Ferromagnetic Interlayer Coupling in CrSBr Crystals Irradiated by Ions
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37669544
PubMed Central
PMC10540254
DOI
10.1021/acs.nanolett.3c01920
Knihovny.cz E-zdroje
- Klíčová slova
- 2D magnets, 2D semiconductor, Defects, Induced ferromagnetism, Ion irradiation,
- Publikační typ
- časopisecké články MeSH
Layered magnetic materials are becoming a major platform for future spin-based applications. Particularly, the air-stable van der Waals compound CrSBr is attracting considerable interest due to its prominent magneto-transport and magneto-optical properties. In this work, we observe a transition from antiferromagnetic to ferromagnetic behavior in CrSBr crystals exposed to high-energy, non-magnetic ions. Already at moderate fluences, ion irradiation induces a remanent magnetization with hysteresis adapting to the easy-axis anisotropy of the pristine magnetic order up to a critical temperature of 110 K. Structure analysis of the irradiated crystals in conjunction with density functional theory calculations suggests that the displacement of constituent atoms due to collisions with ions and the formation of interstitials favors ferromagnetic order between the layers.
Zobrazit více v PubMed
Sierra J. F.; Fabian J.; Kawakami R. K.; Roche S.; Valenzuela S. O. Van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 2021, 16 (8), 856–868. 10.1038/s41565-021-00936-x. PubMed DOI
Huang B.; Clark G.; Navarro-Moratalla E.; Klein D. R.; Cheng R.; Seyler K. L.; Zhong D.; Schmidgall E.; McGuire M. A.; Cobden D. H.; Yao W.; Xiao D.; Jarillo-Herrero P.; Xu X. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546 (7657), 270–273. 10.1038/nature22391. PubMed DOI
Gong C.; Li L.; Li Z.; Ji H.; Stern A.; Xia Y.; Cao T.; Bao W.; Wang C.; Wang Y.; Qiu Z. Q.; Cava R. J.; Louie S. G.; Xia J.; Zhang X. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546 (7657), 265–269. 10.1038/nature22060. PubMed DOI
Rahman S.; Liu B.; Wang B.; Tang Y.; Lu Y. Giant Photoluminescence Enhancement and Resonant Charge Transfer in Atomically Thin Two-Dimensional Cr2Ge2Te6/WS2 Heterostructures. ACS Appl. Mater. Interfaces 2021, 13 (6), 7423–7433. 10.1021/acsami.0c20110. PubMed DOI
Shcherbakov D.; Stepanov P.; Weber D.; Wang Y.; Hu J.; Zhu Y.; Watanabe K.; Taniguchi T.; Mao Z.; Windl W.; Goldberger J.; Bockrath M.; Lau C. N. Raman Spectroscopy, Photocatalytic Degradation, and Stabilization of Atomically Thin Chromium Tri-iodide. Nano Lett. 2018, 18 (7), 4214–4219. 10.1021/acs.nanolett.8b01131. PubMed DOI
Long G.; Henck H.; Gibertini M.; Dumcenco D.; Wang Z.; Taniguchi T.; Watanabe K.; Giannini E.; Morpurgo A. F. Persistence of Magnetism in Atomically Thin MnPS3 Crystals. Nano Lett. 2020, 20 (4), 2452–2459. 10.1021/acs.nanolett.9b05165. PubMed DOI
Telford E. J.; Dismukes A. H.; Dudley R. L.; Wiscons R. A.; Lee K.; Chica D. G.; Ziebel M. E.; Han M. G.; Yu J.; Shabani S.; Scheie A.; Watanabe K.; Taniguchi T.; Xiao D.; Zhu Y.; Pasupathy A. N.; Nuckolls C.; Zhu X.; Dean C. R.; Roy X. Coupling between magnetic order and charge transport in a two-dimensional magnetic semiconductor. Nat. Mater. 2022, 21 (7), 754–760. 10.1038/s41563-022-01245-x. PubMed DOI
Göser O.; Paul W.; Kahle H. G. Magnetic properties of CrSBr. J. Magn. Magn. Mater. 1990, 92, 129–136. 10.1016/0304-8853(90)90689-N. DOI
Pereira J. M.; Tezze D.; Ormaza M.; Hueso L. E.; Gobbi M. Engineering Magnetism and Superconductivity in van der Waals Materials via Organic-Ion Intercalation. Advanced Physics Research 2023, 2, 220008410.1002/apxr.202200084. DOI
