Magnetically confined surface and bulk excitons in a layered antiferromagnet

. 2025 Mar ; 24 (3) : 391-398. [epub] 20250219

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39972108

Grantová podpora
DE-AC36-08GO28308 DOE | SC | Basic Energy Sciences (BES)
DE-SC0019443 DOE | SC | Basic Energy Sciences (BES)

Odkazy

PubMed 39972108
DOI 10.1038/s41563-025-02129-6
PII: 10.1038/s41563-025-02129-6
Knihovny.cz E-zdroje

The discovery of two-dimensional van der Waals magnets has greatly expanded our ability to create and control nanoscale quantum phases. A unique capability emerges when a two-dimensional magnet is also a semiconductor that features tightly bound excitons with large oscillator strengths that fundamentally determine the optical response and are tunable with magnetic fields. Here we report a previously unidentified type of optical excitation-a magnetic surface exciton-enabled by the antiferromagnetic spin correlations that confine excitons to the surface of CrSBr. Magnetic surface excitons exhibit stronger Coulomb attraction, leading to a higher binding energy than excitons confined in bulk layers, and profoundly alter the optical response of few-layer crystals. Distinct magnetic confinement of surface and bulk excitons is established by layer- and temperature-dependent exciton reflection spectroscopy and corroborated by ab initio many-body perturbation theory calculations. By quenching interlayer excitonic interactions, the antiferromagnetic order of CrSBr strictly confines the bound electron-hole pairs within the same layer, regardless of the total number of layers. Our work unveils unique confined excitons in a layered antiferromagnet, highlighting magnetic interactions as a vital approach for nanoscale quantum confinement, from few layers to the bulk limit.

Zobrazit více v PubMed

Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017). PubMed DOI

Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017). PubMed DOI

Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018). PubMed DOI

Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019). PubMed DOI

Mak, K. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 1, 646–661 (2019). DOI

Huang, B. et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020). PubMed DOI

Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS PubMed DOI

Splendiani, A. et al. Emerging photoluminescence in monolayer MoS PubMed DOI

Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018). DOI

Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nano 7, 699–712 (2012). DOI

Mueller, T. & Malic, E. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Mater. Appl. 2, 29 (2018). DOI

Kang, S. et al. Coherent many-body exciton in van der Waals antiferromagnet NiPS PubMed DOI

Wilson, N. P. et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 20, 1657–1662 (2021). PubMed DOI

Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Nano Lett. 21, 3511–3517 (2021). PubMed DOI

Chenet, D. A. et al. In-plane anisotropy in mono- and few-layer ReS PubMed DOI

Liu, E. et al. Integrated digital inverters based on two-dimensional anisotropic ReS PubMed DOI

Wang, X. et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nano 10, 517–521 (2015). DOI

Wang, X. et al. Spin-induced linear polarization of photoluminescence in antiferromagnetic van der Waals crystals. Nat. Mater. 20, 964–970 (2021). PubMed DOI

Hwangbo, K. et al. Highly anisotropic excitons and multiple phonon bound states in a van der Waals antiferromagnetic insulator. Nat. Nano 16, 655–660 (2021). DOI

Zhou, L. et al. Unconventional excitonic states with phonon sidebands in layered silicon diphosphide. Nat. Mater. 21, 773–778 (2022). PubMed DOI PMC

Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018). PubMed DOI

Song, Q. et al. Evidence for a single-layer van der Waals multiferroic. Nature 602, 601–605 (2022). PubMed DOI

Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013). PubMed DOI

Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019). PubMed DOI

Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS PubMed DOI

Zhang, G. et al. Determination of layer-dependent exciton binding energies in few-layer black phosphorus. Sci. Adv. 4, eaap9977 (2018). PubMed DOI PMC

Spataru, C. D., Ismail-Beigi, S., Benedict, L. X. & Louie, S. G. Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 92, 077402 (2004). PubMed DOI

Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005). PubMed DOI

Thureja, D. et al. Electrically tunable quantum confinement of neutral excitons. Nature 606, 298–304 (2022). PubMed DOI

Dirnberger, F. et al. Quasi-1D exciton channels in strain-engineered 2D materials. Sci. Adv. 7, eabj3066 (2021). PubMed DOI PMC

Wang, Q. et al. Highly polarized single photons from strain-induced quasi-1D localized excitons in WSe PubMed DOI PMC

Bai, Y. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020). PubMed DOI

Wang, P. et al. One-dimensional Luttinger liquids in a two-dimensional moiré lattice. Nature 605, 57–62 (2022). PubMed DOI

Li, W., Lu, X., Dubey, S., Devenica, L. & Srivastava, A. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 19, 624–629 (2020). PubMed DOI

Mehio, O. et al. A Hubbard exciton fluid in a photo-doped antiferromagnetic Mott insulator. Nat. Phys. 19, 1876–1882 (2023). DOI

Turunen, M. et al. Quantum photonics with layered 2D materials. Nat. Rev. Phys. 4, 219–236 (2022). DOI

Montblanch, A. R.-P., Barbone, M., Aharonovich, I., Atatüre, M. & Ferrari, A. C. Layered materials as a platform for quantum technologies. Nat. Nano 18, 555–571 (2023). DOI

Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature 609, 282–286 (2022). PubMed DOI

Dirnberger, F. et al. Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons. Nature 620, 533–537 (2023). PubMed DOI

Wang, T. et al. Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime. Nat. Commun. 14, 5966 (2023). PubMed DOI PMC

Cenker, J. et al. Reversible strain-induced magnetic phase transition in a van der Waals magnet. Nat. Nano 17, 256–261 (2022). DOI

Tabataba-Vakili, F. et al. Doping-control of excitons and magnetism in few-layer CrSBr. Nat. Commun. 15, 4735 (2024). PubMed DOI PMC

Telford, E. J. et al. Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater. 32, 2003240 (2020). DOI

López-Paz, S. A. et al. Dynamic magnetic crossover at the origin of the hidden-order in van der Waals antiferromagnet CrSBr. Nat. Commun. 13, 4745 (2022). PubMed DOI PMC

Scheie, A. et al. Spin waves and magnetic exchange Hamiltonian in CrSBr. Adv. Sci. 9, 2202467 (2022). DOI

Boix-Constant, C. et al. Probing the spin dimensionality in single-layer CrSBr van der Waals heterostructures by magneto-transport measurements. Adv. Mater. 34, 2204940 (2022). DOI

Wu, F. et al. Quasi-1D electronic transport in a 2D magnetic semiconductor. Adv. Mater. 34, 2109759 (2022). DOI

Klein, J. et al. The bulk van der Waals layered magnet CrSBr is a quasi-1D material. ACS Nano 17, 5316–5328 (2023). PubMed DOI

Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018). PubMed DOI

Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018). PubMed DOI

Wang, Z. et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI PubMed DOI PMC

Shinada, M. & Sugano, S. Interband optical transitions in extremely anisotropic semiconductors. I. Bound and unbound exciton absorption. J. Phys. Soc. Jpn 21, 1936–1946 (1966). DOI

Keldysh, L. V. Coulomb interaction in thin semiconductor and semimetal films. JETP Lett. 29, 658 (1979).

Deslippe, J. et al. Electron–hole interaction in carbon nanotubes: novel screening and exciton excitation spectra. Nano Lett. 9, 1330–1334 (2009). PubMed DOI

Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS PubMed DOI

Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014). PubMed DOI

Raja, A. et al. Dielectric disorder in two-dimensional materials. Nat. Nanotechnol. 14, 832–837 (2019). PubMed DOI

O’Donnell, K. P. & Chen, X. Temperature dependence of semiconductor band gaps. Appl. Phys. Lett. 58, 2924–2926 (1991). DOI

Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013). PubMed DOI

Cadiz, F. et al. Excitonic linewidth approaching the homogeneous limit in MoS

Onga, M. et al. Antiferromagnet–semiconductor van der Waals heterostructures: interlayer interplay of exciton with magnetic ordering. Nano Lett. 20, 4625–4630 (2020). PubMed DOI

Tschudin, M. A. et al. Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr. Nat. Commun. 15, 6005 (2024). PubMed DOI PMC

Rudin, S., Reinecke, T. L. & Segall, B. Temperature-dependent exciton linewidths in semiconductors. Phys. Rev. B 42, 11218–11231 (1990). DOI

Selig, M. et al. Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides. Nat. Commun. 7, 13279 (2016). PubMed DOI PMC

Dey, P. et al. Optical coherence in atomic-monolayer transition-metal dichalcogenides limited by electron-phonon interactions. Phys. Rev. Lett. 116, 127402 (2016). PubMed DOI

Guo, X. et al. ‘Extraordinary’ phase transition revealed in a van der Waals antiferromagnet. Preprint at https://arxiv.org/abs/2309.01047 (2023).

Telford, E. J. et al. Coupling between magnetic order and charge transport in a two-dimensional magnetic semiconductor. Nat. Mater. 21, 754–760 (2022). PubMed DOI

Liu, W. et al. A three-stage magnetic phase transition revealed in ultrahigh-quality van der Waals bulk magnet CrSBr. ACS Nano 16, 15917–15926 (2022). PubMed DOI

Ghannadzadeh, S. et al. Simultaneous loss of interlayer coherence and long-range magnetism in quasi-two-dimensional PdCrO PubMed DOI PMC

Zhang, H. et al. Cavity-enhanced linear dichroism in a van der Waals antiferromagnet. Nat. Photon. 16, 311–317 (2022). DOI

Kim, S. Y. et al. Charge-spin correlation in van der Waals antiferromagnet NiPS PubMed DOI

Ruta, F. L. et al. Hyperbolic exciton polaritons in a van der Waals magnet. Nat. Commun. 14, 8261 (2023). PubMed DOI PMC

Acharya, S. et al. A theory for colors of strongly correlated electronic systems. Nat. Commun. 14, 5565 (2023). PubMed DOI PMC

Huang, Y. et al. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 9, 10612–10620 (2015). PubMed DOI

Yang, H. U. et al. Optical dielectric function of silver. Phys. Rev. B 91, 235137 (2015). DOI

van Schilfgaarde, M., Kotani, T. & Faleev, S. Quasiparticle self-consistent GW theory. Phys. Rev. Lett. 96, 226402 (2006). PubMed DOI

Cunningham, B., Grüning, M., Azarhoosh, P., Pashov, D. & van Schilfgaarde, M. Effect of ladder diagrams on optical absorption spectra in a quasiparticle self-consistent GW framework. Phys. Rev. Mater. 2, 034603 (2018). DOI

Cunningham, B., Grüning, M., Pashov, D. & van Schilfgaarde, M. QSGŴ: quasiparticle self-consistent GW with ladder diagrams in W. Phys. Rev. B 108, 165104 (2023). DOI

Ismail-Beigi, S. Justifying quasiparticle self-consistent schemes via gradient optimization in Baym–Kadanoff theory. J. Phys. Condens. Matter 29, 385501 (2017). PubMed DOI

Acharya, S. et al. Importance of charge self-consistency in first-principles description of strongly correlated systems. npj Comput. Mater. 7, 208 (2021). DOI

Acharya, S. et al. Real- and momentum-space description of the excitons in bulk and monolayer chromium tri-halides. npj 2D Mater. Appl. 6, 33 (2022). DOI

Zunger, A., Wei, S.-H., Ferreira, L. G. & Bernard, J. E. Special quasirandom structures. Phys. Rev. Lett. 65, 353–356 (1990). PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Magnon-mediated exciton-exciton interaction in a van der Waals antiferromagnet

. 2025 Mar 21 ; () : . [epub] 20250321

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...