Polarization-Resolved Position-Sensitive Self-Powered Binary Photodetection in Multilayer Janus CrSBr
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38147583
PubMed Central
PMC10788859
DOI
10.1021/acsami.3c13552
Knihovny.cz E-zdroje
- Klíčová slova
- CrSBr, Janus 2D layer, optical polarization detection, position sensitivity, self-powered photodetector,
- Publikační typ
- časopisecké články MeSH
Recent progress in polarization-resolved photodetection based on low-symmetry 2D materials has formed the basis of cutting-edge optoelectronic devices, including quantum optical communication, 3D image processing, and sensing applications. Here, we report an optical polarization-resolving photodetector (PD) fabricated from multilayer semiconducting CrSBr single crystals with high structural anisotropy. We have demonstrated self-powered photodetection due to the formation of Schottky junctions at the Au-CrSBr interfaces, which also caused the photocurrent to display a position-sensitive and binary nature. The self-biased CrSBr PD showed a photoresponsivity of ∼0.26 mA/W with a detectivity of 3.4 × 108 Jones at 514 nm excitation of fluency (0.42 mW/cm2) under ambient conditions. The optical polarization-induced photoresponse exhibits a large dichroic ratio of 3.4, while the polarization is set along the a- and the b-axes of single-crystalline CrSBr. The PD also showed excellent stability, retaining >95% of the initial photoresponsivity in ambient conditions for more than five months without encapsulation. Thus, we demonstrate CrSBr as a fascinating material for ultralow-powered optical polarization-resolving optoelectronic devices for cutting-edge technology.
Zobrazit více v PubMed
Xu T.; Luo M.; Shen N.; Yu Y.; Wang Z.; Cui Z.; Qin J.; Liang F.; Chen Y.; Zhou Y.; Zhong F.; Peng M.; Zubair M.; Li N.; Miao J.; Lu W.; Yu C.; Hu W. Ternary 2D Layered Material FePSe3 and Near-Infrared Photodetector. Adv. Electron. Mater. 2021, 7 (8), 2100207.10.1002/aelm.202100207. DOI
Chen J.; Li L.; Gong P.; Zhang H.; Yin S.; Li M.; Wu L.; Gao W.; Long M.; Shan L.; Yan F.; Li G. A Submicrosecond-Response Ultraviolet-Visible-Near-Infrared Broadband Photodetector Based on 2D Tellurosilicate InSiTe3. ACS Nano 2022, 16, 7745–7754. 10.1021/acsnano.1c11628. PubMed DOI
Li Z.; Yan T.; Fang X. Low-Dimensional Wide-Bandgap Semiconductors for UV Photodetectors. Nat. Rev. Mater. 2023, 8 (9), 587–603. 10.1038/s41578-023-00583-9. DOI
Yan T.; Li Z.; Su L.; Wu L.; Fang X. Bidirectional and Dual-Mode Organic Photodetector Enables Secure Ultraviolet Communication. Adv. Funct. Mater. 2023, 33 (31), 2302746.10.1002/adfm.202302746. DOI
Liu X.; Li S.; Li Z.; Cao F.; Su L.; Shtansky D. V.; Fang X. Enhanced Response Speed in 2D Perovskite Oxides-Based Photodetectors for UV Imaging through Surface/Interface Carrier-Transport Modulation. ACS Appl. Mater. Interfaces 2022, 14 (43), 48936–48947. 10.1021/acsami.2c15946. PubMed DOI
