Magnon-mediated exciton-exciton interaction in a van der Waals antiferromagnet
Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
12764
Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)
12764
Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)
W911NF-23-1-0394
United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO)
2216838
National Science Foundation (NSF)
DMR-2130544
National Science Foundation (NSF)
HRD-2112550
National Science Foundation (NSF)
OMA-2328993
National Science Foundation (NSF)
OMA-2328993
National Science Foundation (NSF)
OMA-2328993
National Science Foundation (NSF)
PubMed
40119034
DOI
10.1038/s41563-025-02183-0
PII: 10.1038/s41563-025-02183-0
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Excitons are fundamental excitations that govern the optical properties of semiconductors. Interactions between excitons can lead to various emergent phases of matter and large nonlinear optical responses. In most semiconductors, excitons interact via exchange interactions or phase-space filling. Correlated materials that host excitons coupled to other degrees of freedom could offer pathways for controlling these interactions. Here we demonstrate magnon-mediated interactions between excitons in CrSBr, an antiferromagnetic semiconductor. These interactions manifest as the dependence of the exciton energy on the exciton density via a magnonic adjustment of the spin canting angle. Our study demonstrates the emergence of quasiparticle-mediated interactions in correlated quantum materials, leading to large nonlinear optical responses and potential device concepts such as magnon-mediated quantum transducers.
CREOL The College of Optics and Photonics University of Central Florida Orlando FL USA
Department of Electrical Engineering The City College of New York New York NY USA
Department of Physics City College of New York New York NY USA
Department of Physics Graduate Center of the City University of New York New York NY USA
Materials Science Center National Renewable Energy Laboratory Golden CO USA
Photonics Initiative CUNY Advanced Science Research Center New York NY USA
Theory and Simulation of Condensed Matter King's College London London UK
Zobrazit více v PubMed
Johansen, Ø., Kamra, A., Ulloa, C., Brataas, A. & Duine, R. A. Magnon-mediated indirect exciton condensation through antiferromagnetic insulators. Phys. Rev. Lett. 123, 167203 (2019). PubMed DOI
Regan, E. C. et al. Emerging exciton physics in transition metal dichalcogenide heterobilayers. Nat. Rev. Mater. 7, 778–795 (2022). DOI
Snoke, D. Spontaneous Bose coherence of excitons and polaritons. Science 298, 1368–1372 (2002). PubMed DOI
Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019). PubMed DOI
Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002). PubMed DOI
Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006). PubMed DOI
Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009). DOI
Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017). DOI
Jérome, D., Rice, T. M. & Kohn, W. Excitonic insulator. Phys. Rev. 158, 462–475 (1967). DOI
Cercellier, H. et al. Evidence for an excitonic insulator phase in 1T-TiSe PubMed DOI
Kogar, A. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314–1317 (2017). PubMed DOI
Joglekar, Y. N., Balatsky, A. V. & Das Sarma, S. Wigner supersolid of excitons in electron–hole bilayers. Phys. Rev. B 74, 233302 (2006). DOI
Axt, V. M. & Mukamel, S. Nonlinear optics of semiconductor and molecular nanostructures; a common perspective. Rev. Mod. Phys. 70, 145–174 (1998). DOI
Li, W., Lu, X., Dubey, S., Devenica, L. & Srivastava, A. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 19, 624–629 (2020). PubMed DOI
Yazdani, N. et al. Coupling to octahedral tilts in halide perovskite nanocrystals induces phonon-mediated attractive interactions between excitons. Nat. Phys. 20, 47–53 (2024). PubMed DOI
