487–492. doi: 10.1038/s41586-023-06596-2. PubMed DOI
Eckhardt, C. J. ; et al. Surface-Mediated Ultra-Strong Cavity Coupling of Two-Dimensional Itinerant Electrons. arXiv 2024, 2409.10615. 10.48550/arXiv.2409.10615 DOI
Sarkar S.. et al. Sub-Wavelength Optical Lattice in 2D Materials. Sci. Adv. 2025;11:eadv2023. doi: 10.1126/sciadv.adv2023. PubMed DOI PMC
Enkner, J. ; et al. Enhanced Fractional Quantum Hall Gaps in a Two-Dimensional Electron Gas Coupled to a Hovering Split-Ring resonator. arXiv 2024, 2405.18362. 10.48550/arXiv.2405.18362 DOI
Camphausen R., Marini L., Tawfik S. A., Tran T. T., Ford M. J., Palomba S.. Observation of Near-Infrared Sub-Poissonian Photon Emission in Hexagonal Boron Nitride at Room Temperature. APL Photonics. 2020;5:076103. doi: 10.1063/5.0008242. DOI
Koperski M., Vaclavkova D., Watanabe K., Taniguchi T., Novoselov K. S., Potemski M.. Midgap Radiative Centers in Carbon-Enriched Hexagonal Boron Nitride. Proc. Natl. Acad. Sci. U. S. A. 2020;117:13214–13219. doi: 10.1073/pnas.2003895117. PubMed DOI PMC
Srivastava A., Sidler M., Allain A. V., Lembke D. S., Kis A., Imamoǧlu A.. Optically Active Quantum Dots in Monolayer WSe2 . Nat. Nanotechnol. 2015;10:491–496. doi: 10.1038/nnano.2015.60. PubMed DOI
He Y.-M., Clark G., Schaibley J. R., He Y., Chen M.-C., Wei Y.-J., Ding X., Zhang Q., Yao W., Xu X., Lu C.-Y., Pan J.-W.. Single Quantum Emitters in Monolayer Semiconductors. Nat. Nanotechnol. 2015;10:497–502. doi: 10.1038/nnano.2015.75. PubMed DOI
Koperski M., Nogajewski K., Arora A., Cherkez V., Mallet P., Veuillen J.-Y., Marcus J., Kossacki P., Potemski M.. Single Photon Emitters in Exfoliated WSe2 Structures. Nat. Nanotechnol. 2015;10:503–506. doi: 10.1038/nnano.2015.67. PubMed DOI
Branny A., Wang G., Kumar S., Robert C., Lassagne B., Marie X., Gerardot B. D., Urbaszek B.. Discrete Quantum Dot like Emitters in Monolayer MoSe2: Spatial Mapping, Magneto-Optics, and Charge Tuning. Appl. Phys. Lett. 2016;108:142101. doi: 10.1063/1.4945268. DOI
Chakraborty C., Goodfellow K. M., Vamivakas A. N.. Localized Emission from Defects in MoSe2 Layers. Opt. Mater. Express. 2016;6:2081–2087. doi: 10.1364/OME.6.002081. DOI
Zhao S., Lavie J., Rondin L., Orcin-Chaix L., Diederichs C., Roussignol P., Chassagneux Y., Voisin C., Müllen K., Narita A., Campidelli S., Lauret J. S.. Single Photon Emission from Graphene Quantum Dots at Room Temperature. Nat. Commun. 2018;9:3470. doi: 10.1038/s41467-018-05888-w. PubMed DOI PMC
Kozawa D., Wu X., Ishii A., Fortner J., Otsuka K., Xiang R., Inoue T., Maruyama S., Wang Y., Kato Y. K.. Formation of Organic Color Centers in Air-Suspended Carbon Nanotubes Using Vapor-Phase Reaction. Nat. Commun. 2022;13:2814. doi: 10.1038/s41467-022-30508-z. PubMed DOI PMC
He X., Hartmann N. F., Ma X., Kim Y., Ihly R., Blackburn J. L., Gao W., Kono J., Yomogida Y., Hirano A., Tanaka T., Kataura H., Htoon H., Doorn S. K.. Tunable Room-Temperature Single-Photon Emission at Telecom Wavelengths from sp 3 Defects in Carbon Nanotubes. Nat. Photonics. 2017;11:577–582. doi: 10.1038/nphoton.2017.119. DOI
Yu H., Liu G.-B., Tang J., Xu X., Yao W.. Moiré Excitons: From Programmable Quantum Emitter Arrays to Spin-Orbit−Coupled Artificial Lattices. Sci. Adv. 2017;3:e1701696. doi: 10.1126/sciadv.1701696. PubMed DOI PMC
Seyler K. L., Rivera P., Yu H., Wilson N. P., Ray E. L., Mandrus D. G., Yan J., Yao W., Xu X.. Signatures of Moiré-Trapped Valley Excitons in MoSe2/WSe2 Heterobilayers. Nature. 2019;567:66–70. doi: 10.1038/s41586-019-0957-1. PubMed DOI
Tang Y., Li L., Li T., Xu Y., Liu S., Barmak K., Watanabe K., Taniguchi T., MacDonald A. H., Shan J., Mak K. F.. Simulation of Hubbard Model Physics in WSe2/WS2 Moiré Superlattices. Nature. 2020;579:353–358. doi: 10.1038/s41586-020-2085-3. PubMed DOI
Cai T., Kim J.-H., Yang Z., Dutta S., Aghaeimeibodi S., Waks E.. Radiative Enhancement of Single Quantum Emitters in WSe2 Monolayers Using Site-Controlled Metallic Nanopillars. ACS Photonics. 2018;5:3466–3471. doi: 10.1021/acsphotonics.8b00580. DOI
Fournier C., Plaud A., Roux S., Pierret A., Rosticher M., Watanabe K., Taniguchi T., Buil S., Quélin X., Barjon J., Hermier J.-P., Delteil A.. Position-Controlled Quantum Emitters with Reproducible Emission Wavelength in Hexagonal Boron Nitride. Nat. Commun. 2021;12:3779. doi: 10.1038/s41467-021-24019-6. PubMed DOI PMC
Klein J., Sigl L., Gyger S., Barthelmi K., Florian M., Rey S., Taniguchi T., Watanabe K., Jahnke F., Kastl C., Zwiller V., Jöns K. D., Müller K., Wurstbauer U., Finley J. J., Holleitner A. W.. Engineering the Luminescence and Generation of Individual Defect Emitters in Atomically Thin MoS2 . ACS Photonics. 2021;8:669–677. doi: 10.1021/acsphotonics.0c01907. DOI
Liu G.-L., Wu X.-Y., Jing P.-T., Cheng Z., Zhan D., Bao Y., Yan J.-X., Xu H., Zhang L.-G., Li B.-H., Liu K.-W., Liu L., Shen D.-Z.. Single Photon Emitters in Hexagonal Boron Nitride Fabricated by Focused Helium Ion Beam. Adv. Opt. Mater. 2024;12:2302083. doi: 10.1002/adom.202302083. DOI
Baek H., Brotons-Gisbert M., Koong Z. X., Campbell A., Rambach M., Watanabe K., Taniguchi T., Gerardot B. D.. Highly Energy-Tunable Quantum Light from Moiré-Trapped Excitons. Sci. Adv. 2020;6:eaba8526. doi: 10.1126/sciadv.aba8526. PubMed DOI PMC
Vogl T., Lecamwasam R., Buchler B. C., Lu Y., Lam P. K.. Compact Cavity-Enhanced Single-Photon Generation with Hexagonal Boron Nitride. ACS Photonics. 2019;6:1955–1962. doi: 10.1021/acsphotonics.9b00314. DOI
Fröch J. E., Li C., Chen Y., Toth M., Kianinia M., Kim S., Aharonovich I.. Purcell Enhancement of a Cavity-Coupled Emitter in Hexagonal Boron Nitride. Small. 2022;18:2104805. doi: 10.1002/smll.202104805. PubMed DOI
Li C., Fröch J. E., Nonahal M., Tran T. N., Toth M., Kim S., Aharonovich I.. Integration of hBN Quantum Emitters in Monolithically Fabricated Waveguides. ACS Photonics. 2021;8:2966–2972. doi: 10.1021/acsphotonics.1c00890. DOI
Elshaari A. W., Skalli A., Gyger S., Nurizzo M., Schweickert L., Esmaeil Zadeh I., Svedendahl M., Steinhauer S., Zwiller V.. Deterministic Integration of hBN Emitter in Silicon Nitride Photonic Waveguide. Adv. Quantum Technol. 2021;4:2100032. doi: 10.1002/qute.202100032. DOI
Gérard D., Rosticher M., Watanabe K., Taniguchi T., Barjon J., Buil S., Hermier J.-P., Delteil A.. Top-down Integration of an hBN Quantum Emitter in a Monolithic Photonic Waveguide. Appl. Phys. Lett. 2023;122:264001. doi: 10.1063/5.0152721. DOI
