• This record comes from PubMed

Control of structure and spin texture in the van der Waals layered magnet CrSBr

. 2022 Sep 15 ; 13 (1) : 5420. [epub] 20220915

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article

Links

PubMed 36109520
PubMed Central PMC9478124
DOI 10.1038/s41467-022-32737-8
PII: 10.1038/s41467-022-32737-8
Knihovny.cz E-resources

Controlling magnetism at nanometer length scales is essential for realizing high-performance spintronic, magneto-electric and topological devices and creating on-demand spin Hamiltonians probing fundamental concepts in physics. Van der Waals (vdW)-bonded layered magnets offer exceptional opportunities for such spin texture engineering. Here, we demonstrate nanoscale structural control in the layered magnet CrSBr with the potential to create spin patterns without the environmental sensitivity that has hindered such manipulations in other vdW magnets. We drive a local phase transformation using an electron beam that moves atoms and exchanges bond directions, effectively creating regions that have vertical vdW layers embedded within the initial horizontally vdW bonded exfoliated flakes. We calculate that the newly formed two-dimensional structure is ferromagnetically ordered in-plane with an energy gap in the visible spectrum, and weak antiferromagnetism between the planes, suggesting possibilities for creating spin textures and quantum magnetic phases.

See more in PubMed

Huang B, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature. 2017;546:270–273. doi: 10.1038/nature22391. PubMed DOI

Gong C, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature. 2017;546:265–269. doi: 10.1038/nature22060. PubMed DOI

Deng Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature. 2018;563:94–99. doi: 10.1038/s41586-018-0626-9. PubMed DOI

Burch KS, Mandrus D, Park J-G. Magnetism in two-dimensional van der Waals materials. Nature. 2018;563:47–52. doi: 10.1038/s41586-018-0631-z. PubMed DOI

Ising E. Beitrag zur Theorie des Ferromagnetismus. Z. für. Phys. 1925;31:253–258. doi: 10.1007/BF02980577. DOI

Bethe H. Zur Theorie der Metalle. Z. für. Phys. 1931;71:205–226. doi: 10.1007/BF01341708. DOI

Lieb E, Schultz T, Mattis D. Two soluble models of an antiferromagnetic chain. Ann. Phys. 1961;16:407–466. doi: 10.1016/0003-4916(61)90115-4. DOI

Mermin ND, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 1966;17:1133–1136. doi: 10.1103/PhysRevLett.17.1133. DOI

Hohenberg PC. Existence of long-range order in one and two dimensions. Phys. Rev. 1967;158:383–386. doi: 10.1103/PhysRev.158.383. DOI

Žutić I, Fabian J, Sarma SD. Spintronics: fundamentals and applications. Rev. Mod. Phys. 2004;76:323–410. doi: 10.1103/RevModPhys.76.323. DOI

Basov DN, Averitt RD, Hsieh D. Towards properties on demand in quantum materials. Nat. Mater. 2017;16:1077–1088. doi: 10.1038/nmat5017. PubMed DOI

Song T, et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science. 2018;360:1214–1218. doi: 10.1126/science.aar4851. PubMed DOI

Kim HH, et al. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett. 2018;18:4885–4890. doi: 10.1021/acs.nanolett.8b01552. PubMed DOI

Wang Z, et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 2018;18:4303–4308. doi: 10.1021/acs.nanolett.8b01278. PubMed DOI

Klein DR, et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science. 2018;360:1218–1222. doi: 10.1126/science.aar3617. PubMed DOI

Jiang S, Li L, Wang Z, Shan J, Mak KF. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat. Electron. 2019;2:159–163. doi: 10.1038/s41928-019-0232-3. DOI

Song T, et al. Voltage control of a van der Waals spin-filter magnetic tunnel junction. Nano Lett. 2019;19:915–920. doi: 10.1021/acs.nanolett.8b04160. PubMed DOI

Narang P, Garcia CAC, Felser C. The topology of electronic band structures. Nat. Mater. 2020;20:293–300. doi: 10.1038/s41563-020-00820-4. PubMed DOI