Radisavljevic B.; Radenovic A.; Brivio J.; Giacometti V.; Kis A. Single-Layer MoS2 Transistors. Nat. Nanotechnol. 2011, 6 (3), 147–150. 10.1038/nnano.2010.279. PubMed DOI
Haider G.; Roy P.; Chiang C. W.; Tan W. C.; Liou Y. R.; Chang H. T.; Liang C. T.; Shih W. H.; Chen Y. F. Electrical-Polarization-Induced Ultrahigh Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots. Adv. Funct. Mater. 2016, 26 (4), 620–628. 10.1002/adfm.201503691. DOI
Wang J.; Gudiksen M. S.; Duan X.; Cui Y.; Charles M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 2001, 293 (5534), 1455.10.1126/science.1062340. PubMed DOI
Zhang E.; Wang P.; Li Z.; Wang H.; Song C.; Huang C.; Chen Z. G.; Yang L.; Zhang K.; Lu S.; Wang W.; Liu S.; Fang H.; Zhou X.; Yan H.; Zou J.; Wan X.; Zhou P.; Hu W.; Xiu F. Tunable Ambipolar Polarization-Sensitive Photodetectors Based on High-Anisotropy ReSe2 Nanosheets. ACS Nano 2016, 10 (8), 8067–8077. 10.1021/acsnano.6b04165. PubMed DOI
Dai Y.; Wang X.; Peng W.; Xu C.; Wu C.; Dong K.; Liu R.; Wang Z. L. Self-Powered Si/CdS Flexible Photodetector with Broadband Response from 325 to 1550 nm Based on Pyro-Phototronic Effect: An Approach for Photosensing below Bandgap Energy. Adv. Mater. 2018, 30 (9), 1705893.10.1002/adma.201705893. PubMed DOI
Leung S. F.; Ho K. T.; Kung P. K.; Hsiao V. K. S.; Alshareef H. N.; Wang Z. L.; He J. H. A Self-Powered and Flexible Organometallic Halide Perovskite Photodetector with Very High Detectivity. Adv. Mater. 2018, 30 (8), 1704611.10.1002/adma.201704611. PubMed DOI
Luo L. B.; Chen J. J.; Wang M. Z.; Hu H.; Wu C. Y.; Li Q.; Wang L.; Huang J. A.; Liang F. X. Near-Infrared Light Photovoltaic Detector Based on GaAs Nanocone Array/Monolayer Graphene Schottky Junction. Adv. Funct. Mater. 2014, 24 (19), 2794–2800. 10.1002/adfm.201303368. DOI
Feng P.; He S.; Zhao S.; Dang C.; Li M.; Zhao L.; Lu H. L.; Gao L. A High-Performance Self-Powered Photodetector Based on WSe2-Graphene-MoTe2 van Der Waals Heterojunctions. J. Mater. Chem. C 2022, 10 (24), 9401–9406. 10.1039/D2TC01441F. DOI
Periyanagounder D.; Gnanasekar P.; Varadhan P.; He J. H.; Kulandaivel J. High Performance, Self-Powered Photodetectors Based on a Graphene/Silicon Schottky Junction Diode. J. Mater. Chem. C 2018, 6 (35), 9545–9551. 10.1039/C8TC02786B. DOI
Frisenda R.; Molina-Mendoza A. J.; Mueller T.; Castellanos-Gomez A.; Van Der Zant H. S. J. Atomically Thin p-n Junctions Based on Two-Dimensional Materials. Chem. Soc. Rev. 2018, 47 (9), 3339–3358. 10.1039/C7CS00880E. PubMed DOI
Xu Y.; Cheng C.; Du S.; Yang J.; Yu B.; Luo J.; Yin W.; Li E.; Dong S.; Ye P.; Duan X. Contacts between Two- and Three-Dimensional Materials: Ohmic, Schottky, and p-n Heterojunctions. ACS Nano 2016, 10 (5), 4895–4919. 10.1021/acsnano.6b01842. PubMed DOI
Zhou C.; Zhang S.; Lv Z.; Ma Z.; Yu C.; Feng Z.; Chan M. Self-Driven WSe2 Photodetectors Enabled with Asymmetrical van Der Waals Contact Interfaces. npj 2D Mater. Appl. 2020, 4 (1), 46.10.1038/s41699-020-00179-9. DOI
