Magnon-mediated exciton-exciton interaction in a van der Waals antiferromagnet

. 2025 Mar 21 ; () : . [epub] 20250321

Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40119034

Grantová podpora
12764 Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)
12764 Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)
W911NF-23-1-0394 United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO)
2216838 National Science Foundation (NSF)
DMR-2130544 National Science Foundation (NSF)
HRD-2112550 National Science Foundation (NSF)
OMA-2328993 National Science Foundation (NSF)
OMA-2328993 National Science Foundation (NSF)
OMA-2328993 National Science Foundation (NSF)

Odkazy

PubMed 40119034
DOI 10.1038/s41563-025-02183-0
PII: 10.1038/s41563-025-02183-0
Knihovny.cz E-zdroje

Excitons are fundamental excitations that govern the optical properties of semiconductors. Interactions between excitons can lead to various emergent phases of matter and large nonlinear optical responses. In most semiconductors, excitons interact via exchange interactions or phase-space filling. Correlated materials that host excitons coupled to other degrees of freedom could offer pathways for controlling these interactions. Here we demonstrate magnon-mediated interactions between excitons in CrSBr, an antiferromagnetic semiconductor. These interactions manifest as the dependence of the exciton energy on the exciton density via a magnonic adjustment of the spin canting angle. Our study demonstrates the emergence of quasiparticle-mediated interactions in correlated quantum materials, leading to large nonlinear optical responses and potential device concepts such as magnon-mediated quantum transducers.

Zobrazit více v PubMed

Johansen, Ø., Kamra, A., Ulloa, C., Brataas, A. & Duine, R. A. Magnon-mediated indirect exciton condensation through antiferromagnetic insulators. Phys. Rev. Lett. 123, 167203 (2019). PubMed DOI

Regan, E. C. et al. Emerging exciton physics in transition metal dichalcogenide heterobilayers. Nat. Rev. Mater. 7, 778–795 (2022). DOI

Snoke, D. Spontaneous Bose coherence of excitons and polaritons. Science 298, 1368–1372 (2002). PubMed DOI

Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019). PubMed DOI

Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002). PubMed DOI

Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006). PubMed DOI

Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009). DOI

Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017). DOI

Jérome, D., Rice, T. M. & Kohn, W. Excitonic insulator. Phys. Rev. 158, 462–475 (1967). DOI

Cercellier, H. et al. Evidence for an excitonic insulator phase in 1T-TiSe PubMed DOI

Kogar, A. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314–1317 (2017). PubMed DOI

Joglekar, Y. N., Balatsky, A. V. & Das Sarma, S. Wigner supersolid of excitons in electron–hole bilayers. Phys. Rev. B 74, 233302 (2006). DOI

Axt, V. M. & Mukamel, S. Nonlinear optics of semiconductor and molecular nanostructures; a common perspective. Rev. Mod. Phys. 70, 145–174 (1998). DOI

Li, W., Lu, X., Dubey, S., Devenica, L. & Srivastava, A. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 19, 624–629 (2020). PubMed DOI

Yazdani, N. et al. Coupling to octahedral tilts in halide perovskite nanocrystals induces phonon-mediated attractive interactions between excitons. Nat. Phys. 20, 47–53 (2024). PubMed DOI

Wilson, N. P. et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 20, 1657–1662 (2021). PubMed DOI

Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature 609, 282–286 (2022). PubMed DOI

Diederich, G. M. et al. Tunable interaction between excitons and hybridized magnons in a layered semiconductor. Nat. Nanotechnol. 18, 23–28 (2023). PubMed DOI

Dirnberger, F. et al. Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons. Nature 620, 533–537 (2023). PubMed DOI

Brennan, N. J., Noble, C. A., Tang, J., Ziebel, M. E. & Bae, Y. J. Important elements of spin–exciton and magnon–exciton coupling. ACS Phys. Chem. Au 4, 322–327 (2024). PubMed DOI PMC

