Strong Exciton-Phonon Coupling as a Fingerprint of Magnetic Ordering in van der Waals Layered CrSBr

. 2024 Jan 30 ; 18 (4) : 2898-2905. [epub] 20240119

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38240736

The layered, air-stable van der Waals antiferromagnetic compound CrSBr exhibits pronounced coupling among its optical, electronic, and magnetic properties. As an example, exciton dynamics can be significantly influenced by lattice vibrations through exciton-phonon coupling. Using low-temperature photoluminescence spectroscopy, we demonstrate the effective coupling between excitons and phonons in nanometer-thick CrSBr. By careful analysis, we identify that the satellite peaks predominantly arise from the interaction between the exciton and an optical phonon with a frequency of 118 cm-1 (∼14.6 meV) due to the out-of-plane vibration of Br atoms. Power-dependent and temperature-dependent photoluminescence measurements support exciton-phonon coupling and indicate a coupling between magnetic and optical properties, suggesting the possibility of carrier localization in the material. The presence of strong coupling between the exciton and the lattice may have important implications for the design of light-matter interactions in magnetic semiconductors and provide insights into the exciton dynamics in CrSBr. This highlights the potential for exploiting exciton-phonon coupling to control the optical properties of layered antiferromagnetic materials.

Zobrazit více v PubMed

Toyozawa Y.; Hermanson J. Exciton-Phonon Bound State: A New Quasiparticle. Phys. Rev. Lett. 1968, 21 (24), 1637–1641. 10.1103/PhysRevLett.21.1637. DOI

Compaan A.; Cummins H. Z. Raman Scattering, Luminescence, and Exciton-Phonon Coupling in Cu2O. Phys. Rev. B 1972, 6 (12), 4753–4757. 10.1103/PhysRevB.6.4753. DOI

Baldini G.; Bosacchi A.; Bosacchi B. Exciton-Phonon Interaction in Alkali Halides. Phys. Rev. Lett. 1969, 23 (15), 846–848. 10.1103/PhysRevLett.23.846. DOI

Chen H.-Y.; Sangalli D.; Bernardi M. Exciton-Phonon Interaction and Relaxation Times from First Principles. Phys. Rev. Lett. 2020, 125 (10), 10740110.1103/PhysRevLett.125.107401. PubMed DOI

Xu K.-X.; Lai J.-M.; Gao Y.-F.; Song F.; Sun Y.-J.; Tan P.-H.; Zhang J. High-Order Raman Scattering Mediated by Self-Trapped Exciton in Halide Double Perovskite. Phys. Rev. B 2022, 106 (8), 08520510.1103/PhysRevB.106.085205. DOI

Tan Q.-H.; Li Y.-M.; Lai J.-M.; Sun Y.-J.; Zhang Z.; Song F.; Robert C.; Marie X.; Gao W.; Tan P.-H.; Zhang J. Quantum Interference between Dark-Excitons and Zone-Edged Acoustic Phonons in Few-Layer WS2. Nat. Commun. 2023, 14 (1), 88.10.1038/s41467-022-35714-3. PubMed DOI PMC

Lai J.-M.; Farooq M. U.; Sun Y.-J.; Tan P.-H.; Zhang J. Multiphonon Process in Mn-Doped ZnO Nanowires. Nano Lett. 2022, 22 (13), 5385–5391. 10.1021/acs.nanolett.2c01428. PubMed DOI

Carvalho B. R.; Malard L. M.; Alves J. M.; Fantini C.; Pimenta M. A. Symmetry-Dependent Exciton-Phonon Coupling in 2D and Bulk MoS2 Observed by Resonance Raman Scattering. Phys. Rev. Lett. 2015, 114 (13), 13640310.1103/PhysRevLett.114.136403. PubMed DOI

Reichardt S.; Wirtz L. Nonadiabatic Exciton-Phonon Coupling in Raman Spectroscopy of Layered Materials. Sci. Adv. 2020, 6 (32), eabb591510.1126/sciadv.abb5915. PubMed DOI PMC

Göser O.; Paul W.; Kahle H. G. Magnetic Properties of CrSBr. J. Magn. Magn. Mater. 1990, 92 (1), 129–136. 10.1016/0304-8853(90)90689-N. DOI

Jiang Z.; Wang P.; Xing J.; Jiang X.; Zhao J. Screening and Design of Novel 2D Ferromagnetic Materials with High Curie Temperature above Room Temperature. ACS Appl. Mater. Interfaces 2018, 10 (45), 39032–39039. 10.1021/acsami.8b14037. PubMed DOI

Wang C.; Zhou X.; Zhou L.; Tong N.-H.; Lu Z.-Y.; Ji W. A Family of High-Temperature Ferromagnetic Monolayers with Locked Spin-Dichroism-Mobility Anisotropy: MnNX and CrCX (X = Cl, Br, I; C = S, Se, Te). Sci. Bull. 2019, 64 (5), 293–300. 10.1016/j.scib.2019.02.011. PubMed DOI