Huang B, et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018;13:544–548. doi: 10.1038/s41565-018-0121-3. PubMed DOI

Jiang S, Shan J, Mak KF. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 2018;17:406–410. doi: 10.1038/s41563-018-0040-6. PubMed DOI

Jiang S, Li L, Wang Z, Mak KF, Shan J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018;13:549–553. doi: 10.1038/s41565-018-0135-x. PubMed DOI

Muhlbauer S, et al. Skyrmion lattice in a chiral magnet. Science. 2009;323:915–919. doi: 10.1126/science.1166767. PubMed DOI

Yu XZ, et al. Real-space observation of a two-dimensional skyrmion crystal. Nature. 2010;465:901–904. doi: 10.1038/nature09124. PubMed DOI

Romming N, et al. Writing and deleting single magnetic skyrmions. Science. 2013;341:636–639. doi: 10.1126/science.1240573. PubMed DOI

Yu XZ, et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 2010;10:106–109. doi: 10.1038/nmat2916. PubMed DOI

Li Z-A, et al. Magnetic skyrmion formation at lattice defects and grain boundaries studied by quantitative off-axis electron holography. Nano Lett. 2017;17:1395–1401. doi: 10.1021/acs.nanolett.6b04280. PubMed DOI

Matsumoto T, et al. Direct observation of σ7 domain boundary core structure in magnetic skyrmion lattice. Sci. Adv. 2016;2:e1501280. doi: 10.1126/sciadv.1501280. PubMed DOI PMC

Jin, C. et al. Control of morphology and formation of highly geometrically confined magnetic skyrmions. Nat. Commun. 8, 15569 (2017). PubMed PMC

Duine RA, Lee K-J, Parkin SSP, Stiles MD. Synthetic antiferromagnetic spintronics. Nat. Phys. 2018;14:217–219. doi: 10.1038/s41567-018-0050-y. PubMed DOI PMC

Lin Y-C, Dumcenco DO, Huang Y-S, Suenaga K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014;9:391–396. doi: 10.1038/nnano.2014.64. PubMed DOI

Katscher H, Hahn H. Über Chalkogenidhalogenide des dreiwertigen Chroms. Die Naturwissenschaften. 1966;53:361–361. doi: 10.1007/BF00621875. PubMed DOI

Göser O, Paul W, Kahle H. Magnetic properties of CrSBr. J. Magn. Magn. Mater. 1990;92:129–136. doi: 10.1016/0304-8853(90)90689-N. DOI

Wang C, et al. A family of high-temperature ferromagnetic monolayers with locked spin-dichroism-mobility anisotropy: MnNX and CrCX (X=Cl, Br, I; C=S, Se, Te) Sci. Bull. 2019;64:293–300. doi: 10.1016/j.scib.2019.02.011. PubMed DOI

Wang H, Qi J, Qian X. Electrically tunable high curie temperature two-dimensional ferromagnetism in van der Waals layered crystals. Appl. Phys. Lett. 2020;117:083102. doi: 10.1063/5.0014865. DOI

Telford EJ, et al. Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater. 2020;32:2003240. doi: 10.1002/adma.202003240. PubMed DOI

Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Nano Lett. 21, 3511–3517 (2021). PubMed

Wilson, N. P. et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater.20, 1657–1662 (2021). PubMed

Palvadeau P, Coic L, Rouxel J, Portier J. The lithium and molecular intercalates of FeOCl. Mater. Res. Bull. 1978;13:221–227. doi: 10.1016/0025-5408(78)90226-X. DOI

Beck J. Über Chalkogenidhalogenide des Chroms Synthese, Kristallstruktur und Magnetismus von Chromsulfidbromid, CrSBr. Z. für. anorganische und Allg. Chem. 1990;585:157–167. doi: 10.1002/zaac.19905850118. DOI

Kulish VV, Huang W. Single-layer metal halides MX2 (X= Cl, Br, I): stability and tunable magnetism from first principles and Monte Carlo simulations. J. Mater. Chem. C. 2017;5:8734–8741. doi: 10.1039/C7TC02664A. DOI