Zhang X.; Shao J.; Yan C.; Wang X.; Wang Y.; Lu Z.; Qin R.; Huang X.; Tian J.; Zeng L. High Performance Broadband Self-Driven Photodetector Based on MXene (Ti3C2Tx)/GaAs Schottky Junction. Mater. Des. 2021, 207, 109850.10.1016/j.matdes.2021.109850. DOI
Wang Q.; Zhou C.; Chai Y. Breaking Symmetry in Device Design for Self-Driven 2D Material Based Photodetectors. Nanoscale 2020, 12 (15), 8109–8118. 10.1039/D0NR01326A. PubMed DOI
Zhang X.; Dai M.; Deng W.; Zhang Y.; Wang Q. J. A broadband, self-powered, and polarization-sensitive PdSe2 photodetector based on asymmetric van der Waals contacts. Nanophotonics 2023, 12 (3), 607–618. 10.1515/nanoph-2022-0660. DOI
Chang Y.; Chen L.; Wang J.; Tian W.; Zhai W.; Wei B. Self-Powered Broadband Schottky Junction Photodetector Based on a Single Selenium Microrod. J. Phys. Chem. C 2019, 123 (34), 21244–21251. 10.1021/acs.jpcc.9b04260. DOI
Chen J.; Zhang Z.; Feng J.; Xie X.; Jian A.; Li Y.; Guo H.; Zhu Y.; Li Z.; Dong J.; Cui Q.; Shi Z.; Xu C. 2D InSe Self-Powered Schottky Photodetector with the Same Metal in Asymmetric Contacts. Adv. Mater. Interfaces 2022, 9 (35), 2200075.10.1002/admi.202200075. DOI
Mao N.; Tang J.; Xie L.; Wu J.; Han B.; Lin J.; Deng S.; Ji W.; Xu H.; Liu K.; Tong L.; Zhang J. Optical Anisotropy of Black Phosphorus in the Visible Regime. J. Am. Chem. Soc. 2016, 138 (1), 300–305. 10.1021/jacs.5b10685. PubMed DOI
Hsueh H. C.; Li J. X.; Ho C. H. Polarization Photoelectric Conversion in Layered GeS. Adv. Opt. Mater. 2018, 6 (4), 1701194.10.1002/adom.201701194. DOI
Wu J.; Mao N.; Xie L.; Xu H.; Zhang J. Identifying the Crystalline Orientation of Black Phosphorus Using Angle-Resolved Polarized Raman Spectroscopy. Angew. Chem., Int. Ed. 2015, 54 (8), 2366–2369. 10.1002/anie.201410108. PubMed DOI
Ou J.; Luo X. Q.; Luo Y. L.; Zhu W. H.; Chen Z. Y.; Liu W. M.; Wang X. L. Near-Infrared Dual-Wavelength Plasmonic Switching and Digital Metasurface Unveiled by Plasmonic Fano Resonance. Nanophotonics 2020, 10 (2), 947–957. 10.1515/nanoph-2020-0511. DOI
Shen W.; Hu C.; Tao J.; Liu J.; Fan S.; Wei Y.; An C.; Chen J.; Wu S.; Li Y.; Liu J.; Zhang D.; Sun L.; Hu X. Resolving the Optical Anisotropy of Low-Symmetry 2D Materials. Nanoscale 2018, 10 (17), 8329–8337. 10.1039/C7NR09173G. PubMed DOI
Hoang N. T.; Lee J. H.; Vu T. H.; Cho S.; Seong M. J. Thickness-Dependent in-Plane Anisotropy of GaTe Phonons. Sci. Rep. 2021, 11 (1), 21202.10.1038/s41598-021-00673-0. PubMed DOI PMC
Kumar P.; Lynch J.; Song B.; Ling H.; Barrera F.; Kisslinger K.; Zhang H.; Anantharaman S. B.; Digani J.; Zhu H.; Choudhury T. H.; McAleese C.; Wang X.; Conran B. R.; Whear O.; Motala M. J.; Snure M.; Muratore C.; Redwing J. M.; Glavin N. R.; Stach E. A.; Davoyan A. R.; Jariwala D. Light-Matter Coupling in Large-Area van Der Waals Superlattices. Nat. Nanotechnol. 2022, 17 (2), 182–189. 10.1038/s41565-021-01023-x. PubMed DOI
