Control of structure and spin texture in the van der Waals layered magnet CrSBr
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
36109520
PubMed Central
PMC9478124
DOI
10.1038/s41467-022-32737-8
PII: 10.1038/s41467-022-32737-8
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Controlling magnetism at nanometer length scales is essential for realizing high-performance spintronic, magneto-electric and topological devices and creating on-demand spin Hamiltonians probing fundamental concepts in physics. Van der Waals (vdW)-bonded layered magnets offer exceptional opportunities for such spin texture engineering. Here, we demonstrate nanoscale structural control in the layered magnet CrSBr with the potential to create spin patterns without the environmental sensitivity that has hindered such manipulations in other vdW magnets. We drive a local phase transformation using an electron beam that moves atoms and exchanges bond directions, effectively creating regions that have vertical vdW layers embedded within the initial horizontally vdW bonded exfoliated flakes. We calculate that the newly formed two-dimensional structure is ferromagnetically ordered in-plane with an energy gap in the visible spectrum, and weak antiferromagnetism between the planes, suggesting possibilities for creating spin textures and quantum magnetic phases.
Department of Chemistry Columbia University New York 10027 NY USA
Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor MI USA
Department of Physics Harvard University Cambridge MA USA
Institut für Theoretische Physik Universität Bremen P O Box 330 440 28334 Bremen Germany
John A Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA USA
See more in PubMed
Huang B, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature. 2017;546:270–273. doi: 10.1038/nature22391. PubMed DOI
Gong C, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature. 2017;546:265–269. doi: 10.1038/nature22060. PubMed DOI
Deng Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature. 2018;563:94–99. doi: 10.1038/s41586-018-0626-9. PubMed DOI
Burch KS, Mandrus D, Park J-G. Magnetism in two-dimensional van der Waals materials. Nature. 2018;563:47–52. doi: 10.1038/s41586-018-0631-z. PubMed DOI
Ising E. Beitrag zur Theorie des Ferromagnetismus. Z. für. Phys. 1925;31:253–258. doi: 10.1007/BF02980577. DOI
Bethe H. Zur Theorie der Metalle. Z. für. Phys. 1931;71:205–226. doi: 10.1007/BF01341708. DOI
Lieb E, Schultz T, Mattis D. Two soluble models of an antiferromagnetic chain. Ann. Phys. 1961;16:407–466. doi: 10.1016/0003-4916(61)90115-4. DOI
Mermin ND, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 1966;17:1133–1136. doi: 10.1103/PhysRevLett.17.1133. DOI
Hohenberg PC. Existence of long-range order in one and two dimensions. Phys. Rev. 1967;158:383–386. doi: 10.1103/PhysRev.158.383. DOI
Žutić I, Fabian J, Sarma SD. Spintronics: fundamentals and applications. Rev. Mod. Phys. 2004;76:323–410. doi: 10.1103/RevModPhys.76.323. DOI
Basov DN, Averitt RD, Hsieh D. Towards properties on demand in quantum materials. Nat. Mater. 2017;16:1077–1088. doi: 10.1038/nmat5017. PubMed DOI
Song T, et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science. 2018;360:1214–1218. doi: 10.1126/science.aar4851. PubMed DOI
Kim HH, et al. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett. 2018;18:4885–4890. doi: 10.1021/acs.nanolett.8b01552. PubMed DOI
Wang Z, et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 2018;18:4303–4308. doi: 10.1021/acs.nanolett.8b01278. PubMed DOI
Klein DR, et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science. 2018;360:1218–1222. doi: 10.1126/science.aar3617. PubMed DOI
