Tuning of MoS2 Photoluminescence in Heterostructures with CrSBr
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40231856
PubMed Central
PMC12051177
DOI
10.1021/acsami.5c01924
Knihovny.cz E-resources
- Keywords
- CrSBr, MoS2, enhancement, heterostructures, optoelectronics, photoluminescence, quenching,
- Publication type
- Journal Article MeSH
Monolayers of semiconducting transition metal dichalcogenides (TMDCs) are known for their unique excitonic photoluminescence (PL), which can be tuned by interfacing them with other materials. However, integrating TMDCs into van der Waals heterostructures often results in a significant quenching of the PL because of an increased rate of nonradiative recombination processes. We demonstrate a wide-range tuning of the PL intensity of monolayer MoS2 interfaced with another layered semiconductor, CrSBr. We discover that a thin CrSBr up to ≈20 nm in thickness enhances the PL of MoS2, while a thicker material causes PL quenching, which is associated with changes in the excitonic makeup driven by the charge redistribution in the CrSBr/MoS2 heterostructure. Transport measurements, Kelvin probe force microscopy, and first-principles calculations indicate that this charge redistribution most likely causes n- to p-type doping transition of MoS2 upon contact with CrSBr, facilitated by the type II band alignment and the tendency of CrSBr to act as an electron sink. Furthermore, we fabricate an efficient AC-regime photodetector with a responsivity of 105 A/W from a MoS2/CrSBr heterostructure.
See more in PubMed
Novoselov K. S.; Geim A. K.; Morozov S. V.; Jiang D.; Zhang Y.; Dubonos S. V.; Grigorieva I. V.; Firsov A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. 10.1126/science.1102896. PubMed DOI
Lopez-Sanchez O.; Lembke D.; Kayci M.; Radenovic A.; Kis A. Ultrasensitive Photodetectors Based on Monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501. 10.1038/nnano.2013.100. PubMed DOI
Korn T.; Heydrich S.; Hirmer M.; Schmutzler J.; Schüller C. Low-temperature Photocarrier Dynamics in Monolayer MoS2. Appl. Phys. Lett. 2011, 99, 102109.10.1063/1.3636402. DOI
Wang Q. H.; Kalantar-Zadeh K.; Kis A.; Coleman J. N.; Strano M. S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. 10.1038/nnano.2012.193. PubMed DOI
Splendiani A.; Sun L.; Zhang Y.; Li T.; Kim J.; Chim C.; Galli G.; Wang F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. 10.1021/nl903868w. PubMed DOI
Mak K. F.; Lee C.; Hone J.; Shan J.; Heinz T. F. Atomically Thin MoS2: A New Direct-gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805.10.1103/PhysRevLett.105.136805. PubMed DOI
Mak K. F.; He K.; Lee C.; Lee G. H.; Hone J.; Heinz T. F.; Shan J. Tightly Bound Trions in Monolayer MoS2. Nat. Mater. 2013, 12, 207–211. 10.1038/nmat3505. PubMed DOI
Jones A. M.; Yu H.; Ghimire N. J.; Wu S.; Aivazian G.; Ross J. S.; Zhao B.; Yan J.; Mandrus D. G.; Xiao D.; et al. Optical Generation of Excitonic Valley Coherence in Monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634–638. 10.1038/nnano.2013.151. PubMed DOI
Ross J. S.; Wu S.; Yu H.; Ghimire N. J.; Jones A. M.; Aivazian G.; Yan J.; Mandrus D. G.; Xiao D.; Yao W.; et al. Electrical Control of Neutral and Charged Excitons in a Monolayer Semiconductor. Nat. Commun. 2013, 4, 1474.10.1038/ncomms2498. PubMed DOI
Mak K. F.; He K.; Shan J.; Heinz T. F. Control of Valley Polarization in Monolayer MoS2 by Optical Helicity. Nat. Nanotechnol. 2012, 7, 494–498. 10.1038/nnano.2012.96. PubMed DOI
Sahu S.; Panda J.; Haider G.; Frank O.; Kalbáč M.; Velický M. Self-biased High-responsivity Photodetector Based on a Bi2SeTe2 Topological Insulator. ACS Appl. Electron. Mater. 2023, 5, 6697–6703. 10.1021/acsaelm.3c01195. DOI