Ramos M.; Carrascoso F.; Frisenda R.; Gant P.; Mañas-Valero S.; Esteras D. L.; Baldoví J. J.; Coronado E.; Castellanos-Gomez A.; Calvo M. R. Ultra-Broad Spectral Photo-Response in FePS3 Air-Stable Devices. npj 2D Mater. Appl. 2021, 5 (1), 19.10.1038/s41699-021-00199-z. DOI
Wang J.; Jiang C.; Li W.; Xiao X. Anisotropic Low-Dimensional Materials for Polarization-Sensitive Photodetectors: From Materials to Devices. Adv. Opt. Mater. 2022, 10 (6), 2102436.10.1002/adom.202102436. DOI
Wilson N. P.; Lee K.; Cenker J.; Xie K.; Dismukes A. H.; Telford E. J.; Fonseca J.; Sivakumar S.; Dean C.; Cao T.; Roy X.; Xu X.; Zhu X. Interlayer Electronic Coupling on Demand in a 2D Magnetic Semiconductor. Nat. Mater. 2021, 20, 1657–1662. 10.1038/s41563-021-01070-8. PubMed DOI
Wu F.; Gutiérrez-Lezama I.; López-Paz S. A.; Gibertini M.; Watanabe K.; Taniguchi T.; von Rohr F. O.; Ubrig N.; Morpurgo A. F. Quasi-1D Electronic Transport in a 2D Magnetic Semiconductor. Adv. Mater. 2022, 34 (16), 2109759.10.1002/adma.202109759. PubMed DOI
Telford E. J.; Dismukes A. H.; Dudley R. L.; Wiscons R. A.; Lee K.; Chica D. G.; Ziebel M. E.; Han M. G.; Yu J.; Shabani S.; Scheie A.; Watanabe K.; Taniguchi T.; Xiao D.; Zhu Y.; Pasupathy A. N.; et al. Coupling between magnetic order and charge transport in a two-dimensional magnetic semiconductor. Nat. Mater. 2022, 21, 754–760. 10.1038/s41563-022-01245-x. PubMed DOI
Li L.; Han W.; Pi L.; Niu P.; Han J.; Wang C.; Su B.; Li H.; Xiong J.; Bando Y.; Zhai T. Emerging In-Plane Anisotropic Two-Dimensional Materials. InfoMat 2019, 1 (1), 54–73. 10.1002/inf2.12005. DOI
Zhu W.; Wei X.; Yan F.; Lv Q.; Hu C.; Wang K. Broadband Polarized Photodetector Based on P-BP/n-ReS2 Heterojunction. J. Semicond. 2019, 40 (9), 092001.10.1088/1674-4926/40/9/092001. DOI
Klein J.; Pham T.; Thomsen J. D.; Curtis J. B.; Denneulin T.; Lorke M.; Florian M.; Steinhoff A.; Wiscons R. A.; Luxa J.; Sofer Z.; Jahnke F.; Narang P.; Ross F. M. Control of Structure and Spin Texture in the van Der Waals Layered Magnet CrSBr. Nat. Commun. 2022, 13 (1), 5420.10.1038/s41467-022-32737-8. PubMed DOI PMC
Lee K.; Dismukes A. H.; Telford E. J.; Wiscons R. A.; Wang J.; Xu X.; Nuckolls C.; Dean C. R.; Roy X.; Zhu X. Magnetic Order and Symmetry in the 2D Semiconductor CrSBr. Nano Lett. 2021, 21 (8), 3511–3517. 10.1021/acs.nanolett.1c00219. PubMed DOI
Seyler K. L.; Zhong D.; Klein D. R.; Gao S.; Zhang X.; Huang B.; Navarro-Moratalla E.; Yang L.; Cobden D. H.; McGuire M. A.; Yao W.; Xiao D.; Jarillo-Herrero P.; Xu X. Ligand-Field Helical Luminescence in a 2D Ferromagnetic Insulator. Nat. Phys. 2018, 14 (3), 277–281. 10.1038/s41567-017-0006-7. DOI
Telford E. J.; Dismukes A. H.; Lee K.; Cheng M.; Wieteska A.; Bartholomew A. K.; Chen Y. S.; Xu X.; Pasupathy A. N.; Zhu X.; Dean C. R.; Roy X. Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the van Der Waals Semiconductor CrSBr. Adv. Mater. 2020, 32 (37), 2003240.10.1002/adma.202003240. PubMed DOI