Jiang S, Li L, Wang Z, Shan J, Mak KF. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat. Electron. 2019;2:159–163. doi: 10.1038/s41928-019-0232-3. DOI
Song T, et al. Voltage control of a van der Waals spin-filter magnetic tunnel junction. Nano Lett. 2019;19:915–920. doi: 10.1021/acs.nanolett.8b04160. PubMed DOI
Narang P, Garcia CAC, Felser C. The topology of electronic band structures. Nat. Mater. 2020;20:293–300. doi: 10.1038/s41563-020-00820-4. PubMed DOI
Huang B, et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018;13:544–548. doi: 10.1038/s41565-018-0121-3. PubMed DOI
Jiang S, Shan J, Mak KF. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 2018;17:406–410. doi: 10.1038/s41563-018-0040-6. PubMed DOI
Jiang S, Li L, Wang Z, Mak KF, Shan J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018;13:549–553. doi: 10.1038/s41565-018-0135-x. PubMed DOI
Muhlbauer S, et al. Skyrmion lattice in a chiral magnet. Science. 2009;323:915–919. doi: 10.1126/science.1166767. PubMed DOI
Yu XZ, et al. Real-space observation of a two-dimensional skyrmion crystal. Nature. 2010;465:901–904. doi: 10.1038/nature09124. PubMed DOI
Romming N, et al. Writing and deleting single magnetic skyrmions. Science. 2013;341:636–639. doi: 10.1126/science.1240573. PubMed DOI
Yu XZ, et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 2010;10:106–109. doi: 10.1038/nmat2916. PubMed DOI
Li Z-A, et al. Magnetic skyrmion formation at lattice defects and grain boundaries studied by quantitative off-axis electron holography. Nano Lett. 2017;17:1395–1401. doi: 10.1021/acs.nanolett.6b04280. PubMed DOI
Matsumoto T, et al. Direct observation of σ7 domain boundary core structure in magnetic skyrmion lattice. Sci. Adv. 2016;2:e1501280. doi: 10.1126/sciadv.1501280. PubMed DOI PMC
Jin, C. et al. Control of morphology and formation of highly geometrically confined magnetic skyrmions. Nat. Commun. 8, 15569 (2017). PubMed PMC
Duine RA, Lee K-J, Parkin SSP, Stiles MD. Synthetic antiferromagnetic spintronics. Nat. Phys. 2018;14:217–219. doi: 10.1038/s41567-018-0050-y. PubMed DOI PMC
Lin Y-C, Dumcenco DO, Huang Y-S, Suenaga K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014;9:391–396. doi: 10.1038/nnano.2014.64. PubMed DOI
Katscher H, Hahn H. Über Chalkogenidhalogenide des dreiwertigen Chroms. Die Naturwissenschaften. 1966;53:361–361. doi: 10.1007/BF00621875. PubMed DOI
Göser O, Paul W, Kahle H. Magnetic properties of CrSBr. J. Magn. Magn. Mater. 1990;92:129–136. doi: 10.1016/0304-8853(90)90689-N. DOI
Wang C, et al. A family of high-temperature ferromagnetic monolayers with locked spin-dichroism-mobility anisotropy: MnNX and CrCX (X=Cl, Br, I; C=S, Se, Te) Sci. Bull. 2019;64:293–300. doi: 10.1016/j.scib.2019.02.011. PubMed DOI
Wang H, Qi J, Qian X. Electrically tunable high curie temperature two-dimensional ferromagnetism in van der Waals layered crystals. Appl. Phys. Lett. 2020;117:083102. doi: 10.1063/5.0014865. DOI
Telford EJ, et al. Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater. 2020;32:2003240. doi: 10.1002/adma.202003240. PubMed DOI
Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Nano Lett. 21, 3511–3517 (2021). PubMed
Wilson, N. P. et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater.20, 1657–1662 (2021). PubMed
Palvadeau P, Coic L, Rouxel J, Portier J. The lithium and molecular intercalates of FeOCl. Mater. Res. Bull. 1978;13:221–227. doi: 10.1016/0025-5408(78)90226-X. DOI
Beck J. Über Chalkogenidhalogenide des Chroms Synthese, Kristallstruktur und Magnetismus von Chromsulfidbromid, CrSBr. Z. für. anorganische und Allg. Chem. 1990;585:157–167. doi: 10.1002/zaac.19905850118. DOI