Stern H. L., Gu Q., Jarman J., Eizagirre Barker S., Mendelson N., Chugh D., Schott S., Tan H. H., Sirringhaus H., Aharonovich I., Atatüre M.. Room-Temperature Optically Detected Magnetic Resonance of Single Defects in Hexagonal Boron Nitride. Nat. Commun. 2022;13:618. doi: 10.1038/s41467-022-28169-z. PubMed DOI PMC
Gottscholl A., Kianinia M., Soltamov V., Orlinskii S., Mamin G., Bradac C., Kasper C., Krambrock K., Sperlich A., Toth M., Aharonovich I., Dyakonov V.. Initialization and Read-out of Intrinsic Spin Defects in a van der Waals Crystal at Room Temperature. Nat. Mater. 2020;19:540–545. doi: 10.1038/s41563-020-0619-6. PubMed DOI
Smoleński T., Cotlet O., Popert A., Back P., Shimazaki Y., Knüppel P., Dietler N., Taniguchi T., Watanabe K., Kroner M., Imamoglu A.. Interaction-Induced Shubnikov−de Haas Oscillations in Optical Conductivity of Monolayer MoSe2 . Phys. Rev. Lett. 2019;123:097403. doi: 10.1103/PhysRevLett.123.097403. PubMed DOI
Wang H., Kim H., Dong D., Shinokita K., Watanabe K., Taniguchi T., Matsuda K.. Quantum Coherence and Interference of a Single Moiré Exciton in Nano-Fabricated Twisted Monolayer Semiconductor Heterobilayers. Nat. Commun. 2024;15:4905. doi: 10.1038/s41467-024-48623-4. PubMed DOI PMC
Litvinov D., Wu A., Barbosa M., Vaklinova K., Grzeszczyk M., Baldi G., Zhu M., Koperski M.. Single Photon Sources and Single Electron Transistors in Two-Dimensional Materials. Mater. Sci. Eng. R. 2025;163:100928. doi: 10.1016/j.mser.2025.100928. DOI
Badrtdinov D. I., Rodriguez-Fernandez C., Grzeszczyk M., Qiu Z., Vaklinova K., Huang P., Hampel A., Watanabe K., Taniguchi T., Jiong L., Potemski M., Dreyer C. E., Koperski M., Rösner M.. Dielectric Environment Sensitivity of Carbon Centers in Hexagonal Boron Nitride. Small. 2023;19:2300144. doi: 10.1002/smll.202300144. PubMed DOI
Qiu Z., Vaklinova K., Huang P., Grzeszczyk M., Watanabe K., Taniguchi T., Novoselov K. S., Lu J., Koperski M.. Atomic and Electronic Structure of Defects in hBN: Enhancing Single-Defect Functionalities. ACS Nano. 2024;18:24035–24043. doi: 10.1021/acsnano.4c03640. PubMed DOI PMC
Wu S. W., Nazin G. V., Ho W.. Intramolecular Photon Emission from a Single Molecule in a Scanning Tunneling Microscope. Phys. Rev. B. 2008;77:205430. doi: 10.1103/PhysRevB.77.205430. DOI
Krane N., Lotze C., Läger J. M., Reecht G., Franke K. J.. Electronic Structure and Luminescence of Quasi-Freestanding MoS2 Nanopatches on Au(111) Nano Lett. 2016;16:5163–5168. doi: 10.1021/acs.nanolett.6b02101. PubMed DOI PMC
Kastl C., Chen C. T., Koch R. J., Schuler B., Kuykendall T. R., Bostwick A., Jozwiak C., Seyller T., Rotenberg E., Weber-Bargioni A., Aloni S., Schwartzberg A. M.. Multimodal Spectromicroscopy of Monolayer WS2 Enabled by Ultra-Clean van der Waals Epitaxy. 2D Mater. 2018;5:045010. doi: 10.1088/2053-1583/aad21c. DOI
Howarth J., Vaklinova K., Grzeszczyk M., Baldi G., Hague L., Potemski M., Novoselov K. S., Kozikov A., Koperski M.. Electroluminescent Vertical Tunneling Junctions Based on WSe2 Monolayer Quantum Emitter Arrays: Exploring Tunability with Electric and Magnetic Fields. Proc. Natl. Acad. Sci. U. S. A. 2024;121:e2401757121. doi: 10.1073/pnas.2401757121. PubMed DOI PMC
Grzeszczyk M., Vaklinova K., Watanabe K., Taniguchi T., Novoselov K. S., Koperski M.. Electroluminescence from Pure Resonant States in hBN-Based Vertical Tunneling Junctions. Light: Sci. Appl. 2024;13:155. doi: 10.1038/s41377-024-01491-5. PubMed DOI PMC
Withers F., Del Pozo-Zamudio O., Mishchenko A., Rooney A. P., Gholinia A., Watanabe K., Taniguchi T., Haigh S. J., Geim A. K., Tartakovskii A. I., Novoselov K. S.. Light-Emitting Diodes by Band-Structure Engineering in van der Waals Heterostructures. Nat. Mater. 2015;14:301–306. doi: 10.1038/nmat4205. PubMed DOI
Binder J., Withers F., Molas M. R., Faugeras C., Nogajewski K., Watanabe K., Taniguchi T., Kozikov A., Geim A. K., Novoselov K. S., Potemski M.. Sub-bandgap Voltage Electroluminescence and Magneto-oscillations in a WSe2 Light-Emitting van der Waals Heterostructure. Nano Lett. 2017;17:1425–1430. doi: 10.1021/acs.nanolett.6b04374. PubMed DOI
Puchert R. P., Steiner F., Plechinger G., Hofmann F. J., Caspers I., Kirschner J., Nagler P., Chernikov A., Schüller C., Korn T., Vogelsang J., Bange S., Lupton J. M.. Spectral Focusing of Broadband Silver Electroluminescence in Nanoscopic FRET-LEDs. Nat. Nanotechnol. 2017;12:637–641. doi: 10.1038/nnano.2017.48. PubMed DOI
Pommier D., Bretel R., López L. E. P., Fabre F., Mayne A., Boer-Duchemin E., Dujardin G., Schull G., Berciaud S., Le Moal E.. Scanning Tunneling Microscope-Induced Excitonic Luminescence of a Two-Dimensional Semiconductor. Phys. Rev. Lett. 2019;123:1–7. doi: 10.1103/PhysRevLett.123.027402. PubMed DOI
Papadopoulos, S. ; Wang, L. ; Taniguchi, T. ; Watanabe, K. ; Novotny, L. . Energy Transfer from Tunneling Electrons to Excitons. arXiv 2022, 2209.11641. 10.48550/arXiv.2209.11641 DOI
Shan S., Huang J., Papadopoulos S., Khelifa R., Taniguchi T., Watanabe K., Wang L., Novotny L.. Overbias Photon Emission from Light-Emitting Devices Based on Monolayer Transition Metal Dichalcogenides. Nano Lett. 2023;23:10908–10913. doi: 10.1021/acs.nanolett.3c03155. PubMed DOI PMC
Wang Z., Kalathingal V., Trushin M.. et al. Upconversion Electroluminescence in 2D Semiconductors Integrated with Plasmonic Tunnel Junctions. Nat. Nanotechnol. 2024;19:993–999. doi: 10.1038/s41565-024-01650-0. PubMed DOI
Mishchenko A., Tu J. S., Cao Y., Gorbachev R. V., Wallbank J. R., Greenaway M. T., Morozov V. E., Morozov S. V., Zhu M. J., Wong S. L., Withers F., Woods C. R., Kim Y. J., Watanabe K., Taniguchi T., Vdovin E. E., Makarovsky O., Fromhold T. M., Fal’ko V. I., Novoselov K. S.. Twist-Controlled Resonant Tunnelling in Graphene/Boron Nitride/Graphene Heterostructures. Nat. Nanotechnol. 2014;9:808–813. doi: 10.1038/nnano.2014.187. PubMed DOI
Kuzmina A., Parzefall M., Back P., Taniguchi T., Watanabe K., Jain A., Novotny L.. Resonant Light Emission from Graphene/Hexagonal Boron Nitride/Graphene Tunnel Junctions. Nano Lett. 2021;21:8332–8339. doi: 10.1021/acs.nanolett.1c02913. PubMed DOI
Zhang Y., Brar V. W., Wang F., Girit C., Yayon Y., Panlasigui M., Zettl A., Crommie M. F.. Giant Phonon-Induced Conductance in Scanning Tunnelling Spectroscopy of Gate-Tunable Graphene. Nat. Phys. 2008;4:627–630. doi: 10.1038/nphys1022. DOI