Meng J.; Li Q.; Huang J.; Pan C.; Li Z. Self-Powered Photodetector for Ultralow Power Density UV Sensing. Nano Today 2022, 43, 101399.10.1016/j.nantod.2022.101399. DOI
Wang Z.; Yu R.; Pan C.; Li Z.; Yang J.; Yi F.; Wang Z. L. Light-Induced Pyroelectric Effect as an Effective Approach for Ultrafast Ultraviolet Nanosensing. Nat. Commun. 2015, 6, 8401.10.1038/ncomms9401. PubMed DOI PMC
Bera K. P.; Haider G.; Huang Y. T.; Roy P. K.; Paul Inbaraj C. R.; Liao Y. M.; Lin H. I.; Lu C. H.; Shen C.; Shih W. Y.; Shih W. H.; Chen Y. F. Graphene Sandwich Stable Perovskite Quantum-Dot Light-Emissive Ultrasensitive and Ultrafast Broadband Vertical Phototransistors. ACS Nano 2019, 13 (11), 12540–12552. 10.1021/acsnano.9b03165. PubMed DOI
Qiao H.; Huang Z.; Ren X.; Liu S.; Zhang Y.; Qi X.; Zhang H. Self-Powered Photodetectors Based on 2D Materials. Adv. Opt. Mater. 2020, 8 (1), 1900765.10.1002/adom.201900765. DOI
Thakur M. K.; Fang C. Y.; Yang Y. T.; Effendi T. A.; Roy P. K.; Chen R. S.; Ostrikov K. K.; Chiang W. H.; Chattopadhyay S. Microplasma-Enabled Graphene Quantum Dot-Wrapped Gold Nanoparticles with Synergistic Enhancement for Broad Band Photodetection. ACS Appl. Mater. Interfaces 2020, 12 (25), 28550–28560. 10.1021/acsami.0c06753. PubMed DOI
Dai M.; Chen H.; Feng R.; Feng W.; Hu Y.; Yang H.; Liu G.; Chen X.; Zhang J.; Xu C. Y.; Hu P. A Dual-Band Multilayer Inse Self-Powered Photodetector with High Performance Induced by Surface Plasmon Resonance and Asymmetric Schottky Junction. ACS Nano 2018, 12 (8), 8739–8747. 10.1021/acsnano.8b04931. PubMed DOI
Ren X.; Li Z.; Huang Z.; Sang D.; Qiao H.; Qi X.; Li J.; Zhong J.; Zhang H. Environmentally Robust Black Phosphorus Nanosheets in Solution: Application for Self-Powered Photodetector. Adv. Funct. Mater. 2017, 27 (18), 1606834.10.1002/adfm.201606834. DOI
Zhang K.; Wei Y.; Zhang J.; Ma H.; Yang X.; Lu G.; Zhang K.; Li Q.; Jiang K.; Fan S. Electrical Control of Spatial Resolution in Mixed-Dimensional Heterostructured Photodetectors. Proc. Natl. Acad. Sci. U.S.A. 2019, 116 (14), 6586–6593. 10.1073/pnas.1817229116. PubMed DOI PMC
Zhang B.; Du L.; Wang H. Bias-Assisted Improved Lateral Photovoltaic Effect Observed in Cu2O Nano-Films. Opt. Express 2014, 22 (2), 1661.10.1364/OE.22.001661. PubMed DOI
Qiao S.; Zhang B.; Feng K.; Cong R.; Yu W.; Fu G.; Wang S. Large Lateral Photovoltage Observed in MoS2 Thickness-Modulated ITO/MoS2/p-Si Heterojunctions. ACS Appl. Mater. Interfaces 2017, 9 (21), 18377–18387. 10.1021/acsami.7b04638. PubMed DOI
Cong R.; Qiao S.; Liu J.; Mi J.; Yu W.; Liang B.; Fu G.; Pan C.; Wang S. Ultrahigh, Ultrafast, and Self-Powered Visible-Near-Infrared Optical Position-Sensitive Detector Based on a CVD-Prepared Vertically Standing Few-Layer MoS2/Si Heterojunction. Adv. Sci. 2018, 5 (2), 1700502.10.1002/advs.201700502. PubMed DOI PMC
