Ferromagnetic Interlayer Coupling in CrSBr Crystals Irradiated by Ions

. 2023 Sep 27 ; 23 (18) : 8468-8473. [epub] 20230905

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37669544

Layered magnetic materials are becoming a major platform for future spin-based applications. Particularly, the air-stable van der Waals compound CrSBr is attracting considerable interest due to its prominent magneto-transport and magneto-optical properties. In this work, we observe a transition from antiferromagnetic to ferromagnetic behavior in CrSBr crystals exposed to high-energy, non-magnetic ions. Already at moderate fluences, ion irradiation induces a remanent magnetization with hysteresis adapting to the easy-axis anisotropy of the pristine magnetic order up to a critical temperature of 110 K. Structure analysis of the irradiated crystals in conjunction with density functional theory calculations suggests that the displacement of constituent atoms due to collisions with ions and the formation of interstitials favors ferromagnetic order between the layers.

Zobrazit více v PubMed

Sierra J. F.; Fabian J.; Kawakami R. K.; Roche S.; Valenzuela S. O. Van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 2021, 16 (8), 856–868. 10.1038/s41565-021-00936-x. PubMed DOI

Huang B.; Clark G.; Navarro-Moratalla E.; Klein D. R.; Cheng R.; Seyler K. L.; Zhong D.; Schmidgall E.; McGuire M. A.; Cobden D. H.; Yao W.; Xiao D.; Jarillo-Herrero P.; Xu X. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546 (7657), 270–273. 10.1038/nature22391. PubMed DOI

Gong C.; Li L.; Li Z.; Ji H.; Stern A.; Xia Y.; Cao T.; Bao W.; Wang C.; Wang Y.; Qiu Z. Q.; Cava R. J.; Louie S. G.; Xia J.; Zhang X. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546 (7657), 265–269. 10.1038/nature22060. PubMed DOI

Rahman S.; Liu B.; Wang B.; Tang Y.; Lu Y. Giant Photoluminescence Enhancement and Resonant Charge Transfer in Atomically Thin Two-Dimensional Cr2Ge2Te6/WS2 Heterostructures. ACS Appl. Mater. Interfaces 2021, 13 (6), 7423–7433. 10.1021/acsami.0c20110. PubMed DOI

Shcherbakov D.; Stepanov P.; Weber D.; Wang Y.; Hu J.; Zhu Y.; Watanabe K.; Taniguchi T.; Mao Z.; Windl W.; Goldberger J.; Bockrath M.; Lau C. N. Raman Spectroscopy, Photocatalytic Degradation, and Stabilization of Atomically Thin Chromium Tri-iodide. Nano Lett. 2018, 18 (7), 4214–4219. 10.1021/acs.nanolett.8b01131. PubMed DOI

Long G.; Henck H.; Gibertini M.; Dumcenco D.; Wang Z.; Taniguchi T.; Watanabe K.; Giannini E.; Morpurgo A. F. Persistence of Magnetism in Atomically Thin MnPS3 Crystals. Nano Lett. 2020, 20 (4), 2452–2459. 10.1021/acs.nanolett.9b05165. PubMed DOI

Telford E. J.; Dismukes A. H.; Dudley R. L.; Wiscons R. A.; Lee K.; Chica D. G.; Ziebel M. E.; Han M. G.; Yu J.; Shabani S.; Scheie A.; Watanabe K.; Taniguchi T.; Xiao D.; Zhu Y.; Pasupathy A. N.; Nuckolls C.; Zhu X.; Dean C. R.; Roy X. Coupling between magnetic order and charge transport in a two-dimensional magnetic semiconductor. Nat. Mater. 2022, 21 (7), 754–760. 10.1038/s41563-022-01245-x. PubMed DOI

Göser O.; Paul W.; Kahle H. G. Magnetic properties of CrSBr. J. Magn. Magn. Mater. 1990, 92, 129–136. 10.1016/0304-8853(90)90689-N. DOI

Pereira J. M.; Tezze D.; Ormaza M.; Hueso L. E.; Gobbi M. Engineering Magnetism and Superconductivity in van der Waals Materials via Organic-Ion Intercalation. Advanced Physics Research 2023, 2, 220008410.1002/apxr.202200084. DOI

Wang Q. H.; Bedoya-Pinto A.; Blei M.; Dismukes A. H.; Hamo A.; Jenkins S.; Koperski M.; Liu Y.; Sun Q. C.; Telford E. J.; Kim H. H.; Augustin M.; Vool U.; Yin J. X.; Li L. H.; Falin A.; Dean C. R.; Casanova F.; Evans R. F. L.; Chshiev M.; Mishchenko A.; Petrovic C.; He R.; Zhao L.; Tsen A. W.; Gerardot B. D.; Brotons-Gisbert M.; Guguchia Z.; Roy X.; Tongay S.; Wang Z.; Hasan M. Z.; Wrachtrup J.; Yacoby A.; Fert A.; Parkin S.; Novoselov K. S.; Dai P.; Balicas L.; Santos E. J. G. The Magnetic Genome of Two-Dimensional van der Waals Materials. ACS Nano 2022, 16 (5), 6960–7079. 10.1021/acsnano.1c09150. PubMed DOI PMC