Wang L., Papadopoulos S., Iyikanat F., Zhang J., Huang J., Taniguchi T., Watanabe K., Calame M., Perrin M. L., García de Abajo F. J., Novotny L.. Exciton-Assisted Electron Tunnelling in van der Waals Heterostructures. Nat. Mater. 2023;22:1094–1099. doi: 10.1038/s41563-023-01556-7. PubMed DOI PMC
Inbar A., Birkbeck J., Xiao J., Taniguchi T., Watanabe K., Yan B., Oreg Y., Stern A., Berg E., Ilani S.. The Quantum Twisting Microscope. Nature. 2023;614:682–687. doi: 10.1038/s41586-022-05685-y. PubMed DOI
Parzefall P., Novotny L.. Optical Antennas Driven by Quantum Tunneling: A Key Issues Review. Rep. Prog. Phys. 2019;82:112401. doi: 10.1088/1361-6633/ab4239. PubMed DOI
Kim K., Prasad N., Movva H. C. P., Burg G. W., Wang Y., Larentis S., Taniguchi T., Watanabe K., Register L. F., Tutuc E.. Spin-Conserving Resonant Tunneling in Twist-Controlled WSe2-hBN-WSe2 Heterostructures. Nano Lett. 2018;18:5967–5973. doi: 10.1021/acs.nanolett.8b02770. PubMed DOI
Xia F., Mueller T., Lin Y. M., Valdes-Garcia A., Avouris P.. Ultrafast Graphene Photodetector. Nat. Nanotechnol. 2009;4:839–843. doi: 10.1038/nnano.2009.292. PubMed DOI
Vicarelli L., Vitiello M. S., Coquillat D., Lombardo A. A., Ferrari C., Knap W., Polini M., Pellegrini V., Tredicucci A.. Graphene Field Effect Transistors as Room-Temperature Terahertz Detectors. Nat. Mater. 2012;11:865–871. doi: 10.1038/nmat3417. PubMed DOI
Koppens F. H. L., Mueller T., Avouris P., Ferrari A. C., Vitiello M. S., Polini M.. Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014;9:780–793. doi: 10.1038/nnano.2014.215. PubMed DOI
Viti L., Purdie D. G., Lombardo A., Ferrari A. C., Vitiello M. S.. HBN-Encapsulated, Graphene-based, Room-temperature Terahertz Receivers, with High Speed and Low Noise. Nano Lett. 2020;20:3169. doi: 10.1021/acs.nanolett.9b05207. PubMed DOI
Asgari M., Riccardi E., Balci O., De Fazio D., Shinde S. M., Zhang J., Mignuzzi S., Koppens F. H. L., Ferrari A. C., Viti L., Vitiello M. S.. Chip-Scalable, Room-Temperature, Zero-Bias, Graphene-Based Terahertz Detectors with Nanosecond Response Time. ACS Nano. 2021;15:17966–17976. doi: 10.1021/acsnano.1c06432. PubMed DOI PMC
Liu M., Yin X., Ulin-Avila E., Geng B., Zentgraf T., Ju L., Wang F., Zhang X. A.. Graphene-Based Broadband Optical Modulator. Nature. 2011;474:64–67. doi: 10.1038/nature10067. PubMed DOI
Di Gaspare A., Pogna E. A. A., Salemi L., Balci O., Cadore A. R., Shinde S. M., Li L., Di Franco C., Davies A. G., Linfield E. H., Ferrari A. C., Scamarcio G., Vitiello M. S.. Tunable, Grating-Gated, Graphene-On-Polyimide Terahertz Modulators. Adv. Funct. Mater. 2021;31:2008039. doi: 10.1002/adfm.202008039. DOI
Di Gaspare A., Pogna E. A. A., Riccardi E., Sarfraz S. M. A., Scamarcio G., Vitiello M. S.. All in One-Chip, Electrolyte-Gated Graphene Amplitude Modulator, Saturable Absorber Mirror and Metrological Frequency-Tuner in the 2−5 THz Range. Adv. Optical Mater. 2022;10:2200819. doi: 10.1002/adom.202200819. DOI
Riccardi E., Pistore V., Kang S., Seitner L., De Vetter A., Jirauschek C., Mangeney J., Li L., Davies A. G., Linfield E. H., Ferrari A. C., Dhillon S. S., Vitiello M. S.. Short Pulse Generation from a Graphene-Coupled Passively Mode-Locked Terahertz Laser. Nat. Photonics. 2023;17:607–614. doi: 10.1038/s41566-023-01195-z. DOI
Brida D., Tomadin A., Manzoni C., Kim Y. J., Lombardo A., Milana S., Nair R. R., Novoselov K. S., Ferrari A. C., Cerullo G., Polini M.. Ultrafast Collinear Scattering and Carrier Multiplication in Graphene. Nat. Commun. 2013;4:1987. doi: 10.1038/ncomms2987. PubMed DOI
Vakil A., Engheta N.. Transformation Optics Using Graphene. Science. 2011;332:1291–1294. doi: 10.1126/science.1202691. PubMed DOI
Miseikis V., Marconi S., Giambra M. A., Montanaro A., Martini L., Fabbri F., Pezzini S., Piccinini G., Forti S., Terrés B., Goykhman I., Hamidouche L., Legagneux P., Sorianello V., Ferrari A. C., Koppens F. H. L., Romagnoli M., Coletti C.. Ultrafast, Zero-Bias, Graphene Photodetectors with Polymeric Gate Dielectric on Passive Photonic Waveguides. ACS Nano. 2020;14:11190–11204. doi: 10.1021/acsnano.0c02738. PubMed DOI PMC
Castilla S., Terrés B., Autore M., Viti L., Li J., Nikitin A. Y., Vangelidis I., Watanabe K., Taniguchi T., Lidorikis E., Vitiello M. S., Hillenbrand R., Tielrooij K.-J., Koppens F. H. L.. Fast and Sensitive Terahertz Detection Using an Antenna-Integrated Graphene pn Junction. Nano Lett. 2019;19:2765. doi: 10.1021/acs.nanolett.8b04171. PubMed DOI
Viti L., Cadore A. R., Yang X., Vorobiev A., Muench J. E., Watanabe K., Taniguchi T., Stake J., Ferrari A. C., Vitiello M. S.. Thermoelectric Graphene Photodetectors with Sub-Nanosecond Response Times at Terahertz Frequencies. Nanophotonics. 2020;10:89. doi: 10.1515/nanoph-2020-0255. DOI
Asgari M., Viti L., Balci O., Shinde S. M., Zhang J., Ramezani H., Sharma S., Meersha A., Menichetti G., McAleese C., Conran B., Wang X., Tomadin A., Ferrari A. C., Vitiello M. S.. Terahertz Photodetection in Scalable Single-Layer-Graphene and Hexagonal Boron Nitride Heterostructures. Appl. Phys. Lett. 2022;121:031103. doi: 10.1063/5.0097726. DOI
Viti L., Hu J., Coquillat D., Knap W., Tredicucci A., Politano A., Vitiello M. S.. Black Phosphorus Terahertz Photodetectors. Adv. Mater. 2015;27:5567–5572. doi: 10.1002/adma.201502052. PubMed DOI
Viti L., Coquillat D., Politano A., Kokh A. K., Aliev Z. S., Babanly M. B., Tereshchenko O. E., Knap W., Chulkov E. V., Vitiello M. S.. Plasma-Wave Terahertz Detection Mediated by Topological Insulators Surface States. Nano Lett. 2016;16:80–87. doi: 10.1021/acs.nanolett.5b02901. PubMed DOI
Viti L., Riccardi E., Beere H. E., Ritchie D. A., Vitiello M. S.. Real-Time Measure of the Lattice Temperature of a Semiconductor Heterostructure Laser via an On-Chip Integrated Graphene Thermometer. ACS Nano. 2023;17:6103–6112. doi: 10.1021/acsnano.3c01208. PubMed DOI PMC
Vitiello M. S., Tredicucci A.. Physics and Technology of Terahertz Quantum Cascade Lasers. Adv. Phys. X. 2021;6:1893809. doi: 10.1080/23746149.2021.1893809. DOI
Riccardi E., Pistore V., Consolino L., Sorgi A., Cappelli F., Eramo R., De Natale P., Li L., Davies A. G., Linfield E. H., Vitiello M. S.. Terahertz Sources Based on Metrological-Grade Frequency Combs. Laser Photonics Rev. 2023;17:2200412. doi: 10.1002/lpor.202200412. DOI
Justo Guerrero M. A., Arif M., Sorba L., Vitiello M. S.. Harmonic Quantum Cascade Laser Terahertz Frequency Combs Enabled by Multilayer Graphene Top-Cavity Scatters. Nanophotonics. 2024;13:1835–1841. doi: 10.1515/nanoph-2023-0912. PubMed DOI PMC
