Strong Exciton-Phonon Coupling as a Fingerprint of Magnetic Ordering in van der Waals Layered CrSBr
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38240736
PubMed Central
PMC10832030
DOI
10.1021/acsnano.3c07236
Knihovny.cz E-zdroje
- Klíčová slova
- CrSBr, antiferromagnetic semiconductor, exciton−phonon coupling, exciton−photon coupling, van der Waals materials,
- Publikační typ
- časopisecké články MeSH
The layered, air-stable van der Waals antiferromagnetic compound CrSBr exhibits pronounced coupling among its optical, electronic, and magnetic properties. As an example, exciton dynamics can be significantly influenced by lattice vibrations through exciton-phonon coupling. Using low-temperature photoluminescence spectroscopy, we demonstrate the effective coupling between excitons and phonons in nanometer-thick CrSBr. By careful analysis, we identify that the satellite peaks predominantly arise from the interaction between the exciton and an optical phonon with a frequency of 118 cm-1 (∼14.6 meV) due to the out-of-plane vibration of Br atoms. Power-dependent and temperature-dependent photoluminescence measurements support exciton-phonon coupling and indicate a coupling between magnetic and optical properties, suggesting the possibility of carrier localization in the material. The presence of strong coupling between the exciton and the lattice may have important implications for the design of light-matter interactions in magnetic semiconductors and provide insights into the exciton dynamics in CrSBr. This highlights the potential for exploiting exciton-phonon coupling to control the optical properties of layered antiferromagnetic materials.
Zobrazit více v PubMed
Toyozawa Y.; Hermanson J. Exciton-Phonon Bound State: A New Quasiparticle. Phys. Rev. Lett. 1968, 21 (24), 1637–1641. 10.1103/PhysRevLett.21.1637. DOI
Compaan A.; Cummins H. Z. Raman Scattering, Luminescence, and Exciton-Phonon Coupling in Cu2O. Phys. Rev. B 1972, 6 (12), 4753–4757. 10.1103/PhysRevB.6.4753. DOI
Baldini G.; Bosacchi A.; Bosacchi B. Exciton-Phonon Interaction in Alkali Halides. Phys. Rev. Lett. 1969, 23 (15), 846–848. 10.1103/PhysRevLett.23.846. DOI
Chen H.-Y.; Sangalli D.; Bernardi M. Exciton-Phonon Interaction and Relaxation Times from First Principles. Phys. Rev. Lett. 2020, 125 (10), 10740110.1103/PhysRevLett.125.107401. PubMed DOI
Xu K.-X.; Lai J.-M.; Gao Y.-F.; Song F.; Sun Y.-J.; Tan P.-H.; Zhang J. High-Order Raman Scattering Mediated by Self-Trapped Exciton in Halide Double Perovskite. Phys. Rev. B 2022, 106 (8), 08520510.1103/PhysRevB.106.085205. DOI
Tan Q.-H.; Li Y.-M.; Lai J.-M.; Sun Y.-J.; Zhang Z.; Song F.; Robert C.; Marie X.; Gao W.; Tan P.-H.; Zhang J. Quantum Interference between Dark-Excitons and Zone-Edged Acoustic Phonons in Few-Layer WS2. Nat. Commun. 2023, 14 (1), 88.10.1038/s41467-022-35714-3. PubMed DOI PMC
Lai J.-M.; Farooq M. U.; Sun Y.-J.; Tan P.-H.; Zhang J. Multiphonon Process in Mn-Doped ZnO Nanowires. Nano Lett. 2022, 22 (13), 5385–5391. 10.1021/acs.nanolett.2c01428. PubMed DOI
Carvalho B. R.; Malard L. M.; Alves J. M.; Fantini C.; Pimenta M. A. Symmetry-Dependent Exciton-Phonon Coupling in 2D and Bulk MoS2 Observed by Resonance Raman Scattering. Phys. Rev. Lett. 2015, 114 (13), 13640310.1103/PhysRevLett.114.136403. PubMed DOI
Reichardt S.; Wirtz L. Nonadiabatic Exciton-Phonon Coupling in Raman Spectroscopy of Layered Materials. Sci. Adv. 2020, 6 (32), eabb591510.1126/sciadv.abb5915. PubMed DOI PMC