Wang Q. H.; Bedoya-Pinto A.; Blei M.; Dismukes A. H.; Hamo A.; Jenkins S.; Koperski M.; Liu Y.; Sun Q. C.; Telford E. J.; Kim H. H.; Augustin M.; Vool U.; Yin J. X.; Li L. H.; Falin A.; Dean C. R.; Casanova F.; Evans R. F. L.; Chshiev M.; Mishchenko A.; Petrovic C.; He R.; Zhao L.; Tsen A. W.; Gerardot B. D.; Brotons-Gisbert M.; Guguchia Z.; Roy X.; Tongay S.; Wang Z.; Hasan M. Z.; Wrachtrup J.; Yacoby A.; Fert A.; Parkin S.; Novoselov K. S.; Dai P.; Balicas L.; Santos E. J. G. The Magnetic Genome of Two-Dimensional van der Waals Materials. ACS Nano 2022, 16 (5), 6960–7079. 10.1021/acsnano.1c09150. PubMed DOI PMC
Wilson N. P.; Lee K.; Cenker J.; Xie K.; Dismukes A. H.; Telford E. J.; Fonseca J.; Sivakumar S.; Dean C.; Cao T.; Roy X.; Xu X.; Zhu X. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 2021, 20 (12), 1657–1662. 10.1038/s41563-021-01070-8. PubMed DOI
Klein J.; Pingault B.; Florian M.; Heissenbuttel M. C.; Steinhoff A.; Song Z.; Torres K.; Dirnberger F.; Curtis J. B.; Weile M.; Penn A.; Deilmann T.; Dana R.; Bushati R.; Quan J.; Luxa J.; Sofer Z.; Alu A.; Menon V. M.; Wurstbauer U.; Rohlfing M.; Narang P.; Loncar M.; Ross F. M. The Bulk van der Waals Layered Magnet CrSBr is a Quasi-1D Material. ACS Nano 2023, 17 (6), 5316–5328. 10.1021/acsnano.2c07316. PubMed DOI
Ye C.; Wang C.; Wu Q.; Liu S.; Zhou J.; Wang G.; Soll A.; Sofer Z.; Yue M.; Liu X.; Tian M.; Xiong Q.; Ji W.; Renshaw Wang X. Layer-Dependent Interlayer Antiferromagnetic Spin Reorientation in Air-Stable Semiconductor CrSBr. ACS Nano 2022, 16, 11876–11883. 10.1021/acsnano.2c01151. PubMed DOI
Dirnberger F.; Quan J.; Bushati R.; Diederich G. M.; Florian M.; Klein J.; Mosina K.; Sofer Z.; Xu X.; Kamra A.; García-Vidal F. J.; Alù A.; Menon V. M. Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons. Nature 2023, 620, 533–537. 10.1038/s41586-023-06275-2. PubMed DOI
Telford E. J.; Dismukes A. H.; Lee K.; Cheng M.; Wieteska A.; Bartholomew A. K.; Chen Y. S.; Xu X.; Pasupathy A. N.; Zhu X.; Dean C. R.; Roy X. Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the van der Waals Semiconductor CrSBr. Adv. Mater. 2020, 32 (37), 200324010.1002/adma.202003240. PubMed DOI
Guo Y.; Zhang Y.; Yuan S.; Wang B.; Wang J. Chromium sulfide halide monolayers: intrinsic ferromagnetic semiconductors with large spin polarization and high carrier mobility. Nanoscale 2018, 10 (37), 18036–18042. 10.1039/C8NR06368K. PubMed DOI
Lee K.; Dismukes A. H.; Telford E. J.; Wiscons R. A.; Wang J.; Xu X.; Nuckolls C.; Dean C. R.; Roy X.; Zhu X. Magnetic Order and Symmetry in the 2D Semiconductor CrSBr. Nano Lett. 2021, 21 (8), 3511–3517. 10.1021/acs.nanolett.1c00219. PubMed DOI
Boix-Constant C.; Manas-Valero S.; Ruiz A. M.; Rybakov A.; Konieczny K. A.; Pillet S.; Baldovi J. J.; Coronado E. Probing the Spin Dimensionality in Single-Layer CrSBr Van Der Waals Heterostructures by Magneto-Transport Measurements. Adv. Mater. 2022, 34 (41), 220494010.1002/adma.202204940. PubMed DOI
Cenker J.; Sivakumar S.; Xie K.; Miller A.; Thijssen P.; Liu Z.; Dismukes A.; Fonseca J.; Anderson E.; Zhu X.; Roy X.; Xiao D.; Chu J. H.; Cao T.; Xu X. Reversible strain-induced magnetic phase transition in a van der Waals magnet. Nat. Nanotechnol. 2022, 17 (3), 256–261. 10.1038/s41565-021-01052-6. PubMed DOI
Cenker J.; Ovchinnikov D.; Yang H.; Chica D. G.; Zhu C.; Cai J. Q.; Diederich G.; Liu Z. Y.; Zhu X. Y.; Roy X.; Cao T.; Daniels W. M.; Chu J.-H.; Xiao D.; Xu X. D. Strain-programmable van der Waals magnetic tunnel junctions. arXiv (Condensed Matter) 2023, 10, 2301.03759.10.48550/arXiv.2301.03759. DOI