Bianchi V., Carey T., Viti L., Li L., Linfield E. H., Davies A. G., Tredicucci A., Yoon D., Karagiannidis P. G., Lombardi L., Tomarchio F., Ferrari A. C., Torrisi F., Vitiello M. S.. Terahertz Saturable Absorbers from Liquid Phase Exfoliation of Graphite. Nat. Commun. 2017;8:15763. doi: 10.1038/ncomms15763. PubMed DOI PMC
Di Gaspare A., Pistore V., Riccardi E., Pogna E. A. A., Beere H. E., Ritchie D. A., Li L., Davies A. G., Linfield E. H., Ferrari A. C., Vitiello M. S.. Self-Induced Mode-Locking in Electrically Pumped Far-Infrared Random Lasers. Adv. Sci. 2023;10:2206824. doi: 10.1002/advs.202206824. PubMed DOI PMC
Hafez H. A., Kovalev S., Tielrooij K.-J., Bonn M., Gensch M., Turchinovich D.. Terahertz Nonlinear Optics of Graphene: From Saturable Absorption to High-Harmonics Generation. Adv. Optical Mater. 2020;8:1900771. doi: 10.1002/adom.201900771. DOI
Hafez H. A., Kovalev S., Deinert J.-C., Mics Z., Green B., Awari N., Chen M., Germanskiy S., Lehnert U., Teichert J., Wang Z., Tielrooij K.-J., Liu Z., Chen Z., Narita A., Müllen K., Bonn M., Gensch M., Turchinovich D.. Extremely Efficient Terahertz High-Harmonic Generation in Graphene by Hot Dirac Fermions. Nature. 2018;561:507–511. doi: 10.1038/s41586-018-0508-1. PubMed DOI
Kovalev S., Hafez H. A., Tielrooij K.-J., Deinert J.-C., Ilyakov I., Awari N., Alcaraz D., Soundarapandian K., Saleta D., Germanskiy S., Chen M., Bawatna M., Green B., Koppens F. H. L., Mittendorff M., Bonn M., Gensch D., Turchinovich D.. Electrical Tunability of Terahertz Nonlinearity in Graphene. Sci. Adv. 2021;7:eabf9809. doi: 10.1126/sciadv.abf9809. PubMed DOI PMC
Deinert J.-C., Alcaraz Iranzo D., Pérez R., Jia X., Hafez H. A., Ilyakov I., Awari N., Chen M., Bawatna M., Ponomaryov A. N., Germanskiy S., Bonn M., Koppens F. H.L., Turchinovich D., Gensch M., Kovalev S., Tielrooij K.-J.. Grating-Graphene Metamaterial as a Platform for Terahertz Nonlinear Photonics. ACS Nano. 2021;15:1145–1154. doi: 10.1021/acsnano.0c08106. PubMed DOI PMC
Giorgianni F., Chiadroni E., Rovere A., Cestelli-Guidi M., Perucchi A., Bellaveglia M., Castellano M., Di Giovenale D., Di Pirro G., Ferrario M., Pompili R., Vaccarezza C., Villa F., Cianchi A., Mostacci A., Petrarca M., Brahlek M., Koirala N., Oh S., Lupi S.. Strong Nonlinear Terahertz Response Induced by Dirac Surface States in Bi2Se3 Topological Insulator. Nat. Commun. 2016;7:11421. doi: 10.1038/ncomms11421. PubMed DOI PMC
Tielrooij K.-J., Principi A., Reig D. S., Block A., Varghese S., Schreyeck S., Brunner K., Karczewski G., Ilyakov I., Ponomaryov O., de Oliveira T. V. A. G., Chen M., Deinert J.-C., Carbonell C. G., Valenzuela S. O., Molenkamp L. W., Kiessling T., Astakhov G. V., Kovalev S.. Milliwatt Terahertz Harmonic Generation from Topological Insulator Metamaterials. Light Sci. Appl. 2022;11:315. doi: 10.1038/s41377-022-01008-y. PubMed DOI PMC
Cheng B., Kanda N., Ikeda T. K., Matsuda T., Xia P., Schumann T., Stemmer S., Itatani J., Armitage N. P., Matsunaga R.. Efficient Terahertz Harmonic Generation with Coherent Acceleration of Electrons in the Dirac Semimetal. Phys. Rev. Lett. 2020;124:117402. doi: 10.1103/PhysRevLett.124.117402. PubMed DOI
Kovalev S., Dantas R. M. A., Germanskiy S., Deinert J.-C., Green B., Ilyakov I., Awari N., Chen M., Bawatna M., Ling J., Xiu F., van Loosdrecht P. H. M., Surówka P., Oka T., Wang Z.. Non-Perturbative Terahertz High-Harmonic Generation in the Three-Dimensional Dirac Semimetal Cd3As2 . Nat. Commun. 2020;11:2451. doi: 10.1038/s41467-020-16133-8. PubMed DOI PMC
Di Gaspare A., Song C., Schiattarella C., Li L. H., Salih M., Davies A. G., Linfield E. H., Zhang J., Balci O., Ferrari A. C., Dhillon S., Vitiello M. S.. Compact Terahertz Harmonic Generation in the Reststrahlenband Using a Graphene-Embedded Metallic Split Ring Resonator Array. Nat. Commun. 2024;15:2312. doi: 10.1038/s41467-024-45267-2. PubMed DOI PMC
Fukuda D., Kikuchi T.. Single and Few-Photon Detection Using Superconducting Transition Edge Sensors. Prog. Opt. 2024;69:135–175. doi: 10.1016/bs.po.2024.03.001. DOI
Baselmans J. J. A., Facchin F., Pascual Laguna A., Bueno A., Thoen D. J., Murugesan V., Llombart N., de Visser P. J.. Ultra-Sensitive THz Microwave Kinetic Inductance Detectors for Future Space Telescopes. Astron. Instrum. 2022;665:A17. doi: 10.1051/0004-6361/202243840. DOI
Rogalski A.. Semiconductor Detectors and Focal Plane Arrays for Far-Infrared Imaging. Opto−Electron. Rev. 2013;21:406–426. doi: 10.2478/s11772-013-0110-x. DOI
Karasik B. S., Olaya D., Wei J., Pereverzev S., Gershenson M. E., Kawamura J. H., McGrath W. R., Sergeev A. V.. Record−Low NEP in Hot−Electron Titanium Nanobolometers. IEEE T. Appl. Supercon. 2007;17:293–297. doi: 10.1109/TASC.2007.897167. DOI
Echternach P. M., Pepper B. J., Reck T., Bradford C. M.. Single Photon Detection of 1.5 THz Radiation with the Quantum Capacitance Detector. Nat. Astron. 2018;2:90–97. doi: 10.1038/s41550-017-0294-y. DOI
Massicotte M., Soavi G., Principi A., Tielrooij K.-J.. Hot Carriers in Graphene − Fundamentals and Applications. Nanoscale. 2021;13:8376–8411. doi: 10.1039/D0NR09166A. PubMed DOI PMC
Hunt B., Sanchez-Yamagishi J. D., Young A. F., Yankowitz M., LeRoy B. J., Watanabe K., Taniguchi T., Moon P., Koshino M., Jarillo-Herrero P., Ashoori R. C.. Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure. Science. 2013;340:1427–1430. doi: 10.1126/science.1237240. PubMed DOI
Ohta T., Bostwick A., Seyller T., Horn K., Rotenberg E.. Controlling the Electronic Structure of Bilayer Graphene. Science. 2006;313:951–954. doi: 10.1126/science.1130681. PubMed DOI
Zhang Y., Tang T.-T., Girit C., Hao Z., Martin M. C., Zettl A., Crommie M. F., Shen Y. R., Wang F.. Direct Observation of a Widely Tunable Bandgap in Bilayer Graphene. Nature. 2009;459:820–823. doi: 10.1038/nature08105. PubMed DOI
Gayduchenko I., Xu S. G., Alymov G., Moskotin M., Tretyakov I., Taniguchi T., Watanabe K., Goltsman G., Geim A. K., Fedorov G., Svintsov D., Bandurin D. A.. Tunnel Field-Effect Transistors for Sensitive Terahertz Detection. Nat. Commun. 2021;12:543. doi: 10.1038/s41467-020-20721-z. PubMed DOI PMC
Mylnikov D. A., Titova E. I., Kashchenko M. A., Safonov I. V., Zhukov S. S., Semkin V. A., Novoselov K. S., Bandurin D. A., Svintsov D. A.. Terahertz Photoconductivity in Bilayer GrapheneTransistors: Evidence for Tunneling at Gate-Induced Junctions. Nano Lett. 2023;23:220–226. doi: 10.1021/acs.nanolett.2c04119. PubMed DOI