Göser O.; Paul W.; Kahle H. G. Magnetic Properties of CrSBr. J. Magn. Magn. Mater. 1990, 92 (1), 129–136. 10.1016/0304-8853(90)90689-N. DOI
Jiang Z.; Wang P.; Xing J.; Jiang X.; Zhao J. Screening and Design of Novel 2D Ferromagnetic Materials with High Curie Temperature above Room Temperature. ACS Appl. Mater. Interfaces 2018, 10 (45), 39032–39039. 10.1021/acsami.8b14037. PubMed DOI
Wang C.; Zhou X.; Zhou L.; Tong N.-H.; Lu Z.-Y.; Ji W. A Family of High-Temperature Ferromagnetic Monolayers with Locked Spin-Dichroism-Mobility Anisotropy: MnNX and CrCX (X = Cl, Br, I; C = S, Se, Te). Sci. Bull. 2019, 64 (5), 293–300. 10.1016/j.scib.2019.02.011. PubMed DOI
Torres K.; Kuc A.; Maschio L.; Pham T.; Reidy K.; Dekanovsky L.; Sofer Z.; Ross F. M.; Klein J. Probing Defects and Spin-Phonon Coupling in CrSBr via Resonant Raman Scattering. Adv. Funct. Mater. 2023, 33 (12), 221136610.1002/adfm.202211366. DOI
Guo Y.; Zhang Y.; Yuan S.; Wang B.; Wang J. Chromium Sulfide Halide Monolayers: Intrinsic Ferromagnetic Semiconductors with Large Spin Polarization and High Carrier Mobility. Nanoscale 2018, 10 (37), 18036–18042. 10.1039/C8NR06368K. PubMed DOI
Telford E. J.; Dismukes A. H.; Lee K.; Cheng M.; Wieteska A.; Bartholomew A. K.; Chen Y.-S.; Xu X.; Pasupathy A. N.; Zhu X.; Dean C. R.; Roy X. Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the van der Waals Semiconductor CrSBr. Adv. Mater. 2020, 32 (37), 200324010.1002/adma.202003240. PubMed DOI
Burch K. S.; Mandrus D.; Park J.-G. Magnetism in Two-Dimensional van der Waals Materials. Nature 2018, 563 (7729), 47–52. 10.1038/s41586-018-0631-z. PubMed DOI
Gong C.; Zhang X. Two-Dimensional Magnetic Crystals and Emergent Heterostructure Devices. Science 2019, 363 (6428), eaav445010.1126/science.aav4450. PubMed DOI
Li H.; Ruan S.; Zeng Y.-J. Intrinsic Van der Waals Magnetic Materials from Bulk to the 2D Limit: New Frontiers of Spintronics. Adv. Mater. 2019, 31 (27), 190006510.1002/adma.201900065. PubMed DOI
Mak K. F.; Shan J.; Ralph D. C. Probing and Controlling Magnetic States in 2D Layered Magnetic Materials. Nat. Rev. Phys. 2019, 1 (11), 646–661. 10.1038/s42254-019-0110-y. DOI
Wilson N. P.; Lee K.; Cenker J.; Xie K.; Dismukes A. H.; Telford E. J.; Fonseca J.; Sivakumar S.; Dean C.; Cao T.; Roy X.; Xu X.; Zhu X. Interlayer Electronic Coupling on Demand in a 2D Magnetic Semiconductor. Nat. Mater. 2021, 20 (12), 1657–1662. 10.1038/s41563-021-01070-8. PubMed DOI
Klein J.; Pingault B.; Florian M.; Heißenbüttel M.-C.; Steinhoff A.; Song Z.; Torres K.; Dirnberger F.; Curtis J. B.; Weile M.; Penn A.; Deilmann T.; Dana R.; Bushati R.; Quan J.; Luxa J.; Sofer Z.; Alù A.; Menon V. M.; Wurstbauer U.; Rohlfing M.; Narang P.; Lončar M.; Ross F. M. The Bulk van der Waals Layered Magnet CrSBr Is a Quasi-1D Material. ACS Nano 2023, 17 (6), 5316–5328. 10.1021/acsnano.2c07316. PubMed DOI
Wu F.; Gutiérrez-Lezama I.; López-Paz S. A.; Gibertini M.; Watanabe K.; Taniguchi T.; von Rohr F. O.; Ubrig N.; Morpurgo A. F. Quasi-1D Electronic Transport in a 2D Magnetic Semiconductor. Adv. Mater. 2022, 34 (16), 210975910.1002/adma.202109759. PubMed DOI
Pawbake A.; Pelini T.; Wilson N. P.; Mosina K.; Sofer Z.; Heid R.; Faugeras C. Raman Scattering Signatures of Strong Spin-Phonon Coupling in the Bulk Magnetic van der Waals Material CrSBr. Phys. Rev. B 2023, 107 (7), 07542110.1103/PhysRevB.107.075421. DOI