Telford E. J.; Chica D. G.; Xie K. C.; Manganaro N. S.; Huang C.-H.; Cox J.; Dismukes A. H.; Zhu X. Y.; Walsh J. P. S.; Cao T.; Dean C. R.; Roy X.; Ziebel M. E. Designing magnetic properties in CrSBr through hydrostatic pressure and ligand substitution. arXiv (Condensed Matter) 2022, 5, 2211.02788.10.48550/arXiv.2211.02788. DOI
Pawbake A.; Pelini T.; Mohelsky I.; Jana D.; Breslavetz I.; Cho C.-W.; Orlita M.; Potemski M.; Measson M.-A.; Wilson N.; Mosina K.; Soll A.; Sofer Z.; Piot B. A.; Zhitomirsky M. E.; Faugeras C. Magneto-optical sensing of the pressure driven magnetic ground states in bulk CrSBr. arXiv (Condensed Matter) 2023, 3, 2303.01823.10.48550/arXiv.2303.01823. PubMed DOI
Moro F.; Ke S.; del Águila A. G.; Söll A.; Sofer Z.; Wu Q.; Yue M.; Li L.; Liu X.; Fanciulli M. Revealing 2D Magnetism in a Bulk CrSBr Single Crystal by Electron Spin Resonance. Adv. Funct. Mater. 2022, 32, 220704410.1002/adfm.202207044. DOI
Parkin W. M.; Balan A.; Liang L.; Das P. M.; Lamparski M.; Naylor C. H.; Rodriguez-Manzo J. A.; Johnson A. T.; Meunier V.; Drndic M. Raman Shifts in Electron-Irradiated Monolayer MoS2. ACS Nano 2016, 10 (4), 4134–4142. 10.1021/acsnano.5b07388. PubMed DOI PMC
Torres K.; Kuc A.; Maschio L.; Pham T.; Reidy K.; Dekanovsky L.; Sofer Z.; Ross F. M.; Klein J. Probing Defects and Spin-Phonon Coupling in CrSBr via Resonant Raman Scattering. Adv. Funct. Mater. 2023, 33 (12), 221136610.1002/adfm.202211366. DOI
Ziegler J. F.; Ziegler M. D.; Biersack J. P. SRIM – The stopping and range of ions in matter (2010). Nucl. Instr. and Meth. B 2010, 268 (11–12), 1818–1823. 10.1016/j.nimb.2010.02.091. DOI
Jiang Z.; Wang P.; Xing J.; Jiang X.; Zhao J. Screening and Design of Novel 2D Ferromagnetic Materials with High Curie Temperature above Room Temperature. ACS Appl. Mater. Interfaces 2018, 10 (45), 39032–39039. 10.1021/acsami.8b14037. PubMed DOI
Lopez-Paz S. A.; Guguchia Z.; Pomjakushin V. Y.; Witteveen C.; Cervellino A.; Luetkens H.; Casati N.; Morpurgo A. F.; von Rohr F. O. Dynamic magnetic crossover at the origin of the hidden-order in van der Waals antiferromagnet CrSBr. Nat. Commun. 2022, 13 (1), 4745–4754. 10.1038/s41467-022-32290-4. PubMed DOI PMC
Klein J.; Song Z.; Pingault B.; Dirnberger F.; Chi H.; Curtis J. B.; Dana R.; Bushati R.; Quan J.; Dekanovsky L.; Sofer Z.; Alù A.; Menon V. M.; Moodera J. S.; Lončar M.; Narang P.; Ross F. M. Sensing the local magnetic environment through optically active defects in a layered magnetic semiconductor. ACS Nano 2023, 17, 288–299. 10.1021/acsnano.2c07655. PubMed DOI
Fassbender J. Nanopatterning: the chemical way to ion irradiation. Nat. Nanotechnol. 2012, 7 (9), 554–555. 10.1038/nnano.2012.149. PubMed DOI
Nord M.; Semisalova A.; Kakay A.; Hlawacek G.; MacLaren I.; Liersch V.; Volkov O. M.; Makarov D.; Paterson G. W.; Potzger K.; Lindner J.; Fassbender J.; McGrouther D.; Bali R. Strain Anisotropy and Magnetic Domains in Embedded Nanomagnets. Small 2019, 15 (52), 190473810.1002/smll.201904738. PubMed DOI
Klein J.; Pham T.; Thomsen J. D.; Curtis J. B.; Denneulin T.; Lorke M.; Florian M.; Steinhoff A.; Wiscons R. A.; Luxa J.; Sofer Z.; Jahnke F.; Narang P.; Ross F. M. Control of structure and spin texture in the van der Waals layered magnet CrSBr. Nat. Commun. 2022, 13 (1), 5420–5428. 10.1038/s41467-022-32737-8. PubMed DOI PMC
Xu X. M.; Wang X. H.; Chang P.; Chen X. Y.; Guan L. X.; Tao J. G. Strong Spin-Phonon Coupling in Two-Dimensional Magnetic Semiconductor CrSBr. J. Phys. Chem. C 2022, 126 (25), 10574–10583. 10.1021/acs.jpcc.2c02742. DOI
Strong Exciton-Phonon Coupling as a Fingerprint of Magnetic Ordering in van der Waals Layered CrSBr