Todorov Y., Andrews A. M., Sagnes I., Colombelli R., Klang P., Strasser G., Sirtori C.. Strong Light-Matter Coupling in Subwavelength Metal-Dielectric Microcavities at Terahertz Frequencies. Phys. Rev. Lett. 2009;102:186402. doi: 10.1103/PhysRevLett.102.186402. PubMed DOI
Lee I., Yoo D., Avouris P., Low T., Oh S. H.. Graphene Acoustic Plasmon Resonator for Ultrasensitive Infrared Spectroscopy. Nat. Nanotechnol. 2019;14:313–319. doi: 10.1038/s41565-019-0363-8. PubMed DOI
Liang G., Huang H., Mohanty A., Shin M. C., Ji X., Carter M. J., Shrestha S., Lipson M., Yu N.. Robust, Efficient, Micrometre-Scale Phase Modulators at Visible Wavelengths. Nat. Photonics. 2021;15:908–913. doi: 10.1038/s41566-021-00891-y. DOI
Kippenberg T. J., Holzwarth R., Diddams S. A.. Microresonator-Based Optical Frequency Combs. Science. 2011;332:555–559. doi: 10.1126/science.1193968. PubMed DOI
Nguyen T. M. H., Shin S. G., Choi H. W., Bark C. W.. Recent Advances in Self-Powered and Flexible UVC Photodetectors. Exploration. 2022;2:20210078. doi: 10.1002/EXP.20210078. PubMed DOI PMC
Vavoulas A., Sandalidis H. G., Chatzidiamantis N. D., Xu Z., Karagiannidis G. K.. A Survey on Ultraviolet C-Band (UV-C) Communications. IEEE Commun. Surv. Tutor. 2019;21:2111–2133. doi: 10.1109/COMST.2019.2898946. DOI
Cai Q., You H., Guo H., Wang J., Liu B., Xie Z., Chen D., Lu H., Zheng Y., Zhang R.. Progress on AlGaN-Based Solar-Blind Ultraviolet Photodetectors and Focal Plane Arrays. Light Sci. Appl. 2021;10:94. doi: 10.1038/s41377-021-00527-4. PubMed DOI PMC
Wang L., Xu S., Yang J., Huang H., Huo Z., Li J., Xu X., Ren F., He Y., Ma Y., Zhang W., Xiao X.. Recent Progress in Solar-Blind Photodetectors Based on Ultrawide Bandgap Semiconductors. ACS Omega. 2024;9:25429–25447. doi: 10.1021/acsomega.4c02897. PubMed DOI PMC
Lu L., Weng W., Ma Y., Liu Y., Han S., Liu X., Xu H., Lin W., Sun Z., Luo J.. Anisotropy in a 2D Perovskite Ferroelectric Drives Self-Powered Polarization-Sensitive Photoresponse for Ultraviolet Solar-Blind Polarized-Light Detection. Angew. Chem., Int. Ed. 2022;61:202205030. doi: 10.1002/anie.202205030. PubMed DOI
Qiao H., Huang Z., Ren X., Liu S., Zhang Y., Qi X., Zhang H.. Self-Powered Photodetectors Based on 2D Materials. Adv. Opt. Mater. 2020;8:1900765. doi: 10.1002/adom.201900765. DOI
Chu J., Wang F., Yin L., Lei L., Yan C., Wang F., Wen Y., Wang Z., Jiang C., Feng L., Xiong J., Li Y., He J.. High-Performance Ultraviolet Photodetector Based on a Few-Layered 2D NiPS3 Nanosheet. Adv. Funct. Mater. 2017;27:1701342. doi: 10.1002/adfm.201701342. DOI
Lu Y., Chen J., Chen T., Shu Y., Chang R.-J., Sheng Y., Shautsova V., Mkhize N., Holdway P., Bhaskaran H., Warner J. H.. Controlling Defects in Continuous 2D GaS Films for High-Performance Wavelength-Tunable UV-Discriminating Photodetectors. Adv. Mater. 2020;32:1906958. doi: 10.1002/adma.201906958. PubMed DOI
Shiffa M., Dewes B. T., Bradford J., Cottam N. D., Cheng T. S., Mellor C. J., Makarovskiy O., Rahman K., O’Shea J. N., Beton P. H., Novikov S. V., Ben T., Gonzalez D., Xie J., Zhang L., Patanè A.. Wafer-Scale Two-Dimensional Semiconductors for Deep UV Sensing. Small. 2024;20:2305865. doi: 10.1002/smll.202305865. PubMed DOI
Li S., Zhang Y., Yang W., Liu H., Fang X.. 2D Perovskite Sr2Nb3O10 for High-Performance UV Photodetectors. Adv. Mater. 2020;32:1905443. doi: 10.1002/adma.201905443. PubMed DOI
Bradford J., Dewes B. T., Shiffa M., Cottam N. D., Rahman K., Cheng T. S., Novikov S. V., Makarovsky O., O’Shea J. N., Beton P. H., Lara-Avila S., Harknett J., Greenaway M. T., Patanè A.. Epitaxy of GaSe Coupled to Graphene: From In Situ Band Engineering to Photon Sensing. Small. 2024;20:2404809. doi: 10.1002/smll.202404809. PubMed DOI
Yan Y., Xiong W., Li S., Zhao K., Wang X., Su J., Song X., Li X., Zhang S., Yang H., Liu X., Jiang L., Zhai T., Xia C., Li J., Wei Z.. et al. Direct Wide Bandgap 2D GeSe2 Monolayer toward Anisotropic UV Photodetection. Adv. Opt. Mater. 2019;7:1900622. doi: 10.1002/adom.201900622. DOI
Yan Y., Yang J., Du J., Zhang X., Liu Y.-Y., Xia C., Wei Z.. Cross-Substitution Promoted Ultrawide Bandgap up to 4.5 eV in a 2D Semiconductor: Gallium Thiophosphate. Adv. Mater. 2021;33:2008761. doi: 10.1002/adma.202008761. PubMed DOI
Liu H., Meng J., Zhang X., Chen Y., Yin Z., Wang D., Wang Y., You J., Gao M., Jin P.. High-Performance Deep Ultraviolet Photodetectors Based on Few-Layer Hexagonal Boron Nitride. Nanoscale. 2018;10:5559–5565. doi: 10.1039/C7NR09438H. PubMed DOI
Kaushik S., Karmakar S., Varshney R. K., Sheoran H., Chugh D., Jagadish C., Tan H. H., Singh R.. Deep-Ultraviolet Photodetectors Based on Hexagonal Boron Nitride Nanosheets Enhanced by Localized Surface Plasmon Resonance in Al Nanoparticles. ACS Appl. Nano Mater. 2022;5:7481–7491. doi: 10.1021/acsanm.2c01466. DOI
Kaur D., Kumar M.. A Strategic Review on Gallium Oxide Based Deep-Ultraviolet Photodetectors: Recent Progress and Future Prospects. Adv. Opt. Mater. 2021;9:2002160. doi: 10.1002/adom.202002160. DOI
Chen Y., Yang X., Zhang C., He G., Chen X., Qiao Q., Zang J., Dou W., Sun P., Deng Y., Dong L., Shan C.-X.. Ga2O3-Based Solar-Blind Position-Sensitive Detector for Noncontact Measurement and Optoelectronic Demodulation. Nano Lett. 2022;22:4888–4896. doi: 10.1021/acs.nanolett.2c01322. PubMed DOI
Zeng G., Zhang M.-R., Chen Y.-C., Li X.-X., Chen D.-B., Shi C.-Y., Zhao X.-F., Chen N., Wang T.-Y., Zhang D. W., Lu H.-L.. A Solar-Blind Photodetector with Ultrahigh Rectification Ratio and Photoresponsivity Based on the MoTe2/Ta:β-Ga2O3 pn Junction. Mater. Today Phys. 2023;33:101042. doi: 10.1016/j.mtphys.2023.101042. DOI
Cottam N. D., Dewes B. T., Shiffa M., Cheng T. S., Novikov S. V., Mellor C. J., Makarovsky O., Gonzalez D., Ben T., Patanè A.. Thin Ga2O3 Layers by Thermal Oxidation of van der Waals GaSe Nanostructures for Ultraviolet Photon Sensing. ACS Appl. Nano Mater. 2024;7:17553–17560. doi: 10.1021/acsanm.4c02685. PubMed DOI PMC
Li Q., Zhou Q., Shi L., Chen Q., Wang J.. Recent Advances in Oxidation and Degradation Mechanisms of Ultrathin 2D Materials Under Ambient Conditions and Their Passivation Strategies. J. Mater. Chem. A. 2019;7:4291–4312. doi: 10.1039/C8TA10306B. DOI
Wang F., Zhang T., Xie R., Wang Z., Hu W.. How to Characterize Figures of Merit of Two-Dimensional Photodetectors. Nat. Commun. 2023;14:2224. doi: 10.1038/s41467-023-37635-1. PubMed DOI PMC
Ranjan A., Mazumder A., Ramakrishnan N.. Recent Advances in Layered and Non-Layered 2D Materials for UV Detection. Sens. Actuators A: Phys. 2024;378:115837. doi: 10.1016/j.sna.2024.115837. DOI
