• This record comes from PubMed

Controlling Coulomb correlations and fine structure of quasi-one-dimensional excitons by magnetic order

. 2025 Mar ; 24 (3) : 384-390. [epub] 20250219

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media print-electronic

Document type Journal Article

Grant support
Collaborative Research Center SFB 1277 (project A05) Deutsche Forschungsgemeinschaft (German Research Foundation)
Emmy Noether Program (Project-ID 534078167) Deutsche Forschungsgemeinschaft (German Research Foundation)
DMREF award 2118809 National Science Foundation (NSF)
FuSe award 2235377 National Science Foundation (NSF)
FA9950-22-1-0530 United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research)
grant agreement 101109536 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Sklodowska-Curie Actions (H2020 Excellent Science - Marie Sklodowska-Curie Actions)

Links

PubMed 39972109
PubMed Central PMC11879853
DOI 10.1038/s41563-025-02120-1
PII: 10.1038/s41563-025-02120-1
Knihovny.cz E-resources

Many surprising properties of quantum materials result from Coulomb correlations defining electronic quasiparticles and their interaction chains. In van der Waals layered crystals, enhanced correlations have been tailored in reduced dimensions, enabling excitons with giant binding energies and emergent phases including ferroelectric, ferromagnetic and multiferroic orders. Yet, correlation design has primarily relied on structural engineering. Here we present quantitative experiment-theory proof that excitonic correlations can be switched through magnetic order. By probing internal Rydberg-like transitions of excitons in the magnetic semiconductor CrSBr, we reveal their binding energy and a dramatic anisotropy of their quasi-one-dimensional orbitals manifesting in strong fine-structure splitting. We switch the internal structure from strongly bound, monolayer-localized states to weakly bound, interlayer-delocalized states by pushing the system from antiferromagnetic to paramagnetic phases. Our analysis connects this transition to the exciton's spin-controlled effective quantum confinement, supported by the exciton's dynamics. In future applications, excitons or even condensates may be interfaced with spintronics; extrinsically switchable Coulomb correlations could shape phase transitions on demand.

See more in PubMed

Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science353, aac9439 (2016). PubMed

Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys.90, 021001 (2018).

Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science351, 688–691 (2016). PubMed

Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater.13, 1135–1142 (2014). PubMed

Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature499, 419–425 (2013). PubMed

Merkl, P. et al. Ultrafast transition between exciton phases in van der Waals heterostructures. Nat. Mater.18, 691–696 (2019). PubMed

Liu, K. et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun.5, 4966 (2014). PubMed

Kunstmann, J. et al. Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat. Phys.14, 801–805 (2018).

Merkl, P. et al. Twist-tailoring Coulomb correlations in van der Waals homobilayers. Nat. Commun.11, 2167 (2020). PubMed PMC

Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature556, 43–50 (2018). PubMed

Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature600, 641–646 (2021). PubMed

Du, L. et al. Moiré photonics and optoelectronics. Science379, eadg0014 (2023). PubMed

Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature397, 598–601 (1999).

Srivastava, A., Htoon, H., Klimov, V. I. & Kono, J. Direct observation of dark excitons in individual carbon nanotubes: inhomogeneity in the exchange splitting. Phys. Rev. Lett.101, 087402 (2008). PubMed

Wang, J., Graham, M. W., Ma, Y., Fleming, G. R. & Kaindl, R. A. Ultrafast spectroscopy of midinfrared internal exciton transitions in separated single-walled carbon nanotubes. Phys. Rev. Lett.104, 177401 (2010). PubMed

Blumenstein, C. et al. Atomically controlled quantum chains hosting a Tomonaga–Luttinger liquid. Nat. Phys.7, 776–780 (2011).

Deshpande, V. V., Bockrath, M., Glazman, L. I. & Yacoby, A. Electron liquids and solids in one dimension. Nature464, 209–216 (2010). PubMed

Balandin, A. A., Kargar, F., Salguero, T. T. & Lake, R. K. One-dimensional van der Waals quantum materials. Mater. Today55, 74–91 (2022).

Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature546, 270–273 (2017). PubMed

Burch, K. S., Mandrus, D. & Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature563, 47–52 (2018). PubMed

Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater.16, 1077–1088 (2017). PubMed

Aivazian, G. et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys.11, 148–152 (2015).