Long F.; Ghorbani-Asl M.; Mosina K.; Li Y.; Lin K.; Ganss F.; Hübner R.; Sofer Z.; Dirnberger F.; Kamra A.; Krasheninnikov A. V.; Prucnal S.; Helm M.; Zhou S. Ferromagnetic Interlayer Coupling in CrSBr Crystals Irradiated by Ions. Nano Lett. 2023, 23 (18), 8468–8473. 10.1021/acs.nanolett.3c01920. PubMed DOI PMC
Marques-Moros F.; Boix-Constant C.; Mañas-Valero S.; Canet-Ferrer J.; Coronado E. Interplay between Optical Emission and Magnetism in the van der Waals Magnetic Semiconductor CrSBr in the Two-Dimensional Limit. ACS Nano 2023, 17 (14), 13224–13231. 10.1021/acsnano.3c00375. PubMed DOI PMC
Klein J.; Song Z.; Pingault B.; Dirnberger F.; Chi H.; Curtis J. B.; Dana R.; Bushati R.; Quan J.; Dekanovsky L.; Sofer Z.; Alù A.; Menon V. M.; Moodera J. S.; Lončar M.; Narang P.; Ross F. M. Sensing the Local Magnetic Environment through Optically Active Defects in a Layered Magnetic Semiconductor. ACS Nano 2023, 17 (1), 288–299. 10.1021/acsnano.2c07655. PubMed DOI
Bianchi M.; Acharya S.; Dirnberger F.; Klein J.; Pashov D.; Mosina K.; Sofer Z.; Rudenko A. N.; Katsnelson M. I.; van Schilfgaarde M.; Rösner M.; Hofmann P. Paramagnetic Electronic Structure of CrSBr: Comparison between Ab Initio GW Theory and Angle-Resolved Photoemission Spectroscopy. Phys. Rev. B 2023, 107 (23), 23510710.1103/PhysRevB.107.235107. DOI
Lee K.; Dismukes A. H.; Telford E. J.; Wiscons R. A.; Wang J.; Xu X.; Nuckolls C.; Dean C. R.; Roy X.; Zhu X. Magnetic Order and Symmetry in the 2D Semiconductor CrSBr. Nano Lett. 2021, 21 (8), 3511–3517. 10.1021/acs.nanolett.1c00219. PubMed DOI
Dirnberger F.; Quan J.; Bushati R.; Diederich G. M.; Florian M.; Klein J.; Mosina K.; Sofer Z.; Xu X.; Kamra A.; García-Vidal F. J.; Alù A.; Menon V. M. Magneto-Optics in a van der Waals Magnet Tuned by Self-Hybridized Polaritons. Nature 2023, 620 (7974), 533–537. 10.1038/s41586-023-06275-2. PubMed DOI
Minsky M. S.; Fleischer S. B.; Abare A. C.; Bowers J. E.; Hu E. L.; Keller S.; Denbaars S. P. Characterization of High-Quality InGaN/GaN Multiquantum Wells with Time-Resolved Photoluminescence. Appl. Phys. Lett. 1998, 72 (9), 1066–1068. 10.1063/1.120966. DOI
Chichibu S.; Azuhata T.; Sota T.; Nakamura S. Spontaneous Emission of Localized Excitons in InGaN Single and Multiquantum Well Structures. Appl. Phys. Lett. 1996, 69 (27), 4188–4190. 10.1063/1.116981. DOI
Chichibu S. F.; Azuhata T.; Sugiyama M.; Kitamura T.; Ishida Y.; Okumura H.; Nakanishi H.; Sota T.; Mukai T. Optical and Structural Studies in InGaN Quantum Well Structure Laser Diodes. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2001, 19 (6), 2177–2183. 10.1116/1.1418404. DOI
Linhart W. M.; Rybak M.; Birowska M.; Scharoch P.; Mosina K.; Mazanek V.; Kaczorowski D.; Sofer Z.; Kudrawiec R. Optical Markers of Magnetic Phase Transition in CrSBr. J. Mater. Chem. C 2023, 11 (25), 8423–8430. 10.1039/D3TC01216F. DOI
Rudenko A. N.; Rösner M.; Katsnelson M. I. Dielectric Tunability of Magnetic Properties in Orthorhombic Ferromagnetic Monolayer CrSBr. Npj Comput. Mater. 2023, 9 (1), 1–10. 10.1038/s41524-023-01050-3. DOI
López-Paz S. A.; Guguchia Z.; Pomjakushin V. Y.; Witteveen C.; Cervellino A.; Luetkens H.; Casati N.; Morpurgo A. F.; von Rohr F. O. Dynamic Magnetic Crossover at the Origin of the Hidden-Order in van der Waals Antiferromagnet CrSBr. Nat. Commun. 2022, 13 (1), 4745.10.1038/s41467-022-32290-4. PubMed DOI PMC
Hu S.; Ye J.; Liu R.; Zhang X. Valley Dynamics of Different Excitonic States in Monolayer WSe2 Grown by Molecular Beam Epitaxy. J. Semicond. 2022, 43 (8), 08200110.1088/1674-4926/43/8/082001. DOI