Torres K.; Kuc A.; Maschio L.; Pham T.; Reidy K.; Dekanovsky L.; Sofer Z.; Ross F. M.; Klein J. Probing Defects and Spin-Phonon Coupling in CrSBr via Resonant Raman Scattering. Adv. Funct. Mater. 2023, 33 (12), 221136610.1002/adfm.202211366. DOI

Guo Y.; Zhang Y.; Yuan S.; Wang B.; Wang J. Chromium Sulfide Halide Monolayers: Intrinsic Ferromagnetic Semiconductors with Large Spin Polarization and High Carrier Mobility. Nanoscale 2018, 10 (37), 18036–18042. 10.1039/C8NR06368K. PubMed DOI

Telford E. J.; Dismukes A. H.; Lee K.; Cheng M.; Wieteska A.; Bartholomew A. K.; Chen Y.-S.; Xu X.; Pasupathy A. N.; Zhu X.; Dean C. R.; Roy X. Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the van der Waals Semiconductor CrSBr. Adv. Mater. 2020, 32 (37), 200324010.1002/adma.202003240. PubMed DOI

Burch K. S.; Mandrus D.; Park J.-G. Magnetism in Two-Dimensional van der Waals Materials. Nature 2018, 563 (7729), 47–52. 10.1038/s41586-018-0631-z. PubMed DOI

Gong C.; Zhang X. Two-Dimensional Magnetic Crystals and Emergent Heterostructure Devices. Science 2019, 363 (6428), eaav445010.1126/science.aav4450. PubMed DOI

Li H.; Ruan S.; Zeng Y.-J. Intrinsic Van der Waals Magnetic Materials from Bulk to the 2D Limit: New Frontiers of Spintronics. Adv. Mater. 2019, 31 (27), 190006510.1002/adma.201900065. PubMed DOI

Mak K. F.; Shan J.; Ralph D. C. Probing and Controlling Magnetic States in 2D Layered Magnetic Materials. Nat. Rev. Phys. 2019, 1 (11), 646–661. 10.1038/s42254-019-0110-y. DOI

Wilson N. P.; Lee K.; Cenker J.; Xie K.; Dismukes A. H.; Telford E. J.; Fonseca J.; Sivakumar S.; Dean C.; Cao T.; Roy X.; Xu X.; Zhu X. Interlayer Electronic Coupling on Demand in a 2D Magnetic Semiconductor. Nat. Mater. 2021, 20 (12), 1657–1662. 10.1038/s41563-021-01070-8. PubMed DOI

Klein J.; Pingault B.; Florian M.; Heißenbüttel M.-C.; Steinhoff A.; Song Z.; Torres K.; Dirnberger F.; Curtis J. B.; Weile M.; Penn A.; Deilmann T.; Dana R.; Bushati R.; Quan J.; Luxa J.; Sofer Z.; Alù A.; Menon V. M.; Wurstbauer U.; Rohlfing M.; Narang P.; Lončar M.; Ross F. M. The Bulk van der Waals Layered Magnet CrSBr Is a Quasi-1D Material. ACS Nano 2023, 17 (6), 5316–5328. 10.1021/acsnano.2c07316. PubMed DOI

Wu F.; Gutiérrez-Lezama I.; López-Paz S. A.; Gibertini M.; Watanabe K.; Taniguchi T.; von Rohr F. O.; Ubrig N.; Morpurgo A. F. Quasi-1D Electronic Transport in a 2D Magnetic Semiconductor. Adv. Mater. 2022, 34 (16), 210975910.1002/adma.202109759. PubMed DOI

Pawbake A.; Pelini T.; Wilson N. P.; Mosina K.; Sofer Z.; Heid R.; Faugeras C. Raman Scattering Signatures of Strong Spin-Phonon Coupling in the Bulk Magnetic van der Waals Material CrSBr. Phys. Rev. B 2023, 107 (7), 07542110.1103/PhysRevB.107.075421. DOI

Long F.; Ghorbani-Asl M.; Mosina K.; Li Y.; Lin K.; Ganss F.; Hübner R.; Sofer Z.; Dirnberger F.; Kamra A.; Krasheninnikov A. V.; Prucnal S.; Helm M.; Zhou S. Ferromagnetic Interlayer Coupling in CrSBr Crystals Irradiated by Ions. Nano Lett. 2023, 23 (18), 8468–8473. 10.1021/acs.nanolett.3c01920. PubMed DOI PMC