Srivastava, A. et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys.11, 141–147 (2015).

Nagler, P. et al. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nat. Commun.8, 1551 (2017). PubMed PMC

Wilson, N. P. et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater.20, 1657–1662 (2021). PubMed

Klein, J. et al. The bulk van der Waals layered magnet CrSBr is a quasi-1D material. ACS Nano17, 5316–5328 (2023). PubMed

Dirnberger, F. et al. Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons. Nature620, 533–537 (2023). PubMed

Kira, M. & Koch, S. W. Semiconductor Quantum Optics (Cambridge Univ. Press, 2012).

Kaindl, R. A., Carnahan, M. A., Hägele, D., Lövenich, R. & Chemla, D. S. Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas. Nature423, 734–738 (2003). PubMed

Kira, M., Hoyer, W. & Koch, S. W. Terahertz signatures of the exciton formation dynamics in non-resonantly excited semiconductors. Solid State Commun.129, 733–736 (2004).

Pashkin, A. et al. Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy. Phys. Rev. B83, 195120 (2011).

Poellmann, C. et al. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. Nat. Mater.14, 889–893 (2015). PubMed

Kira, M., Hoyer, W., Stroucken, T. & Koch, S. W. Exciton formation in semiconductors and the influence of a photonic environment. Phys. Rev. Lett.87, 176401 (2001). PubMed

Kira, M. & Koch, S. W. Many-body correlations and excitonic effects in semiconductor spectroscopy. Prog. Quantum Electron.30, 155–296 (2006).

Borsch, M., Meierhofer, M., Huber, R. & Kira, M. Lightwave electronics in condensed matter. Nat. Rev. Mater.8, 668–687 (2023).

Telford, E. J. et al. Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater.32, 2003240 (2020). PubMed

Göser, O., Paul, W. & Kahle, H. G. Magnetic properties of CrSBr. J. Magn. Magn. Mater.92, 129–136 (1990).

Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Nano Lett.21, 3511–3517 (2021). PubMed

Liu, W. et al. A three-stage magnetic phase transition revealed in ultrahigh-quality van der Waals bulk magnet CrSBr. ACS Nano16, 15917–15926 (2022). PubMed

Huber, R. et al. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma. Nature414, 286–289 (2001). PubMed

Long, F. et al. Intrinsic magnetic properties of the layered antiferromagnet CrSBr. Appl. Phys. Lett.123, 222401 (2023).

Ye, C. et al. Layer-dependent interlayer antiferromagnetic spin reorientation in air-stable semiconductor CrSBr. ACS Nano16, 11876–11883 (2022). PubMed

Chen, F. et al. Femtosecond dynamics of a polariton bosonic cascade at room temperature. Nano Lett.22, 2023–2029 (2022). PubMed

Choi, J., Lane, C., Zhu, J. X. & Crooker, S. A. Asymmetric magnetic proximity interactions in MoSe2/CrBr3 van der Waals heterostructures. Nat. Mater.22, 305–310 (2023). PubMed

Li, X. et al. Proximity-induced chiral quantum light generation in strain-engineered WSe2/NiPS3 heterostructures. Nat. Mater.22, 1311–1316 (2023). PubMed

Serati de Brito, C. et al. Charge transfer and asymmetric coupling of MoSe2 valleys to the magnetic order of CrSBr. Nano Lett.23, 11073–11081 (2023). PubMed

Meineke, C. et al. Ultrafast exciton dynamics in the atomically thin van der Waals magnet CrSBr. Nano Lett.24, 4101–4107 (2024). PubMed PMC

Ménard, J. M. et al. Revealing the dark side of a bright exciton-polariton condensate. Nat. Commun.5, 4648 (2014). PubMed PMC

Florian, M. et al. The dielectric impact of layer distances on exciton and trion binding energies in van der Waals heterostructures. Nano Lett.18, 2725–2732 (2018). PubMed

Rösner, M., Şaşloğlu, E., Friedrich, C., Blügel, S. & Wehling, T. O. Wannier function approach to realistic Coulomb interactions in layered materials and heterostructures. Phys. Rev. B92, 085102 (2015).

Haug, H. & Koch, S. W. Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2009).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...