Wilson N. P.; Lee K.; Cenker J.; Xie K.; Dismukes A. H.; Telford E. J.; Fonseca J.; Sivakumar S.; Dean C.; Cao T.; Roy X.; Xu X.; Zhu X. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 2021, 20 (12), 1657–1662. 10.1038/s41563-021-01070-8. PubMed DOI

Klein J.; Pingault B.; Florian M.; Heissenbuttel M. C.; Steinhoff A.; Song Z.; Torres K.; Dirnberger F.; Curtis J. B.; Weile M.; Penn A.; Deilmann T.; Dana R.; Bushati R.; Quan J.; Luxa J.; Sofer Z.; Alu A.; Menon V. M.; Wurstbauer U.; Rohlfing M.; Narang P.; Loncar M.; Ross F. M. The Bulk van der Waals Layered Magnet CrSBr is a Quasi-1D Material. ACS Nano 2023, 17 (6), 5316–5328. 10.1021/acsnano.2c07316. PubMed DOI

Ye C.; Wang C.; Wu Q.; Liu S.; Zhou J.; Wang G.; Soll A.; Sofer Z.; Yue M.; Liu X.; Tian M.; Xiong Q.; Ji W.; Renshaw Wang X. Layer-Dependent Interlayer Antiferromagnetic Spin Reorientation in Air-Stable Semiconductor CrSBr. ACS Nano 2022, 16, 11876–11883. 10.1021/acsnano.2c01151. PubMed DOI

Dirnberger F.; Quan J.; Bushati R.; Diederich G. M.; Florian M.; Klein J.; Mosina K.; Sofer Z.; Xu X.; Kamra A.; García-Vidal F. J.; Alù A.; Menon V. M. Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons. Nature 2023, 620, 533–537. 10.1038/s41586-023-06275-2. PubMed DOI

Telford E. J.; Dismukes A. H.; Lee K.; Cheng M.; Wieteska A.; Bartholomew A. K.; Chen Y. S.; Xu X.; Pasupathy A. N.; Zhu X.; Dean C. R.; Roy X. Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the van der Waals Semiconductor CrSBr. Adv. Mater. 2020, 32 (37), 200324010.1002/adma.202003240. PubMed DOI

Guo Y.; Zhang Y.; Yuan S.; Wang B.; Wang J. Chromium sulfide halide monolayers: intrinsic ferromagnetic semiconductors with large spin polarization and high carrier mobility. Nanoscale 2018, 10 (37), 18036–18042. 10.1039/C8NR06368K. PubMed DOI

Lee K.; Dismukes A. H.; Telford E. J.; Wiscons R. A.; Wang J.; Xu X.; Nuckolls C.; Dean C. R.; Roy X.; Zhu X. Magnetic Order and Symmetry in the 2D Semiconductor CrSBr. Nano Lett. 2021, 21 (8), 3511–3517. 10.1021/acs.nanolett.1c00219. PubMed DOI

Boix-Constant C.; Manas-Valero S.; Ruiz A. M.; Rybakov A.; Konieczny K. A.; Pillet S.; Baldovi J. J.; Coronado E. Probing the Spin Dimensionality in Single-Layer CrSBr Van Der Waals Heterostructures by Magneto-Transport Measurements. Adv. Mater. 2022, 34 (41), 220494010.1002/adma.202204940. PubMed DOI

Cenker J.; Sivakumar S.; Xie K.; Miller A.; Thijssen P.; Liu Z.; Dismukes A.; Fonseca J.; Anderson E.; Zhu X.; Roy X.; Xiao D.; Chu J. H.; Cao T.; Xu X. Reversible strain-induced magnetic phase transition in a van der Waals magnet. Nat. Nanotechnol. 2022, 17 (3), 256–261. 10.1038/s41565-021-01052-6. PubMed DOI

Cenker J.; Ovchinnikov D.; Yang H.; Chica D. G.; Zhu C.; Cai J. Q.; Diederich G.; Liu Z. Y.; Zhu X. Y.; Roy X.; Cao T.; Daniels W. M.; Chu J.-H.; Xiao D.; Xu X. D. Strain-programmable van der Waals magnetic tunnel junctions. arXiv (Condensed Matter) 2023, 10, 2301.03759.10.48550/arXiv.2301.03759. DOI

Telford E. J.; Chica D. G.; Xie K. C.; Manganaro N. S.; Huang C.-H.; Cox J.; Dismukes A. H.; Zhu X. Y.; Walsh J. P. S.; Cao T.; Dean C. R.; Roy X.; Ziebel M. E. Designing magnetic properties in CrSBr through hydrostatic pressure and ligand substitution. arXiv (Condensed Matter) 2022, 5, 2211.02788.10.48550/arXiv.2211.02788. DOI

