Ultrafast Exciton Dynamics in the Atomically Thin van der Waals Magnet CrSBr
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38507732
PubMed Central
PMC11010225
DOI
10.1021/acs.nanolett.3c05010
Knihovny.cz E-zdroje
- Klíčová slova
- anisotropic excitons, atomically thin solids, femtosecond near-field microscopy, terahertz, ultrafast dynamics, van der Waals magnets,
- Publikační typ
- časopisecké články MeSH
Among atomically thin semiconductors, CrSBr stands out as both its bulk and monolayer forms host tightly bound, quasi-one-dimensional excitons in a magnetic environment. Despite its pivotal importance for solid-state research, the exciton lifetime has remained unknown. While terahertz polarization probing can directly trace all excitons, independently of interband selection rules, the corresponding large far-field foci substantially exceed the lateral sample dimensions. Here, we combine terahertz polarization spectroscopy with near-field microscopy to reveal a femtosecond decay of paramagnetic excitons in a monolayer of CrSBr, which is 30 times shorter than the bulk lifetime. We unveil low-energy fingerprints of bound and unbound electron-hole pairs in bulk CrSBr and extract the nonequilibrium dielectric function of the monolayer in a model-free manner. Our results demonstrate the first direct access to the ultrafast dielectric response of quasi-one-dimensional excitons in CrSBr, potentially advancing the development of quantum devices based on ultrathin van der Waals magnets.
Zobrazit více v PubMed
Huang B.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273. 10.1038/nature22391. PubMed DOI
Seyler K. L.; et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 2018, 14, 277–281. 10.1038/s41567-017-0006-7. DOI
Burch K. S.; Mandrus D.; Park J. G. Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47–52. 10.1038/s41586-018-0631-z. PubMed DOI
Kang S.; et al. Coherent many-body exciton in van der Waals antiferromagnet NiPS3. Nature 2020, 583, 785–789. 10.1038/s41586-020-2520-5. PubMed DOI
Hwangbo K.; et al. Highly anisotropic excitons and multiple phonon bound states in a van der Waals antiferromagnetic insulator. Nat. Nanotechnol. 2021, 16, 655–660. 10.1038/s41565-021-00873-9. PubMed DOI
Wang Q. H.; et al. The Magnetic Genome of Two-Dimensional van der Waals Materials. ACS Nano 2022, 16, 6960–7079. 10.1021/acsnano.1c09150. PubMed DOI PMC
Telford E. J.; et al. Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the van der Waals Semiconductor CrSBr. Adv. Mater. 2020, 32, 200324010.1002/adma.202003240. PubMed DOI
Dirnberger F.; et al. Spin-correlated exciton–polaritons in a van der Waals magnet. Nat. Nanotechnol. 2022, 17, 1060–1064. 10.1038/s41565-022-01204-2. PubMed DOI
Bae Y. J.; et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature 2022, 609, 282–286. 10.1038/s41586-022-05024-1. PubMed DOI
Diederich G. M.; et al. Tunable interaction between excitons and hybridized magnons in a layered semiconductor. Nat. Nanotechnol. 2023, 18, 23–28. 10.1038/s41565-022-01259-1. PubMed DOI
Dirnberger F.; et al. Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons. Nature 2023, 620, 533–538. 10.1038/s41586-023-06275-2. PubMed DOI
Lee K.; et al. Magnetic Order and Symmetry in the 2D Semiconductor CrSBr. Nano Lett. 2021, 21, 3511–3517. 10.1021/acs.nanolett.1c00219. PubMed DOI
Rizzo D. J.; et al. Visualizing Atomically Layered Magnetism in CrSBr. Adv. Mater. 2022, 34, 220100010.1002/adma.202201000. PubMed DOI
Wilson N. P.; et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 2021, 20, 1657–1662. 10.1038/s41563-021-01070-8. PubMed DOI
Klein J.; et al. Control of structure and spin texture in the van der Waals layered magnet CrSBr. Nat. Commun. 2022, 13, 5420.10.1038/s41467-022-32737-8. PubMed DOI PMC
Liu W.; et al. A Three-Stage Magnetic Phase Transition Revealed in Ultrahigh-Quality van der Waals Bulk Magnet CrSBr. ACS Nano 2022, 16, 15917–15926. 10.1021/acsnano.2c02896. PubMed DOI