Telford, E. J. et al. Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater. 32, 2003240 (2020). DOI

Wang, H., Qi, J. & Qian, X. Electrically-tunable high Curie temperature two-dimensional ferromagnetism in van der Waals layered crystals. Appl. Phys. Lett. 117, 083102 (2020). DOI

Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Nano Lett. 21, 3511–3517 (2021). PubMed DOI

Scheie, A. et al. Spin waves and magnetic exchange Hamiltonian in CrSBr. Adv. Sci. 9, 2202467 (2022). DOI

Klein, J. et al. Sensing the local magnetic environment through optically active defects in a layered magnetic semiconductor. ACS Nano 17, 288–299 (2023). PubMed DOI

Bianchi, M. et al. Paramagnetic electronic structure of CrSBr: comparison between ab initio GW theory and angle-resolved photoemission spectroscopy. Phys. Rev. B 107, 235107 (2023). DOI

Watson, M. D. et al. Giant exchange splitting in the electronic structure of A-type 2D antiferromagnet CrSBr. npj 2D Mater. Appl. 8, 54 (2024). DOI

Shao, Y. et al. Magnetically confined surface and bulk excitons in a layered antiferromagnet. Nat. Mater. 24, 391–398 (2025). PubMed DOI

Wang, T. et al. Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime. Nat. Commun. 14, 5966 (2023). PubMed DOI PMC

Sun, Y. et al. Dipolar spin wave packet transport in a van der Waals antiferromagnet. Nat. Phys. 20, 794–800 (2024). DOI

Guo, Y., Zhang, Y., Yuan, S., Wang, B. & Wang, J. Chromium sulfide halide monolayers: intrinsic ferromagnetic semiconductors with large spin polarization and high carrier mobility. Nanoscale 10, 18036–18042 (2018). PubMed DOI

Klein, J. et al. The bulk van der Waals layered magnet CrSBr is a quasi-1D material. ACS Nano 17, 5316–5328 (2023). PubMed DOI

Lin, K. et al. Strong exciton–phonon coupling as a fingerprint of magnetic ordering in van der Waals layered CrSBr. ACS Nano 18, 2898–2905 (2024). PubMed DOI PMC

Datta, B. et al. Highly nonlinear dipolar exciton-polaritons in bilayer MoS PubMed DOI PMC

Louca, C. et al. Interspecies exciton interactions lead to enhanced nonlinearity of dipolar excitons and polaritons in MoS PubMed DOI PMC

Cunningham, B., Grüning, M., Pashov, D. & van Schilfgaarde, M. QS GŴ: quasiparticle self consistent GW with ladder diagrams in W. Phys. Rev. B 108, 165104 (2023). DOI

van Schilfgaarde, M., Kotani, T. & Faleev, S. Quasiparticle self-consistent GW theory. Phys. Rev. Lett. 96, 226402 (2006). PubMed DOI

Pashov, D. et al. Questaal: a package of electronic structure methods based on the linear muffin-tin orbital technique. Comput. Phys. Commun. 249, 107065 (2020). DOI

Chaves, A. & Peeters, F. M. Tunable effective masses of magneto-excitons in two-dimensional materials. Solid State Commun. 334–335, 114371 (2021). DOI

Zipfel, J. et al. Spatial extent of the excited exciton states in WS DOI

Pacuski, W. et al. Excitonic giant Zeeman effect in wide gap diluted magnetic semiconductors based on ZnO and GaN. Acta Phys. Pol. A 110, 303–309 (2006). DOI

Klein, J. et al. Control of structure and spin texture in the van der Waals layered magnet CrSBr. Nat. Commun. 13, 5420 (2022). PubMed DOI PMC

Hall, S. J., Budden, P. J., Zats, A. & Sfeir, M. Y. Optimizing the sensitivity of high repetition rate broadband transient optical spectroscopy with modified shot-to-shot detection. Rev. Sci. Instrum. 94, 043005 (2023). PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...