Qiao S.; Liu J.; Fu G.; Wang S.; Ren K.; Pan C. Laser-Induced Photoresistance Effect in Si-Based Vertical Standing MoS2 Nanoplate Heterojunctions for Self-Powered High Performance Broadband Photodetection. J. Mater. Chem. C 2019, 7 (34), 10642–10651. 10.1039/C9TC03454D. DOI
Wu D.; Guo J.; Du J.; Xia C.; Zeng L.; Tian Y.; Shi Z.; Tian Y.; Li X. J.; Tsang Y. H.; Jie J. Highly Polarization-Sensitive, Broadband, Self-Powered Photodetector Based on Graphene/PdSe2/Germanium Heterojunction. ACS Nano 2019, 13 (9), 9907–9917. 10.1021/acsnano.9b03994. PubMed DOI
Paul Inbaraj C. R.; Mathew R. J.; Haider G.; Chen T. P.; Ulaganathan R. K.; Sankar R.; Bera K. P.; Liao Y. M.; Kataria M.; Lin H. I.; Chou F. C.; Chen Y. T.; Lee C. H.; Chen Y. F. Ultra-High Performance Flexible Piezopotential Gated In1-XSnxSe Phototransistor. Nanoscale 2018, 10 (39), 18642–18650. 10.1039/C8NR05234D. PubMed DOI
Haider G.; Wang Y. H.; Sonia F. J.; Chiang C. W.; Frank O.; Vejpravova J.; Kalbáč M.; Chen Y. F. Rippled Metallic-Nanowire/Graphene/Semiconductor Nanostack for a Gate-Tunable Ultrahigh-Performance Stretchable Phototransistor. Adv. Opt. Mater. 2020, 8 (19), 2000859.10.1002/adom.202000859. DOI
Lopez-Sanchez O.; Lembke D.; Kayci M.; Radenovic A.; Kis A. Ultrasensitive Photodetectors Based on Monolayer MoS2. Nat. Nanotechnol. 2013, 8 (7), 497–501. 10.1038/nnano.2013.100. PubMed DOI
Fu L.; Wang F.; Wu B.; Wu N.; Huang W.; Wang H.; Jin C.; Zhuang L.; He J.; Fu L.; et al. Van Der Waals Epitaxial Growth of Atomic Layered HfS2 Crystals for Ultrasensitive Near-Infrared Phototransistors. Adv. Mater. 2017, 29 (32), 1700439.10.1002/adma.201700439. PubMed DOI
Duan J.; Chava P.; Ghorbani-Asl M.; Lu Y. F.; Erb D.; Hu L.; Echresh A.; Rebohle L.; Erbe A.; Krasheninnikov A. V.; Helm M.; Zeng Y. J.; Zhou S.; Prucnal S. Self-Driven Broadband Photodetectors Based on MoSe2/FePS3 van Der Waals n-p Type-II Heterostructures. ACS Appl. Mater. Interfaces 2022, 14 (9), 11927–11936. 10.1021/acsami.1c24308. PubMed DOI
Sahu S.; Haider G.; Rodriguez A.; Plšek J.; Mergl M.; Kalbáč M.; Frank O.; Velický M. Large-Area Mechanically-Exfoliated Two-Dimensional Materials on Arbitrary Substrates. Adv. Mater. Technol. 2023, 8 (12), 2201993.10.1002/admt.202201993. DOI
Liu X.; Ryder C. R.; Wells S. A.; Hersam M. C. Resolving the In-Plane Anisotropic Properties of Black Phosphorus. Small Methods 2017, 1 (6), 1700143.10.1002/smtd.201700143. DOI
Zhang H.; Li Y.; Hu X.; Xu J.; Chen L.; Li G.; Yin S.; Chen J.; Tan C.; Kan X.; Li L. In-Plane Anisotropic 2D CrPS4for Promising Polarization-Sensitive Photodetection. Appl. Phys. Lett. 2021, 119, 171102.10.1063/5.0066143. DOI
Yan Y.; Xiong W.; Li S.; Zhao K.; Wang X.; Su J.; Song X.; Li X.; Zhang S.; Yang H.; Liu X.; Jiang L.; Zhai T.; Xia C.; Li J.; Wei Z. Direct Wide Bandgap 2D GeSe2 Monolayer toward Anisotropic UV Photodetection. Adv. Opt. Mater. 2019, 7 (19), 1900622.10.1002/adom.201900622. DOI