Jung J.-W.; Choi H.-S.; Lee Y.-J.; Taniguchi T.; Watanabe K.; Choi M.-Y.; Jang J. H.; Chung H.-S.; Kim D.; Kim Y.; Cho C.-H.. Hexagonal Boron Nitride Encapsulation Passivates Defects in 2D Materials. arXiv October 3, 2022,10.48550/arXiv.2210.00922. DOI
Schmidt T.; Lischka K.; Zulehner W. Excitation-Power Dependence of the near-Band-Edge Photoluminescence of Semiconductors. Phys. Rev. B 1992, 45 (16), 8989–8994. 10.1103/PhysRevB.45.8989. PubMed DOI
Kuechle T.; Klimmer S.; Lapteva M.; Hamzayev T.; George A.; Turchanin A.; Fritz T.; Ronning C.; Gruenewald M.; Soavi G. Tuning Exciton Recombination Rates in Doped Transition Metal Dichalcogenides. Opt. Mater. X 2021, 12, 10009710.1016/j.omx.2021.100097. DOI
Tongay S.; Zhou J.; Ataca C.; Liu J.; Kang J. S.; Matthews T. S.; You L.; Li J.; Grossman J. C.; Wu J. Broad-Range Modulation of Light Emission in Two-Dimensional Semiconductors by Molecular Physisorption Gating. Nano Lett. 2013, 13 (6), 2831–2836. 10.1021/nl4011172. PubMed DOI
Antonius G.; Louie S. G. Theory of Exciton-Phonon Coupling. Phys. Rev. B 2022, 105 (8), 08511110.1103/PhysRevB.105.085111. DOI
Varshni Y. P. Temperature Dependence of the Energy Gap in Semiconductors. Physica 1967, 34 (1), 149–154. 10.1016/0031-8914(67)90062-6. DOI
Singh S. D.; Porwal S.; Sharma T. K.; Rustagi K. C. Temperature Dependence of the Lowest Excitonic Transition for an InAs Ultrathin Quantum Well. J. Appl. Phys. 2006, 99 (6), 06351710.1063/1.2184431. DOI
Cho Y.-H.; Gainer G. H.; Fischer A. J.; Song J. J.; Keller S.; Mishra U. K.; DenBaars S. P. S-Shaped” Temperature-Dependent Emission Shift and Carrier Dynamics in InGaN/GaN Multiple Quantum Wells. Appl. Phys. Lett. 1998, 73 (10), 1370–1372. 10.1063/1.122164. DOI
Dixit V. K.; Porwal S.; Singh S. D.; Sharma T. K.; Ghosh S.; Oak S. M. A Versatile Phenomenological Model for the S-Shaped Temperature Dependence of Photoluminescence Energy for an Accurate Determination of the Exciton Localization Energy in Bulk and Quantum Well Structures. J. Phys. Appl. Phys. 2014, 47 (6), 06510310.1088/0022-3727/47/6/065103. DOI
Telford E. J.; Dismukes A. H.; Dudley R. L.; Wiscons R. A.; Lee K.; Yu J.; Shabani S.; Scheie A.; Watanabe K.; Taniguchi T.; Xiao D.; Pasupathy A. N.; Nuckolls C.; Zhu X.; Dean C. R.; Roy X.. Hidden Low-Temperature Magnetic Order Revealed through Magnetotransport in Monolayer CrSBr. arXiv June 15, 2021,10.48550/arXiv.2106.08471. DOI
Lu T.; Ma Z.; Du C.; Fang Y.; Wu H.; Jiang Y.; Wang L.; Dai L.; Jia H.; Liu W.; Chen H. Temperature-Dependent Photoluminescence in Light-Emitting Diodes. Sci. Rep. 2014, 4 (1), 6131.10.1038/srep06131. PubMed DOI PMC
Wang Y.; He C.; Tan Q.; Tang Z.; Huang L.; Liu L.; Yin J.; Jiang Y.; Wang X.; Pan A. Exciton–Phonon Coupling in Two-Dimensional Layered (BA)2PbI4 Perovskite Microplates. RSC Adv. 2023, 13 (9), 5893–5899. 10.1039/D2RA06401D. PubMed DOI PMC
Zhao Z.; Zhong M.; Zhou W.; Peng Y.; Yin Y.; Tang D.; Zou B. Simultaneous Triplet Exciton–Phonon and Exciton–Photon Photoluminescence in the Individual Weak Confinement CsPbBr3 Micro/Nanowires. J. Phys. Chem. C 2019, 123 (41), 25349–25358. 10.1021/acs.jpcc.9b06643. DOI
Shibata K.; Yan J.; Hazama Y.; Chen S.; Akiyama H. Exciton Localization and Enhancement of the Exciton–LO Phonon Interaction in a CsPbBr3 Single Crystal. J. Phys. Chem. C 2020, 124 (33), 18257–18263. 10.1021/acs.jpcc.0c06254. DOI
Magnon-mediated exciton-exciton interaction in a van der Waals antiferromagnet