Kulish VV, Huang W. Single-layer metal halides MX2 (X= Cl, Br, I): stability and tunable magnetism from first principles and Monte Carlo simulations. J. Mater. Chem. C. 2017;5:8734–8741. doi: 10.1039/C7TC02664A. DOI
Tartaglia TA, et al. Accessing new magnetic regimes by tuning the ligand spin-orbit coupling in van der Waals magnets. Sci. Adv. 2020;6:eabb9379. doi: 10.1126/sciadv.abb9379. PubMed DOI PMC
Stavropoulos PP, Liu X, Kee H-Y. Magnetic anisotropy in spin-3/2 with heavy ligand in honeycomb Mott insulators: application to CrI3. Phys. Rev. Res. 2021;3:013216. doi: 10.1103/PhysRevResearch.3.013216. DOI
Thiel L, et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science. 2019;364:973–976. doi: 10.1126/science.aav6926. PubMed DOI
Hejazi K, Luo Z-X, Balents L. Noncollinear phases in moiré magnets. Proc. Natl Acad. Sci. USA. 2020;117:10721–10726. doi: 10.1073/pnas.2000347117. PubMed DOI PMC
Kubota K, et al. New insight into structural evolution in layered NaCrO2 during electrochemical sodium extraction. J. Phys. Chem. C. 2014;119:166–175. doi: 10.1021/jp5105888. DOI
Shadike, Z. et al. Antisite occupation induced single anionic redox chemistry and structural stabilization of layered sodium chromium sulfide. Nat. Commun. 8, 566 (2017). PubMed PMC
Coughlin AL, et al. Van der Waals superstructure and twisting in self-intercalated magnet with near room-temperature perpendicular ferromagnetism. Nano Lett. 2021;21:9517–9525. doi: 10.1021/acs.nanolett.1c02940. PubMed DOI
Chen C, et al. Air-stable 2D Cr5Te8 nanosheets with thickness-tunable ferromagnetism. Adv. Mater. 2021;34:2107512. doi: 10.1002/adma.202107512. PubMed DOI
Hwang SR, Li W-H, Lee KC, Lynn JW, Wu C-G. Spiral magnetic structure of Fe in van der Waals gapped FeOCl and polyaniline-intercalated FeOCl. Phys. Rev. B. 2000;62:14157–14163. doi: 10.1103/PhysRevB.62.14157. DOI
Shaz, M. et al. Spin-Peierls transition in TiOCl. Phys. Rev. B71, 100405 (2005).
Miao N, Xu B, Zhu L, Zhou J, Sun Z. 2D intrinsic ferromagnets from van der Waals antiferromagnets. J. Am. Chem. Soc. 2018;140:2417–2420. doi: 10.1021/jacs.7b12976. PubMed DOI
Thomsen, J. D., Kling, J., Mackenzie, D. M. A., Bøggild, P. & Booth, T. J. Oxidation of suspended graphene: Etch dynamics and stability beyond 1000 °C. ACS Nano13, 2281–2288 (2019). PubMed
Sang X, Oni AA, LeBeau JM. Atom column indexing: atomic resolution image analysis through a matrix representation. Microsc. Microanal. 2014;20:1764–1771. doi: 10.1017/S1431927614013506. PubMed DOI
Blöchl PE. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Tkatchenko A, Scheffler M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009;102:073005. doi: 10.1103/PhysRevLett.102.073005. PubMed DOI
Pizzi G, et al. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter. 2020;32:165902. doi: 10.1088/1361-648X/ab51ff. PubMed DOI
Georges A, de’ Medici L, Mravlje J. Strong correlations from Hund’s coupling. Annu. Rev. Condens. Matter Phys. 2013;4:137. doi: 10.1146/annurev-conmatphys-020911-125045. DOI
Besbes O, Nikolaev S, Meskini N, Solovyev I. Microscopic origin of ferromagnetism in the trihalides CrCl3 and CrI3. Phys. Rev. B. 2019;99:104432. doi: 10.1103/PhysRevB.99.104432. DOI
Huang C, et al. Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J. Am. Chem. Soc. 2018;140:11519–11525. doi: 10.1021/jacs.8b07879. PubMed DOI
Magnon-mediated exciton-exciton interaction in a van der Waals antiferromagnet
Ultrafast Exciton Dynamics in the Atomically Thin van der Waals Magnet CrSBr
Ferromagnetic Interlayer Coupling in CrSBr Crystals Irradiated by Ions