Klein J.; Pingault B.; Florian M.; Heißenbüttel M. C.; Steinhoff A.; Song Z.; Torres K.; Dirnberger F.; Curtis J. B.; Weile M.; Penn A.; Deilmann T.; Dana R.; Bushati R.; Quan J.; Luxa J.; Sofer Z.; Alù A.; Menon V. M.; Wurstbauer U.; Rohlfing M.; Narang P.; et al. The Bulk van der Waals Layered Magnet CrSBr is a Quasi-1D Material. ACS Nano 2023, 17, 5316–5328. 10.1021/acsnano.2c07316. PubMed DOI
Zhou X.; Hu X.; Jin B.; Yu J.; Liu K.; Li H.; Zhai T. Highly Anisotropic GeSe Nanosheets for Phototransistors with Ultrahigh Photoresponsivity. Adv. Sci. 2018, 5 (8), 1800478.10.1002/advs.201800478. PubMed DOI PMC
Yan Y.; Yang J.; Du J.; Zhang X.; Liu Y. Y.; Xia C.; Wei Z. Cross-Substitution Promoted Ultrawide Bandgap up to 4.5 EV in a 2D Semiconductor: Gallium Thiophosphate. Adv. Mater. 2021, 33 (22), 2008761.10.1002/adma.202008761. PubMed DOI
Yang Y.; Liu S. C.; Wang X.; Li Z.; Zhang Y.; Zhang G.; Xue D. J.; Hu J. S. Polarization-Sensitive Ultraviolet Photodetection of Anisotropic 2D GeS2. Adv. Funct. Mater. 2019, 29 (16), 1900411.10.1002/adfm.201900411. DOI
Zhou Z.; Long M.; Pan L.; Wang X.; Zhong M.; Blei M.; Wang J.; Fang J.; Tongay S.; Hu W.; Li J.; Wei Z. Perpendicular Optical Reversal of the Linear Dichroism and Polarized Photodetection in 2D GeAs. ACS Nano 2018, 12 (12), 12416–12423. 10.1021/acsnano.8b06629. PubMed DOI
Li L.; Gong P.; Sheng D.; Wang S.; Wang W.; Zhu X.; Shi X.; Wang F.; Han W.; Yang S.; Liu K.; Li H.; Zhai T. Highly In-Plane Anisotropic 2D GeAs2 for Polarization-Sensitive Photodetection. Adv. Mater. 2018, 30 (50), 1804541.10.1002/adma.201804541. PubMed DOI
Tan J.; Nan H.; Fu Q.; Zhang X.; Liu X.; Ni Z.; Ostrikov K.; Xiao S.; Gu X. Fourfold Polarization-Sensitive Photodetector Based on GaTe/MoS2 van Der Waals Heterojunction. Adv. Electron. Mater. 2022, 8 (1), 2100673.10.1002/aelm.202100673. DOI
Yuan H.; Liu X.; Afshinmanesh F.; Li W.; Xu G.; Sun J.; Lian B.; Curto A. G.; Ye G.; Hikita Y.; Shen Z.; Zhang S. C.; Chen X.; Brongersma M.; Hwang H. Y.; Cui Y. Polarization-Sensitive Broadband Photodetector Using a Black Phosphorus Vertical p-n Junction. Nat. Nanotechnol. 2015, 10 (8), 707–713. 10.1038/nnano.2015.112. PubMed DOI
Wang J.; Zhang Y.; Chen J.; Wei Y.; Yu D.; Liang L.; Liu Y.; Wu Y.; Shen W.; Li X.; Zeng H. Strong Polarized Photoluminescence CsPbBr3Nanowire Composite Films for UV Spectral Conversion Polarization Photodetector Enhancement. ACS Appl. Mater. Interfaces 2021, 13 (30), 36147–36156. 10.1021/acsami.1c07681. PubMed DOI
Li Y.; Shi Z.; Wang L.; Chen Y.; Liang W.; Wu D.; Li X.; Zhang Y.; Shan C.; Fang X. Solution-Processed One-Dimensional CsCu2I3nanowires for Polarization-Sensitive and Flexible Ultraviolet Photodetectors. Mater. Horiz. 2020, 7 (6), 1613–1622. 10.1039/D0MH00250J. DOI
Tuning of MoS2 Photoluminescence in Heterostructures with CrSBr