Wang L., Xu X., Zhang L., Qiao R., Wu M., Wang Z., Zhang S., Liang J., Zhang Z., Zhang Z., Chen W., Xie X., Zong J., Shan Y., Guo Y., Willinger M., Wu H., Li Q., Wang W., Gao P., Wu S., Zhang Y., Jiang Y., Yu D., Wang E., Bai X., Wang Z.-J., Ding F., Liu K.. Epitaxial Growth of a 100-Square-Centimetre Single-Crystal Hexagonal Boron Nitride Monolayer on Copper. Nature. 2019;570:91–95. doi: 10.1038/s41586-019-1226-z. PubMed DOI
Wang S., Liu X., Xu M., Liu L., Yang D., Zhou P.. Two-Dimensional Devices and Integration Towards the Silicon Lines. Nat. Mater. 2022;21:1225–1239. doi: 10.1038/s41563-022-01383-2. PubMed DOI
Li Y., Li Z., Chi C., Shan H., Zheng L., Fang Z.. Plasmonics of 2D Nanomaterials: Properties and Applications. Adv. Sci. 2017;4:1600430. doi: 10.1002/advs.201600430. PubMed DOI PMC
Editorial. Moiré beyond van der Waals. Nat. Mater. 2024, 23, 1151. PubMed
Bai C., Wu G., Yang J., Zeng J., Liu Y., Wang J.. 2D Materials-Based Photodetectors Combined with Ferroelectrics. Nanotechnol. 2024;35:352001. doi: 10.1088/1361-6528/ad4652. PubMed DOI
Bridgman P. W.. Two New Modifications of Phosphorus. J. Am. Chem. Soc. 1914;36:1344–1363. doi: 10.1021/ja02184a002. DOI
Maruyama Y., Suzuki S., Kobayashi K., Tanuma S.. Synthesis and Some Properties of Black Phosphorus Single-Crystals. Physica B&C. 1981;105:99–102. doi: 10.1016/0378-4363(81)90223-0. DOI
Li L. K.. et al. Black Phosphorus Field-Effect Transistors. Nat. Nanotechnol. 2014;9:372–377. doi: 10.1038/nnano.2014.35. PubMed DOI
Liu H.. et al. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano. 2014;8:4033–4041. doi: 10.1021/nn501226z. PubMed DOI
Castellanos-Gomez A.. et al. Isolation and Characterization of Few-Layer Black Phosphorus. 2D Mater. 2014;1:025001. doi: 10.1088/2053-1583/1/2/025001. DOI
Xia F. N., Wang H., Jia Y. C.. Rediscovering Black Phosphorus as an Anisotropic Layered Material for Optoelectronics and Electronics. Nat. Commun. 2014;5:4458. doi: 10.1038/ncomms5458. PubMed DOI
Qiao J. S., Kong X. H., Hu Z. X., Yang F., Ji W.. High-Mobility Transport Anisotropy and Linear Dichroism in Few-Layer Black Phosphorus. Nat. Commun. 2014;5:4475. doi: 10.1038/ncomms5475. PubMed DOI PMC
Tran V., Soklaski R., Liang Y. F., Yang L.. Layer-Controlled Band Gap and Anisotropic Excitons in Few-Layer Black Phosphorus. Phys. Rev. B. 2014;89:235319. doi: 10.1103/PhysRevB.89.235319. DOI
Long G.. et al. Achieving Ultrahigh Carrier Mobility in Two-Dimensional Hole Gas of Black Phosphorus. Nano Lett. 2016;16:7768–7773. doi: 10.1021/acs.nanolett.6b03951. PubMed DOI
Low T.. et al. Tunable Optical Properties of Multilayer Black Phosphorus Thin Films. Phys. Rev. B. 2014;90:075434. doi: 10.1103/PhysRevB.90.075434. DOI
Yuan H. T.. et al. Polarization-Sensitive Broadband Photodetector Using a Black Phosphorus Vertical p-n Junction. Nat. Nanotechnol. 2015;10:707–713. doi: 10.1038/nnano.2015.112. PubMed DOI
Wang J. J.. et al. Mid-infrared Polarized Emission from Black Phosphorus Light-Emitting Diodes. Nano Lett. 2020;20:3651–3655. doi: 10.1021/acs.nanolett.0c00581. PubMed DOI
Wang X. M.. et al. Highly Anisotropic and Robust Excitons in Monolayer Black Phosphorus. Nat. Nanotechnol. 2015;10:517–521. doi: 10.1038/nnano.2015.71. PubMed DOI
Li L. K.. et al. Direct Observation of the Layer-Dependent Electronic Structure in Phosphorene. Nat. Nanotechnol. 2017;12:21–25. doi: 10.1038/nnano.2016.171. PubMed DOI
Rodin A. S., Carvalho A., Castro Neto A. H.. Strain-Induced Gap Modification in Black Phosphorus. Phys. Rev. Lett. 2014;112:176801. doi: 10.1103/PhysRevLett.112.176801. PubMed DOI
Kim H.. et al. Actively Variable-Spectrum Optoelectronics with Black Phosphorus. Nature. 2021;596:232. doi: 10.1038/s41586-021-03701-1. PubMed DOI
Deng B. C.. et al. Efficient Electrical Control of Thin-Film Black Phosphorus Bandgap. Nat. Commun. 2017;8:14474. doi: 10.1038/ncomms14474. PubMed DOI PMC
Chen X. L.. et al. Widely Tunable Black Phosphorus Mid-Infrared Photodetector. Nat. Commun. 2017;8:1672. doi: 10.1038/s41467-017-01978-3. PubMed DOI PMC
Liu B. L.. et al. Black Arsenic-Phosphorus: Layered Anisotropic Infrared Semiconductors with Highly Tunable Compositions and Properties. Adv. Mater. 2015;27:4423–4429. doi: 10.1002/adma.201501758. PubMed DOI
Engel M., Steiner M., Avouris P.. Black Phosphorus Photodetector for Multispectral, High-Resolution Imaging. Nano Lett. 2014;14:6414–6417. doi: 10.1021/nl502928y. PubMed DOI
Huang M. Q.. et al. Broadband Black-Phosphorus Photodetectors with High Responsivity. Adv. Mater. 2016;28:3481–3485. doi: 10.1002/adma.201506352. PubMed DOI
Wu S. Q.. et al. Ultra-Sensitive Polarization-Resolved Black Phosphorus Homojunction Photodetector Defined by Ferroelectric Domains. Nat. Commun. 2022;13:3198. doi: 10.1038/s41467-022-30951-y. PubMed DOI PMC
Ge S. F.. et al. Dynamical Evolution of Anisotropic Response in Black Phosphorus under Ultrafast Photoexcitation. Nano Lett. 2015;15:4650–4656. doi: 10.1021/acs.nanolett.5b01409. PubMed DOI
Youngblood N., Chen C., Koester S. J., Li M.. Waveguide-Integrated Black Phosphorus Photodetector with High Responsivity and Low Dark Current. Nat. Photonics. 2015;9:247–252. doi: 10.1038/nphoton.2015.23. DOI
Tian R. J.. et al. Black Phosphorus Photodetector Enhanced by a Planar Photonic Crystal Cavity. ACS Photonics. 2021;8:3104–3110. doi: 10.1021/acsphotonics.1c01168. DOI
Liu C. Y.. et al. High-Speed and High-Responsivity Silicon/Black-Phosphorus Hybrid Plasmonic Waveguide Avalanche Photodetector. ACS Photonics. 2022;9:1764–1774. doi: 10.1021/acsphotonics.2c00244. DOI
Guo W. L.. et al. Terahertz Photon Detection: Sensitive Terahertz Detection and Imaging Driven by the Photothermoelectric Effect in Ultrashort-Channel Black Phosphorus Devices. Adv. Sci. 2020;7:1902699. doi: 10.1002/advs.202070029. PubMed DOI PMC
Yuan S. F., Naveh D., Watanabe K., Taniguchi T., Xia F. N.. A Wavelength-Scale Black Phosphorus Spectrometer. Nat. Photonics. 2021;15:601–607. doi: 10.1038/s41566-021-00787-x. DOI
Lee S., Peng R. M., Wu C. M., Li M.. Programmable Black Phosphorus Image Sensor for Broadband Optoelectronic Edge Computing. Nat. Commun. 2022;13:1485. doi: 10.1038/s41467-022-29171-1. PubMed DOI PMC
Amani M., Regan E., Bullock J., Ahn G. H., Javey A.. Mid-Wave Infrared Photoconductors Based on Black Phosphorus-Arsenic Alloys. ACS Nano. 2017;11:11724–11731. doi: 10.1021/acsnano.7b07028. PubMed DOI