Tartaglia TA, et al. Accessing new magnetic regimes by tuning the ligand spin-orbit coupling in van der Waals magnets. Sci. Adv. 2020;6:eabb9379. doi: 10.1126/sciadv.abb9379. PubMed DOI PMC

Stavropoulos PP, Liu X, Kee H-Y. Magnetic anisotropy in spin-3/2 with heavy ligand in honeycomb Mott insulators: application to CrI3. Phys. Rev. Res. 2021;3:013216. doi: 10.1103/PhysRevResearch.3.013216. DOI

Thiel L, et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science. 2019;364:973–976. doi: 10.1126/science.aav6926. PubMed DOI

Hejazi K, Luo Z-X, Balents L. Noncollinear phases in moiré magnets. Proc. Natl Acad. Sci. USA. 2020;117:10721–10726. doi: 10.1073/pnas.2000347117. PubMed DOI PMC

Kubota K, et al. New insight into structural evolution in layered NaCrO2 during electrochemical sodium extraction. J. Phys. Chem. C. 2014;119:166–175. doi: 10.1021/jp5105888. DOI

Shadike, Z. et al. Antisite occupation induced single anionic redox chemistry and structural stabilization of layered sodium chromium sulfide. Nat. Commun. 8, 566 (2017). PubMed PMC

Coughlin AL, et al. Van der Waals superstructure and twisting in self-intercalated magnet with near room-temperature perpendicular ferromagnetism. Nano Lett. 2021;21:9517–9525. doi: 10.1021/acs.nanolett.1c02940. PubMed DOI

Chen C, et al. Air-stable 2D Cr5Te8 nanosheets with thickness-tunable ferromagnetism. Adv. Mater. 2021;34:2107512. doi: 10.1002/adma.202107512. PubMed DOI

Hwang SR, Li W-H, Lee KC, Lynn JW, Wu C-G. Spiral magnetic structure of Fe in van der Waals gapped FeOCl and polyaniline-intercalated FeOCl. Phys. Rev. B. 2000;62:14157–14163. doi: 10.1103/PhysRevB.62.14157. DOI

Shaz, M. et al. Spin-Peierls transition in TiOCl. Phys. Rev. B71, 100405 (2005).

Miao N, Xu B, Zhu L, Zhou J, Sun Z. 2D intrinsic ferromagnets from van der Waals antiferromagnets. J. Am. Chem. Soc. 2018;140:2417–2420. doi: 10.1021/jacs.7b12976. PubMed DOI

Thomsen, J. D., Kling, J., Mackenzie, D. M. A., Bøggild, P. & Booth, T. J. Oxidation of suspended graphene: Etch dynamics and stability beyond 1000 °C. ACS Nano13, 2281–2288 (2019). PubMed

Sang X, Oni AA, LeBeau JM. Atom column indexing: atomic resolution image analysis through a matrix representation. Microsc. Microanal. 2014;20:1764–1771. doi: 10.1017/S1431927614013506. PubMed DOI

Blöchl PE. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Tkatchenko A, Scheffler M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009;102:073005. doi: 10.1103/PhysRevLett.102.073005. PubMed DOI

Pizzi G, et al. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter. 2020;32:165902. doi: 10.1088/1361-648X/ab51ff. PubMed DOI

Georges A, de’ Medici L, Mravlje J. Strong correlations from Hund’s coupling. Annu. Rev. Condens. Matter Phys. 2013;4:137. doi: 10.1146/annurev-conmatphys-020911-125045. DOI

Besbes O, Nikolaev S, Meskini N, Solovyev I. Microscopic origin of ferromagnetism in the trihalides CrCl3 and CrI3. Phys. Rev. B. 2019;99:104432. doi: 10.1103/PhysRevB.99.104432. DOI

Huang C, et al. Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J. Am. Chem. Soc. 2018;140:11519–11525. doi: 10.1021/jacs.8b07879. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...