Marques-Moros F.; Boix-Constant C.; Mañas-Valero S.; Canet-Ferrer J.; Coronado E. Interplay between Optical Emission and Magnetism in the van der Waals Magnetic Semiconductor CrSBr in the Two-Dimensional Limit. ACS Nano 2023, 17 (14), 13224–13231. 10.1021/acsnano.3c00375. PubMed DOI PMC

Klein J.; Song Z.; Pingault B.; Dirnberger F.; Chi H.; Curtis J. B.; Dana R.; Bushati R.; Quan J.; Dekanovsky L.; Sofer Z.; Alù A.; Menon V. M.; Moodera J. S.; Lončar M.; Narang P.; Ross F. M. Sensing the Local Magnetic Environment through Optically Active Defects in a Layered Magnetic Semiconductor. ACS Nano 2023, 17 (1), 288–299. 10.1021/acsnano.2c07655. PubMed DOI

Bianchi M.; Acharya S.; Dirnberger F.; Klein J.; Pashov D.; Mosina K.; Sofer Z.; Rudenko A. N.; Katsnelson M. I.; van Schilfgaarde M.; Rösner M.; Hofmann P. Paramagnetic Electronic Structure of CrSBr: Comparison between Ab Initio GW Theory and Angle-Resolved Photoemission Spectroscopy. Phys. Rev. B 2023, 107 (23), 23510710.1103/PhysRevB.107.235107. DOI

Lee K.; Dismukes A. H.; Telford E. J.; Wiscons R. A.; Wang J.; Xu X.; Nuckolls C.; Dean C. R.; Roy X.; Zhu X. Magnetic Order and Symmetry in the 2D Semiconductor CrSBr. Nano Lett. 2021, 21 (8), 3511–3517. 10.1021/acs.nanolett.1c00219. PubMed DOI

Dirnberger F.; Quan J.; Bushati R.; Diederich G. M.; Florian M.; Klein J.; Mosina K.; Sofer Z.; Xu X.; Kamra A.; García-Vidal F. J.; Alù A.; Menon V. M. Magneto-Optics in a van der Waals Magnet Tuned by Self-Hybridized Polaritons. Nature 2023, 620 (7974), 533–537. 10.1038/s41586-023-06275-2. PubMed DOI

Minsky M. S.; Fleischer S. B.; Abare A. C.; Bowers J. E.; Hu E. L.; Keller S.; Denbaars S. P. Characterization of High-Quality InGaN/GaN Multiquantum Wells with Time-Resolved Photoluminescence. Appl. Phys. Lett. 1998, 72 (9), 1066–1068. 10.1063/1.120966. DOI

Chichibu S.; Azuhata T.; Sota T.; Nakamura S. Spontaneous Emission of Localized Excitons in InGaN Single and Multiquantum Well Structures. Appl. Phys. Lett. 1996, 69 (27), 4188–4190. 10.1063/1.116981. DOI

Chichibu S. F.; Azuhata T.; Sugiyama M.; Kitamura T.; Ishida Y.; Okumura H.; Nakanishi H.; Sota T.; Mukai T. Optical and Structural Studies in InGaN Quantum Well Structure Laser Diodes. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2001, 19 (6), 2177–2183. 10.1116/1.1418404. DOI

Linhart W. M.; Rybak M.; Birowska M.; Scharoch P.; Mosina K.; Mazanek V.; Kaczorowski D.; Sofer Z.; Kudrawiec R. Optical Markers of Magnetic Phase Transition in CrSBr. J. Mater. Chem. C 2023, 11 (25), 8423–8430. 10.1039/D3TC01216F. DOI

Rudenko A. N.; Rösner M.; Katsnelson M. I. Dielectric Tunability of Magnetic Properties in Orthorhombic Ferromagnetic Monolayer CrSBr. Npj Comput. Mater. 2023, 9 (1), 1–10. 10.1038/s41524-023-01050-3. DOI

López-Paz S. A.; Guguchia Z.; Pomjakushin V. Y.; Witteveen C.; Cervellino A.; Luetkens H.; Casati N.; Morpurgo A. F.; von Rohr F. O. Dynamic Magnetic Crossover at the Origin of the Hidden-Order in van der Waals Antiferromagnet CrSBr. Nat. Commun. 2022, 13 (1), 4745.10.1038/s41467-022-32290-4. PubMed DOI PMC

Hu S.; Ye J.; Liu R.; Zhang X. Valley Dynamics of Different Excitonic States in Monolayer WSe2 Grown by Molecular Beam Epitaxy. J. Semicond. 2022, 43 (8), 08200110.1088/1674-4926/43/8/082001. DOI

Jung J.-W.; Choi H.-S.; Lee Y.-J.; Taniguchi T.; Watanabe K.; Choi M.-Y.; Jang J. H.; Chung H.-S.; Kim D.; Kim Y.; Cho C.-H.. Hexagonal Boron Nitride Encapsulation Passivates Defects in 2D Materials. arXiv October 3, 2022,10.48550/arXiv.2210.00922. DOI