Wilson, N. P. et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 20, 1657–1662 (2021). PubMed DOI
Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature 609, 282–286 (2022). PubMed DOI
Diederich, G. M. et al. Tunable interaction between excitons and hybridized magnons in a layered semiconductor. Nat. Nanotechnol. 18, 23–28 (2023). PubMed DOI
Dirnberger, F. et al. Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons. Nature 620, 533–537 (2023). PubMed DOI
Brennan, N. J., Noble, C. A., Tang, J., Ziebel, M. E. & Bae, Y. J. Important elements of spin–exciton and magnon–exciton coupling. ACS Phys. Chem. Au 4, 322–327 (2024). PubMed DOI PMC
Telford, E. J. et al. Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater. 32, 2003240 (2020). DOI
Wang, H., Qi, J. & Qian, X. Electrically-tunable high Curie temperature two-dimensional ferromagnetism in van der Waals layered crystals. Appl. Phys. Lett. 117, 083102 (2020). DOI
Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Nano Lett. 21, 3511–3517 (2021). PubMed DOI
Scheie, A. et al. Spin waves and magnetic exchange Hamiltonian in CrSBr. Adv. Sci. 9, 2202467 (2022). DOI
Klein, J. et al. Sensing the local magnetic environment through optically active defects in a layered magnetic semiconductor. ACS Nano 17, 288–299 (2023). PubMed DOI
Bianchi, M. et al. Paramagnetic electronic structure of CrSBr: comparison between ab initio GW theory and angle-resolved photoemission spectroscopy. Phys. Rev. B 107, 235107 (2023). DOI
Watson, M. D. et al. Giant exchange splitting in the electronic structure of A-type 2D antiferromagnet CrSBr. npj 2D Mater. Appl. 8, 54 (2024). DOI
Shao, Y. et al. Magnetically confined surface and bulk excitons in a layered antiferromagnet. Nat. Mater. 24, 391–398 (2025). PubMed DOI
Wang, T. et al. Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime. Nat. Commun. 14, 5966 (2023). PubMed DOI PMC
Sun, Y. et al. Dipolar spin wave packet transport in a van der Waals antiferromagnet. Nat. Phys. 20, 794–800 (2024). DOI
Guo, Y., Zhang, Y., Yuan, S., Wang, B. & Wang, J. Chromium sulfide halide monolayers: intrinsic ferromagnetic semiconductors with large spin polarization and high carrier mobility. Nanoscale 10, 18036–18042 (2018). PubMed DOI
Klein, J. et al. The bulk van der Waals layered magnet CrSBr is a quasi-1D material. ACS Nano 17, 5316–5328 (2023). PubMed DOI
Lin, K. et al. Strong exciton–phonon coupling as a fingerprint of magnetic ordering in van der Waals layered CrSBr. ACS Nano 18, 2898–2905 (2024). PubMed DOI PMC
Datta, B. et al. Highly nonlinear dipolar exciton-polaritons in bilayer MoS PubMed DOI PMC
Louca, C. et al. Interspecies exciton interactions lead to enhanced nonlinearity of dipolar excitons and polaritons in MoS PubMed DOI PMC
Cunningham, B., Grüning, M., Pashov, D. & van Schilfgaarde, M. QS GŴ: quasiparticle self consistent GW with ladder diagrams in W. Phys. Rev. B 108, 165104 (2023). DOI
van Schilfgaarde, M., Kotani, T. & Faleev, S. Quasiparticle self-consistent GW theory. Phys. Rev. Lett. 96, 226402 (2006). PubMed DOI
Pashov, D. et al. Questaal: a package of electronic structure methods based on the linear muffin-tin orbital technique. Comput. Phys. Commun. 249, 107065 (2020). DOI
Chaves, A. & Peeters, F. M. Tunable effective masses of magneto-excitons in two-dimensional materials. Solid State Commun. 334–335, 114371 (2021). DOI
Zipfel, J. et al. Spatial extent of the excited exciton states in WS DOI
Pacuski, W. et al. Excitonic giant Zeeman effect in wide gap diluted magnetic semiconductors based on ZnO and GaN. Acta Phys. Pol. A 110, 303–309 (2006). DOI
Klein, J. et al. Control of structure and spin texture in the van der Waals layered magnet CrSBr. Nat. Commun. 13, 5420 (2022). PubMed DOI PMC
Hall, S. J., Budden, P. J., Zats, A. & Sfeir, M. Y. Optimizing the sensitivity of high repetition rate broadband transient optical spectroscopy with modified shot-to-shot detection. Rev. Sci. Instrum. 94, 043005 (2023). PubMed DOI