Long M. S.. et al. Room Temperature High-Detectivity Mid-Infrared Photodetectors Based on Black Arsenic Phosphorus. Sci. Adv. 2017;3:e1700589. doi: 10.1126/sciadv.1700589. PubMed DOI PMC
Island J. O., Steele G. A., van der Zant H. S. J., Castellanos-Gomez A.. Environmental Instability of Few-Layer Black Phosphorus. 2D Mater. 2015;2:011002. doi: 10.1088/2053-1583/2/1/011002. DOI
Higashitarumizu N., Tajima S., Kim J., Cai M. Y., Javey A.. Long Operating Lifetime Mid-Infrared LEDs Based on Black Phosphorus. Nat. Commun. 2023;14:4033–4041. doi: 10.1038/s41467-023-40602-5. PubMed DOI PMC
Favron A.. et al. Photooxidation and Quantum Confinement Effects in Exfoliated Black Phosphorus. Nat. Mater. 2015;14:826–832. doi: 10.1038/nmat4299. PubMed DOI
Gamage S.. et al. Reliable Passivation of Black Phosphorus by Thin Hybrid Coating. Nanotechnology. 2017;28:265201. doi: 10.1088/1361-6528/aa7532. PubMed DOI
Avsar A.. et al. Air-Stable Transport in Graphene-Contacted, Fully Encapsulated Ultrathin Black Phosphorus-Based Field-Effect Transistors. ACS Nano. 2015;9:4138–4145. doi: 10.1021/acsnano.5b00289. PubMed DOI
Wood J. D.. et al. Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation. Nano Lett. 2014;14:6964–6970. doi: 10.1021/nl5032293. PubMed DOI
Chen X. L.. et al. High-Quality Sandwiched Black Phosphorus Heterostructure and Its Quantum Oscillations. Nat. Commun. 2015;6:7315. doi: 10.1038/ncomms8315. PubMed DOI PMC
Arora H.. et al. Fully Encapsulated and Stable Black Phosphorus Field-Effect Transistors. Adv. Mater. Technologies. 2023;8:2200546. doi: 10.1002/admt.202200546. DOI
Li C.. et al. Synthesis of Crystalline Black Phosphorus Thin Film on Sapphire. Adv. Mater. 2018;30:1703748. doi: 10.1002/adma.201703748. PubMed DOI
Higashitarumizu N.. et al. Mid-Infrared, Optically Active Black Phosphorus Thin Films on Centimeter Scale. Nano Lett. 2024;24:3104–3111. doi: 10.1021/acs.nanolett.3c04894. PubMed DOI
Wu Z.. et al. Large-Scale Growth of Few-Layer Two-Dimensional Black Phosphorus. Nat. Mater. 2021;20:1203–1209. doi: 10.1038/s41563-021-01001-7. PubMed DOI
Chen C.. et al. Growth of Single-Crystal Black Phosphorus and Its Alloy Films through Sustained Feedstock Release. Nat. Mater. 2023;22:717–724. doi: 10.1038/s41563-023-01516-1. PubMed DOI
Xu Y.. et al. Epitaxial Nucleation and Lateral Growth of High-Crystalline Black Phosphorus Films on Silicon. Nat. Commun. 2020;11:1330. doi: 10.1038/s41467-020-14902-z. PubMed DOI PMC
Yacoby, A. ; et al. QPress: Quantum Press for Next-Generation Quantum Information Platforms. DOE-HARVARD-19300, United States, March 2024. 10.2172/2000495 DOI
Huang L.. et al. Waveguide-Integrated Black Phosphorus Photodetector for Mid-Infrared Applications. ACS Nano. 2019;13:913–921. doi: 10.1021/acsnano.8b08758. PubMed DOI
Ma Y. M.. et al. High-Responsivity Mid-Infrared Black Phosphorus Slow Light Waveguide Photodetector. Adv. Opt. Mater. 2020;8:2000337. doi: 10.1002/adom.202000337. DOI
Soref R.. Mid-Infrared Photonics in Silicon and Germanium. Nat. Photonics. 2010;4:495–497. doi: 10.1038/nphoton.2010.171. DOI
Deckoff-Jones S.. et al. Chalcogenide Glass Waveguide-Integrated Black Phosphorus Mid-Infrared Photodetectors. J. Opt. 2018;20:044004. doi: 10.1088/2040-8986/aaadc5. DOI
Shaik A. B. D., Palla P.. Optical Quantum Technologies with Hexagonal Boron Nitride Single Photon Sources. Sci. Rep. 2021;11:12285. doi: 10.1038/s41598-021-90804-4. PubMed DOI PMC
Yu Y.. et al. Tunable Single-Photon Emitters in 2D Materials. Nanophotonics. 2024;13:3615–3629. doi: 10.1515/nanoph-2024-0050. PubMed DOI PMC
Gao T.. et al. Atomically-Thin Single-Photon Sources for Quantum Communication. npj 2D Mater. Appl. 2023;7:4. doi: 10.1038/s41699-023-00366-4. DOI
Cakan A.. Quantum Applications of Hexagonal Boron Nitride. Adv. Opt. Mater. 2025;13:2402508. doi: 10.1002/adom.202402508. DOI
Okoth C.. et al. Microscale Generation of Entangled Photons without Momentum Conservation. Phys. Rev. Lett. 2019;123:263602. doi: 10.1103/PhysRevLett.123.263602. PubMed DOI
Sultanov V., Santiago-Cruz T., Chekhova M. V.. Flat-Optics Generation of Broadband Photon Pairs with Tunable Polarization Entanglement. Opt. Lett. 2022;47:3872–3875. doi: 10.1364/OL.458133. PubMed DOI
Tame M. S.. et al. Quantum Plasmonics. Nat. Phys. 2013;9:329–340. doi: 10.1038/nphys2615. DOI
Alonso Calafell I.. et al. Quantum Computing with Graphene Plasmons. npj Quantum Inf. 2019;5:37. doi: 10.1038/s41534-019-0150-2. DOI
Kolesov R.. et al. Wave−Particle Duality of Single Surface Plasmon Polaritons. Nat. Phys. 2009;5:470–474. doi: 10.1038/nphys1278. DOI
Altewischer R., van Exter M., Woerdman J.. Plasmon-Assisted Transmission of Entangled Photons. Nature. 2002;418:304–306. doi: 10.1038/nature00869. PubMed DOI
Gullans M.. et al. Single-Photon Nonlinear Optics with Graphene Plasmons. Phys. Rev. Lett. 2013;111:247401. doi: 10.1103/PhysRevLett.111.247401. PubMed DOI
Fournier C.. et al. Two-Photon Interference from a Quantum Emitter in Hexagonal Boron Nitride. Phys. Rev. A. 2023;19:L041003. doi: 10.1103/PhysRevApplied.19.L041003. DOI
He Y. M.. et al. Cascaded Emission of Single Photons from the Biexciton in Monolayered WSe2 . Nat. Commun. 2016;7:13409. doi: 10.1038/ncomms13409. PubMed DOI PMC
Anwar A.. et al. Entangled Photon-Pair Sources Based on Three-Wave Mixing in Bulk Crystals. Rev. Sci. Instrum. 2021;92:041101. doi: 10.1063/5.0023103. PubMed DOI
Jin B.. et al. Efficient Single-Photon Pair Generation by Spontaneous Parametric Down-Conversion in Nonlinear Plasmonic Metasurfaces. Nanoscale. 2021;13:19903–19914. doi: 10.1039/D1NR05379E. PubMed DOI
Weissflog M. A.. et al. Directionally Tunable Co-and Counterpropagating Photon Pairs from a Nonlinear Metasurface. Nanophotonics. 2024;13:3563–3573. doi: 10.1515/nanoph-2024-0122. PubMed DOI PMC
Di Battista G.. et al. Infrared Single-Photon Detection with Superconducting Magic-Angle Twisted Bilayer Graphene. Sci. Adv. 2024;10:3275. doi: 10.1126/sciadv.adp3725. PubMed DOI PMC
Burch K. S., Mandrus D., Park J.-G.. Magnetism in Two-Dimensional van der Waals Materials. Nature. 2018;563:47–52. doi: 10.1038/s41586-018-0631-z. PubMed DOI
Savary L., Balents L.. Quantum Spin Liquids: A Review. Rep. Prog. Phys. 2017;80:016502. doi: 10.1088/0034-4885/80/1/016502. PubMed DOI
Cenker J., Sivakumar S., Xie K., Miller A., Thijssen P., Liu Z., Dismukes A., Fonseca J., Anderson E., Zhu X., Roy X., Xiao D., Chu J.-H., Cao T., Xu X.. Reversible Strain-Induced Magnetic Phase Transition in a van der Waals Magnet. Nat. Nanotechnol. 2022;17:256–261. doi: 10.1038/s41565-021-01052-6. PubMed DOI