Xu X.; et al. Strong Spin-Phonon Coupling in Two-Dimensional Magnetic Semiconductor CrSBr. J. Phys. Chem. C 2022, 126, 10574–10583. 10.1021/acs.jpcc.2c02742. DOI
Wu F.; et al. Quasi-1D Electronic Transport in a 2D Magnetic Semiconductor. Adv. Mater. 2022, 34, 210975910.1002/adma.202109759. PubMed DOI
Klein J.; et al. Sensing the Local Magnetic Environment through Optically Active Defects in a Layered Magnetic Semiconductor. ACS Nano 2023, 17, 288–299. 10.1021/acsnano.2c07655. PubMed DOI
Torres K.; et al. Probing Defects and Spin-Phonon Coupling in CrSBr via Resonant Raman Scattering. Adv. Funct. Mater. 2023, 33, 221136610.1002/adfm.202211366. DOI
Pawbake A.; et al. Raman scattering signatures of strong spin-phonon coupling in the bulk magnetic van der Waals material CrSBr. Phys. Rev. B 2023, 107, 07542110.1103/PhysRevB.107.075421. DOI
Klein J.; et al. The Bulk van der Waals Layered Magnet CrSBr is a Quasi-1D Material. ACS Nano 2023, 17, 5316–5328. 10.1021/acsnano.2c07316. PubMed DOI
Bianchi M.; et al. Paramagnetic Electronic Structure of CrSBr: Comparison between Ab Initio GW Theory and Angle-Resolved Photoemission Spectroscopy. Phys. Rev. B 2023, 107, 23510710.1103/PhysRevB.107.235107. DOI
Zheng Y.; et al. Paramagnon drag in high thermoelectric figure of merit Li-doped MnTe. Sci. Adv. 2019, 5, eaat946110.1126/sciadv.aat9461. PubMed DOI PMC
Wang L.; et al. Paramagnons and high-temperature superconductivity in a model family of cuprates. Nat. Commun. 2022, 13, 3163.10.1038/s41467-022-30918-z. PubMed DOI PMC
Leitenstorfer A.; et al. The 2023 terahertz science and technology roadmap. J. Phys. D. Appl. Phys. 2023, 56, 22300110.1088/1361-6463/acbe4c. DOI
Plankl M.; et al. Subcycle contact-free nanoscopy of ultrafast interlayer transport in atomically thin heterostructures. Nat. Photonics 2021, 15, 594–600. 10.1038/s41566-021-00813-y. DOI
Siday T.; et al. Ultrafast Nanoscopy of High-Density Exciton Phases in WSe2. Nano Lett. 2022, 22, 2561–2568. 10.1021/acs.nanolett.1c04741. PubMed DOI
Eisele M.; et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nat. Photonics 2014, 8, 841–845. 10.1038/nphoton.2014.225. DOI
Wagner M.; et al. Ultrafast and Nanoscale Plasmonic Phenomena in Exfoliated Graphene Revealed by Infrared Pump–Probe Nanoscopy. Nano Lett. 2014, 14, 894–900. 10.1021/nl4042577. PubMed DOI
Ni G. X.; et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photonics 2016, 10, 244–247. 10.1038/nphoton.2016.45. DOI
Huber M. A.; et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat. Nanotechnol. 2017, 12, 207–211. 10.1038/nnano.2016.261. PubMed DOI
Sternbach A. J.; et al. Programmable hyperbolic polaritons in van der Waals semiconductors. Science 2021, 371, 617–620. 10.1126/science.abe9163. PubMed DOI
Kim R. H. J.; et al. Terahertz Nanoimaging of Perovskite Solar Cell Materials. ACS Photonics 2022, 9, 3550–3556. 10.1021/acsphotonics.2c00861. DOI
Klarskov P.; et al. Nanoscale Laser Terahertz Emission Microscopy. ACS Photonics 2017, 4, 2676–2680. 10.1021/acsphotonics.7b00870. DOI
Zhang J.; et al. Terahertz Nanoimaging of Graphene. ACS Photonics 2018, 5, 2645–2651. 10.1021/acsphotonics.8b00190. DOI
Pizzuto A.; et al. Nonlocal Time-Resolved Terahertz Spectroscopy in the Near Field. ACS Photonics 2021, 8, 2904–2911. 10.1021/acsphotonics.1c01367. DOI
Wang T.; et al. Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime. Nat. Commun. 2023, 14, 5966.10.1038/s41467-023-41688-7. PubMed DOI PMC
Esteras D. L.; et al. Straintronics in the 2D van der Waals Ferromagnet CrSBr from First-Principles. Nano Lett. 2022, 22, 8771–8778. 10.1021/acs.nanolett.2c02863. PubMed DOI PMC
Cenker J.; et al. Reversible strain-induced magnetic phase transition in a van der Waals magnet. Nat. Nanotechnol. 2022, 17, 256–261. 10.1038/s41565-021-01052-6. PubMed DOI
Boix-Constant C.; et al. Multistep magnetization switching in orthogonally twisted ferromagnetic monolayers. Nat. Mater. 2024, 23, 212–218. 10.1038/s41563-023-01735-6. PubMed DOI PMC