Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons

. 2023 Aug ; 620 (7974) : 533-537. [epub] 20230816

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37587298
Odkazy

PubMed 37587298
DOI 10.1038/s41586-023-06275-2
PII: 10.1038/s41586-023-06275-2
Knihovny.cz E-zdroje

Controlling quantum materials with light is of fundamental and technological importance. By utilizing the strong coupling of light and matter in optical cavities1-3, recent studies were able to modify some of their most defining features4-6. Here we study the magneto-optical properties of a van der Waals magnet that supports strong coupling of photons and excitons even in the absence of external cavity mirrors. In this material-the layered magnetic semiconductor CrSBr-emergent light-matter hybrids called polaritons are shown to substantially increase the spectral bandwidth of correlations between the magnetic, electronic and optical properties, enabling largely tunable optical responses to applied magnetic fields and magnons. Our results highlight the importance of exciton-photon self-hybridization in van der Waals magnets and motivate novel directions for the manipulation of quantum material properties by strong light-matter coupling.

Erratum v

PubMed

Zobrazit více v PubMed

Garcia-Vidal, F. J., Ciuti, C. & Ebbesen, T. W. Manipulating matter by strong coupling to vacuum fields. Science 373, eabd0336 (2021). PubMed DOI

Schlawin, F., Kennes, D. M. & Sentef, M. A. Cavity quantum materials. Appl. Phys. Rev. 9, 011312 (2022). DOI

Bloch, J., Cavalleri, A., Galitski, V., Hafezi, M. & Rubio, A. Strongly correlated electron–photon systems. Nature 606, 41–48 (2022). PubMed DOI

Sentef, M. A., Ruggenthaler, M. & Rubio, A. Cavity quantum-electrodynamical polaritonically enhanced electron-phonon coupling and its influence on superconductivity. Sci. Adv. 4, eaau6969 (2018). PubMed DOI PMC

Ashida, Y. et al. Quantum electrodynamic control of matter: cavity-enhanced ferroelectric phase transition. Phys. Rev. X 10, 041027 (2020).

Appugliese, F. et al. Breakdown of topological protection by cavity vacuum fields in the integer quantum hall effect. Science 375, 1030–1034 (2022). PubMed DOI

Seyler, K. L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277–281 (2018). DOI

Zhang, Z. et al. Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr PubMed DOI

Kang, S. et al. Coherent many-body exciton in van der Waals antiferromagnet NiPS PubMed DOI

Wilson, N. P. et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 20, 1675–1662 (2021). DOI

Klein, J. et al. The bulk van der Waals layered magnet CrSBr is a quasi-1D quantum material. ACS Nano 17, 5316–5328 (2023). PubMed DOI

Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017). PubMed DOI

Wu, M., Li, Z., Cao, T. & Louie, S. G. Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators. Nat. Commun. 10, 2371 (2019). PubMed DOI PMC

Hwangbo, K. et al. Highly anisotropic excitons and multiple phonon bound states in a van der Waals antiferromagnetic insulator. Nat. Nanotechnol. 16, 655–660 (2021). PubMed DOI

Dirnberger, F. et al. Spin-correlated exciton–polaritons in a van der Waals magnet. Nat. Nanotechnol. 17, 1060–1064 (2022). PubMed DOI

Canales, A., Baranov, D. G., Antosiewicz, T. J. & Shegai, T. Abundance of cavity-free polaritonic states in resonant materials and nanostructures. J. Chem. Phys. 154, 024701 (2021). PubMed DOI

Klingshirn, C. F. Semiconductor Optics (Springer, 2012).

Munkhbat, B. et al. Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption. ACS Photon. 6, 139–147 (2018).

Fieramosca, A. et al. Tunable out-of-plane excitons in 2D single-crystal perovskites. ACS Photon. 5, 4179–4185 (2018).

Dang, N. H. M. et al. Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces. Nano Lett. 20, 2113–2119 (2020). PubMed DOI

Klein, J. et al. Sensing the local magnetic environment through optically active defects in a layered magnetic semiconductor. ACS Nano 17, 288–299 (2023). PubMed DOI

Lim, H.-T., Togan, E., Kroner, M., Miguel-Sanchez, J. & Imamoğlu, A. Electrically tunable artificial gauge potential for polaritons. Nat. Commun. 8, 14540 (2017). PubMed DOI PMC

Bajoni, D. et al. Polariton light-emitting diode in a gaas-based microcavity. Phys. Rev. B 77, 113303 (2008). DOI

Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature 609, 282–286 (2022). PubMed DOI

Diederich, G. M. et al. Tunable interaction between excitons and hybridized magnons in a layered semiconductor. Nat. Nanotechnol. 18, 23–28 (2023). PubMed DOI

Cham, T. M. J. et al. Anisotropic gigahertz antiferromagnetic resonances of the easy-axis van der Waals antiferromagnet CrSBr. Nano Lett. 22, 6716–6723 (2022). PubMed DOI

López-Paz, S. A. et al. Dynamic magnetic crossover at the origin of the hidden-order in van der Waals antiferromagnet CrSBr. Nat. Commun. 13, 4745 (2022). PubMed DOI PMC

Liu, W. et al. A three-stage magnetic phase transition revealed in ultrahigh-quality van der Waals bulk magnet CrSBr. ACS Nano 16, 15917–15926 (2022). PubMed DOI

O’Donnell, K. & Chen, X. Temperature dependence of semiconductor band gaps. Appl. Phys. Lett. 58, 2924–2926 (1991). DOI

Dirnberger, F. Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons. Zenodo https://doi.org/10.5281/zenodo.7940672 (2023).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...