Huang B., Clark G., Klein D. R., MacNeill D., Navarro-Moratalla E., Seyler K. L., Wilson N., McGuire M. A., Cobden D. H., Xiao D., Yao W., Jarillo-Herrero P., Xu X.. Electrical Control of 2D Magnetism in Bilayer CrI3 . Nat. Nanotechnol. 2018;13:544–548. doi: 10.1038/s41565-018-0121-3. PubMed DOI
Jiang S., Shan J., Mak K. F.. Electric-Field Switching of Two-Dimensional van der Waals Magnets. Nat. Mater. 2018;17:406–410. doi: 10.1038/s41563-018-0040-6. PubMed DOI
Xie H., Luo X., Ye Z., Sun Z., Ye G., Sung S. H., Ge H., Yan S., Fu Y., Tian S., Lei H., Sun K., Hovden R., He R., Zhao L.. Evidence of Non-Collinear Spin Texture in Magnetic Moiré Superlattices. Nat. Phys. 2023;19:1150–1155. doi: 10.1038/s41567-023-02061-z. DOI
Seyler K. L., Zhong D., Klein D. R., Gao S., Zhang X., Huang B., Navarro-Moratalla E., Yang L., Cobden D. H., McGuire M. A., Yao W., Xiao D., Jarillo-Herrero P., Xu X.. Ligand-Field Helical Luminescence in a 2D Ferromagnetic Insulator. Nat. Phys. 2018;14:277–281. doi: 10.1038/s41567-017-0006-7. DOI
Wang Z., Gutiérrez-Lezama I., Ubrig N., Kroner M., Gibertini M., Taniguchi T., Watanabe K., Imamoǧlu A., Giannini E., Morpurgo A. F.. Very Large Tunneling Magnetoresistance in Layered Magnetic Semiconductor CrI3 . Nat. Commun. 2018;9:2516. doi: 10.1038/s41467-018-04953-8. PubMed DOI PMC
Kim H. H., Yang B., Patel T., Sfigakis F., Li C., Tian S., Lei H., Tsen A. W.. One Million Percent Tunnel Magnetoresistance in a Magnetic van der Waals Heterostructure. Nano Lett. 2018;18:4885–4890. doi: 10.1021/acs.nanolett.8b01552. PubMed DOI
Jo J., Mañas-Valero S., Coronado E., Casanova F., Gobbi M., Hueso L. E.. Nonvolatile Electric Control of Antiferromagnet CrSBr. Nano Lett. 2024;24:4471–4477. doi: 10.1021/acs.nanolett.4c00348. PubMed DOI
Wang Y., Osterhoudt G. B., Tian Y., Lampen-Kelley P., Banerjee A., Goldstein T., Yan J., Knolle J., Ji H., Cava R. J., Nasu J., Motome Y., Nagler S. E., Mandrus D., Burch K. S.. The Range of Non-Kitaev Terms and Fractional Particles in α-RuCl3 . Npj Quantum Mater. 2020;5:14. doi: 10.1038/s41535-020-0216-6. DOI
Zhang X.-X., Li L., Weber D., Goldberger J., Mak K. F., Shan J.. Gate-Tunable Spin Waves in Antiferromagnetic Atomic Bilayers. Nat. Mater. 2020;19:838–842. doi: 10.1038/s41563-020-0713-9. PubMed DOI
Jin W., Ye Z., Luo X., Yang B., Ye G., Yin F., Kim H. H., Rojas L., Tian S., Fu Y., Yan S., Lei H., Sun K., Tsen A. W., He R., Zhao L.. Tunable Layered-Magnetism−Assisted Magneto-Raman Effect in a Two-Dimensional Magnet CrI3 . Proc. Natl. Acad. Sci. U. S. A. 2020;117:24664–24669. doi: 10.1073/pnas.2012980117. PubMed DOI PMC
Luo J., Li S., Ye Z., Xu R., Yan H., Zhang J., Ye G., Chen L., Hu D., Teng X., Smith W. A., Yakobson B. I., Dai P., Nevidomskyy A. H., He R., Zhu H.. Evidence for Topological Magnon−Phonon Hybridization in a 2D Antiferromagnet Down to the Monolayer Limit. Nano Lett. 2023;23:2023–2030. doi: 10.1021/acs.nanolett.3c00351. PubMed DOI
Qiu J.-X., Tzschaschel C., Ahn J., Gao A., Li H., Zhang X.-Y., Ghosh B., Hu C., Wang Y.-X., Liu Y.-F., Bérubé D., Dinh T., Gong Z., Lien S.-W., Ho S.-C., Singh B., Watanabe K., Taniguchi T., Bell D. C., Lu H.-Z., Bansil A., Lin H., Chang T.-R., Zhou B. B., Ma Q., Vishwanath A., Ni N., Xu S.-Y.. Axion Optical Induction of Antiferromagnetic Order. Nat. Mater. 2023;22:583–590. doi: 10.1038/s41563-023-01493-5. PubMed DOI
Zhang Q., Hwangbo K., Wang C., Jiang Q., Chu J.-H., Wen H., Xiao D., Xu X.. Observation of Giant Optical Linear Dichroism in a Zigzag Antiferromagnet FePS3. Nano Lett. 2021;21:6938–6945. doi: 10.1021/acs.nanolett.1c02188. PubMed DOI
Sun Z., Ye G., Zhou C., Huang M., Huang N., Xu X., Li Q., Zheng G., Ye Z., Nnokwe C., Li L., Deng H., Yang L., Mandrus D., Meng Z. Y., Sun K., Du C. R., He R., Zhao L.. Dimensionality Crossover to a Two-Dimensional Vestigial Nematic State from a Three-Dimensional Antiferromagnet in a Honeycomb van der Waals Magnet. Nat. Phys. 2024;20:1764–1771. doi: 10.1038/s41567-024-02618-6. DOI
Kim K., Lim S. Y., Lee J.-U., Lee S., Kim T. Y., Park K., Jeon G. S., Park C.-H., Park J.-G., Cheong H.. Suppression of Magnetic Ordering in XXZ-Type Antiferromagnetic Monolayer NiPS3 . Nat. Commun. 2019;10:345. doi: 10.1038/s41467-018-08284-6. PubMed DOI PMC
Lee J.-U., Lee S., Ryoo J. H., Kang S., Kim T. Y., Kim P., Park C.-H., Park J.-G., Cheong H.. Ising-Type Magnetic Ordering in Atomically Thin FePS3 . Nano Lett. 2016;16:7433–7438. doi: 10.1021/acs.nanolett.6b03052. PubMed DOI
Song Q., Occhialini C. A., Ergeçen E., Ilyas B., Amoroso D., Barone P., Kapeghian J., Watanabe K., Taniguchi T., Botana A. S., Picozzi S., Gedik N., Comin R.. Evidence for a Single-Layer van der Waals Multiferroic. Nature. 2022;602:601–605. doi: 10.1038/s41586-021-04337-x. PubMed DOI
Jin W., Drueke E., Li S., Admasu A., Owen R., Day M., Sun K., Cheong S.-W., Zhao L.. Observation of a Ferro-Rotational Order Coupled with Second-Order Nonlinear Optical Fields. Nat. Phys. 2020;16:42–46. doi: 10.1038/s41567-019-0695-1. DOI
Guo X., Liu W., Schwartz J., Sung S. H., Zhang D., Shimizu M., Kondusamy A. L. N., Li L., Sun K., Deng H., Jeschke H. O., Mazin I. I., Hovden R., Lv B., Zhao L.. Extraordinary Phase Transition Revealed in a van der Waals Antiferromagnet. Nat. Commun. 2024;15:6472. doi: 10.1038/s41467-024-50900-1. PubMed DOI PMC
Jin C., Tao Z., Kang K., Watanabe K., Taniguchi T., Mak K. F., Shan J.. Imaging and Control of Critical Fluctuations in Two-Dimensional Magnets. Nat. Mater. 2020;19:1290–1294. doi: 10.1038/s41563-020-0706-8. PubMed DOI
de Aguilar Júnior F. S., Santos M. F., Monken C. H., Jorio A.. Lifetime and Polarization for Real and Virtual Correlated Stokes-Anti-Stokes Raman Scattering in Diamond. Phys. Rev. Res. 2020;2:013084. doi: 10.1103/PhysRevResearch.2.013084. DOI
Velez S. T., Sudhir V., Sangouard N., Galland C.. Bell Correlations between Light and Vibration at Ambient Conditions. Sci. Adv. 2020;6:eabb0260. doi: 10.1126/sciadv.abb0260. PubMed DOI PMC
Disa A. S., Fechner M., Nova T. F., Liu B., Först M., Prabhakaran D., Radaelli P. G., Cavalleri A.. Polarizing an Antiferromagnet by Optical Engineering of the Crystal Field. Nat. Phys. 2020;16:937–941. doi: 10.1038/s41567-020-0936-3. DOI
García de Abajo, F. J. ; et al. Roadmap for Photonics with 2D Materials. arXiv 2025, 2504.04558 (accessed April 17, 2025). 10.48550/arXiv.2504.04558 DOI