Schmidt T.; Lischka K.; Zulehner W. Excitation-Power Dependence of the near-Band-Edge Photoluminescence of Semiconductors. Phys. Rev. B 1992, 45 (16), 8989–8994. 10.1103/PhysRevB.45.8989. PubMed DOI

Kuechle T.; Klimmer S.; Lapteva M.; Hamzayev T.; George A.; Turchanin A.; Fritz T.; Ronning C.; Gruenewald M.; Soavi G. Tuning Exciton Recombination Rates in Doped Transition Metal Dichalcogenides. Opt. Mater. X 2021, 12, 10009710.1016/j.omx.2021.100097. DOI

Tongay S.; Zhou J.; Ataca C.; Liu J.; Kang J. S.; Matthews T. S.; You L.; Li J.; Grossman J. C.; Wu J. Broad-Range Modulation of Light Emission in Two-Dimensional Semiconductors by Molecular Physisorption Gating. Nano Lett. 2013, 13 (6), 2831–2836. 10.1021/nl4011172. PubMed DOI

Antonius G.; Louie S. G. Theory of Exciton-Phonon Coupling. Phys. Rev. B 2022, 105 (8), 08511110.1103/PhysRevB.105.085111. DOI

Varshni Y. P. Temperature Dependence of the Energy Gap in Semiconductors. Physica 1967, 34 (1), 149–154. 10.1016/0031-8914(67)90062-6. DOI

Singh S. D.; Porwal S.; Sharma T. K.; Rustagi K. C. Temperature Dependence of the Lowest Excitonic Transition for an InAs Ultrathin Quantum Well. J. Appl. Phys. 2006, 99 (6), 06351710.1063/1.2184431. DOI

Cho Y.-H.; Gainer G. H.; Fischer A. J.; Song J. J.; Keller S.; Mishra U. K.; DenBaars S. P. S-Shaped” Temperature-Dependent Emission Shift and Carrier Dynamics in InGaN/GaN Multiple Quantum Wells. Appl. Phys. Lett. 1998, 73 (10), 1370–1372. 10.1063/1.122164. DOI

Dixit V. K.; Porwal S.; Singh S. D.; Sharma T. K.; Ghosh S.; Oak S. M. A Versatile Phenomenological Model for the S-Shaped Temperature Dependence of Photoluminescence Energy for an Accurate Determination of the Exciton Localization Energy in Bulk and Quantum Well Structures. J. Phys. Appl. Phys. 2014, 47 (6), 06510310.1088/0022-3727/47/6/065103. DOI

Telford E. J.; Dismukes A. H.; Dudley R. L.; Wiscons R. A.; Lee K.; Yu J.; Shabani S.; Scheie A.; Watanabe K.; Taniguchi T.; Xiao D.; Pasupathy A. N.; Nuckolls C.; Zhu X.; Dean C. R.; Roy X.. Hidden Low-Temperature Magnetic Order Revealed through Magnetotransport in Monolayer CrSBr. arXiv June 15, 2021,10.48550/arXiv.2106.08471. DOI

Lu T.; Ma Z.; Du C.; Fang Y.; Wu H.; Jiang Y.; Wang L.; Dai L.; Jia H.; Liu W.; Chen H. Temperature-Dependent Photoluminescence in Light-Emitting Diodes. Sci. Rep. 2014, 4 (1), 6131.10.1038/srep06131. PubMed DOI PMC

Wang Y.; He C.; Tan Q.; Tang Z.; Huang L.; Liu L.; Yin J.; Jiang Y.; Wang X.; Pan A. Exciton–Phonon Coupling in Two-Dimensional Layered (BA)2PbI4 Perovskite Microplates. RSC Adv. 2023, 13 (9), 5893–5899. 10.1039/D2RA06401D. PubMed DOI PMC

Zhao Z.; Zhong M.; Zhou W.; Peng Y.; Yin Y.; Tang D.; Zou B. Simultaneous Triplet Exciton–Phonon and Exciton–Photon Photoluminescence in the Individual Weak Confinement CsPbBr3 Micro/Nanowires. J. Phys. Chem. C 2019, 123 (41), 25349–25358. 10.1021/acs.jpcc.9b06643. DOI

Shibata K.; Yan J.; Hazama Y.; Chen S.; Akiyama H. Exciton Localization and Enhancement of the Exciton–LO Phonon Interaction in a CsPbBr3 Single Crystal. J. Phys. Chem. C 2020, 124 (33), 18257–18263. 10.1021/acs.jpcc.0c06254. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Magnon-mediated exciton-exciton interaction in a van der Waals antiferromagnet

. 2025 Jul ; 24 (7) : 1027-1033. [epub] 20250321

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...