Pawbake A.; Pelini T.; Mohelsky I.; Jana D.; Breslavetz I.; Cho C.-W.; Orlita M.; Potemski M.; Measson M.-A.; Wilson N.; Mosina K.; Soll A.; Sofer Z.; Piot B. A.; Zhitomirsky M. E.; Faugeras C. Magneto-optical sensing of the pressure driven magnetic ground states in bulk CrSBr. arXiv (Condensed Matter) 2023, 3, 2303.01823.10.48550/arXiv.2303.01823. PubMed DOI

Moro F.; Ke S.; del Águila A. G.; Söll A.; Sofer Z.; Wu Q.; Yue M.; Li L.; Liu X.; Fanciulli M. Revealing 2D Magnetism in a Bulk CrSBr Single Crystal by Electron Spin Resonance. Adv. Funct. Mater. 2022, 32, 220704410.1002/adfm.202207044. DOI

Parkin W. M.; Balan A.; Liang L.; Das P. M.; Lamparski M.; Naylor C. H.; Rodriguez-Manzo J. A.; Johnson A. T.; Meunier V.; Drndic M. Raman Shifts in Electron-Irradiated Monolayer MoS2. ACS Nano 2016, 10 (4), 4134–4142. 10.1021/acsnano.5b07388. PubMed DOI PMC

Torres K.; Kuc A.; Maschio L.; Pham T.; Reidy K.; Dekanovsky L.; Sofer Z.; Ross F. M.; Klein J. Probing Defects and Spin-Phonon Coupling in CrSBr via Resonant Raman Scattering. Adv. Funct. Mater. 2023, 33 (12), 221136610.1002/adfm.202211366. DOI

Ziegler J. F.; Ziegler M. D.; Biersack J. P. SRIM – The stopping and range of ions in matter (2010). Nucl. Instr. and Meth. B 2010, 268 (11–12), 1818–1823. 10.1016/j.nimb.2010.02.091. DOI

Jiang Z.; Wang P.; Xing J.; Jiang X.; Zhao J. Screening and Design of Novel 2D Ferromagnetic Materials with High Curie Temperature above Room Temperature. ACS Appl. Mater. Interfaces 2018, 10 (45), 39032–39039. 10.1021/acsami.8b14037. PubMed DOI

Lopez-Paz S. A.; Guguchia Z.; Pomjakushin V. Y.; Witteveen C.; Cervellino A.; Luetkens H.; Casati N.; Morpurgo A. F.; von Rohr F. O. Dynamic magnetic crossover at the origin of the hidden-order in van der Waals antiferromagnet CrSBr. Nat. Commun. 2022, 13 (1), 4745–4754. 10.1038/s41467-022-32290-4. PubMed DOI PMC

Klein J.; Song Z.; Pingault B.; Dirnberger F.; Chi H.; Curtis J. B.; Dana R.; Bushati R.; Quan J.; Dekanovsky L.; Sofer Z.; Alù A.; Menon V. M.; Moodera J. S.; Lončar M.; Narang P.; Ross F. M. Sensing the local magnetic environment through optically active defects in a layered magnetic semiconductor. ACS Nano 2023, 17, 288–299. 10.1021/acsnano.2c07655. PubMed DOI

Fassbender J. Nanopatterning: the chemical way to ion irradiation. Nat. Nanotechnol. 2012, 7 (9), 554–555. 10.1038/nnano.2012.149. PubMed DOI

Nord M.; Semisalova A.; Kakay A.; Hlawacek G.; MacLaren I.; Liersch V.; Volkov O. M.; Makarov D.; Paterson G. W.; Potzger K.; Lindner J.; Fassbender J.; McGrouther D.; Bali R. Strain Anisotropy and Magnetic Domains in Embedded Nanomagnets. Small 2019, 15 (52), 190473810.1002/smll.201904738. PubMed DOI

Klein J.; Pham T.; Thomsen J. D.; Curtis J. B.; Denneulin T.; Lorke M.; Florian M.; Steinhoff A.; Wiscons R. A.; Luxa J.; Sofer Z.; Jahnke F.; Narang P.; Ross F. M. Control of structure and spin texture in the van der Waals layered magnet CrSBr. Nat. Commun. 2022, 13 (1), 5420–5428. 10.1038/s41467-022-32737-8. PubMed DOI PMC

Xu X. M.; Wang X. H.; Chang P.; Chen X. Y.; Guan L. X.; Tao J. G. Strong Spin-Phonon Coupling in Two-Dimensional Magnetic Semiconductor CrSBr. J. Phys. Chem. C 2022, 126 (25), 10574–10583. 10.1021/acs.jpcc.2c02742. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Strong Exciton-Phonon Coupling as a Fingerprint of Magnetic Ordering in van der Waals Layered CrSBr

. 2024 Jan 30 ; 18 (4) : 2898-2905. [epub] 20240119

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...