Panda J.; Sahu S.; Haider G.; Thakur M. K.; Mosina K.; Velický M.; Vejpravova J.; Sofer Z.; Kalbáč M. Polarization-resolved Position-sensitive Self-powered Binary Photodetection in Multilayer Janus CrSBr. ACS Appl. Mater. Interfaces 2024, 16, 1033–1043. 10.1021/acsami.3c13552. PubMed DOI PMC
Novoselov K. S.; Mishchenko A.; Carvalho A.; Castro Neto A. 2D Materials and van der Waals Heterostructures. Science 2016, 353, aac9439.10.1126/science.aac9439. PubMed DOI
Xia F.; Wang H.; Xiao D.; Dubey M.; Ramasubramaniam A. Two-dimensional Material Nanophotonics. Nat. Photonics 2014, 8, 899–907. 10.1038/nphoton.2014.271. DOI
Duan J.; Chava P.; Ghorbani-Asl M.; Erb D.; Hu L.; Krasheninnikov A. V.; Schneider H.; Rebohle L.; Erbe A.; Helm M.; et al. Enhanced Trion Emission in Monolayer MoSe2 by Constructing a Type-I van der Waals Heterostructure. Adv. Funct. Mater. 2021, 31, 2104960.10.1002/adfm.202104960. DOI
Ramos M.; Marques-Moros F.; Esteras D. L.; Mañas-Valero S.; Henríquez-Guerra E.; Gadea M.; Baldoví J. J.; Canet-Ferrer J.; Coronado E.; Calvo M. R. Photoluminescence Enhancement by Band Alignment Engineering in MoS2/FePS3 Van der Waals Heterostructures. ACS Appl. Mater. Interfaces 2022, 14, 33482–33490. 10.1021/acsami.2c05464. PubMed DOI PMC
Serati de Brito C.; Faria Junior P. E.; Ghiasi T. S.; Ingla-Aynés J.; Rabahi C. R.; Cavalini C.; Dirnberger F.; Mañas-Valero S.; Watanabe K.; Taniguchi T.; et al. Charge Transfer and Asymmetric Coupling of MoSe2 Valleys to the Magnetic Order of CrSBr. Nano Lett. 2023, 23, 11073–11081. 10.1021/acs.nanolett.3c03431. PubMed DOI
Bellus M. Z.; Li M.; Lane S. D.; Ceballos F.; Cui Q.; Zeng X. C.; Zhao H. Type-I Van der Waals Heterostructure Formed by MoS2 and ReS2 Monolayers. Nanoscale Horizons 2017, 2, 31–36. 10.1039/C6NH00144K. PubMed DOI
Xiao J.; Zhang L.; Zhou H.; Shao Z.; Liu J.; Zhao Y.; Li Y.; Liu X.; Xie H.; Gao Y.; et al. Type-II Interface Band Alignment in the vdW PbI2–MoSe2 Heterostructure. ACS Appl. Mater. Interfaces 2020, 12, 32099–32105. 10.1021/acsami.0c04985. PubMed DOI
Sahu S.; Haider G.; Rodriguez A.; Plšek J.; Mergl M.; Kalbáč M.; Frank O.; Velický M. Large-area Mechanically-exfoliated Two-dimensional Materials on Arbitrary Substrates. Adv. Mater. Technol. 2023, 8, 2201993.10.1002/admt.202201993. DOI
Wilson N. P.; Lee K.; Cenker J.; Xie K.; Dismukes A. H.; Telford E. J.; Fonseca J.; Sivakumar S.; Dean C.; Cao T.; et al. Interlayer Electronic Coupling on Demand in a 2D Magnetic Semiconductor. Nat. Mater. 2021, 20, 1657–1662. 10.1038/s41563-021-01070-8. PubMed DOI
Wang T.; Zhang D.; Yang S.; Lin Z.; Chen Q.; Yang J.; Gong Q.; Chen Z.; Ye Y.; Liu W. Magnetically-dressed CrSBr Exciton-polaritons in Ultrastrong Coupling Regime. Nat. Commun. 2023, 14, 59066.10.1038/s41467-023-41688-7. PubMed DOI PMC
Mouri S.; Miyauchi Y.; Matsuda K. Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping. Nano Lett. 2013, 13, 5944–5948. 10.1021/nl403036h. PubMed DOI
Park Y.; Li N.; Jung D.; Singh L. T.; Baik J.; Lee E.; Oh D.; Kim Y. D.; Lee J. Y.; Woo J.; et al. Unveiling the Origin of n-type Doping of Natural MoS2: Carbon. npj 2D Mater. Appl. 2023, 7, 60.10.1038/s41699-023-00424-x. DOI
Vaquero D.; Clericò V.; Salvador-Sánchez J.; Martín-Ramos A.; Díaz E.; Domínguez-Adame F.; Meziani Y. M.; Diez E.; Quereda J. Excitons Trions and Rydberg States in Monolayer MoS2 Revealed by Low-Temperature Photocurrent Spectroscopy. Commun. Phys. 2020, 3, 194.10.1038/s42005-020-00460-9. DOI
Godde T.; Schmidt D.; Schmutzler J.; Aßmann M.; Debus J.; Withers F.; Alexeev E.; Del Pozo-Zamudio O.; Skrypka O.; Novoselov K.; et al. Exciton and Trion Dynamics in Atomically Thin MoSe2 and WSe2: Effect of Localization. Phys. Rev. B 2016, 94, 165301.10.1103/physrevb.94.165301. DOI
Singh A.; Moody G.; Tran K.; Scott M. E.; Overbeck V.; Berghäuser G.; Schaibley J.; Seifert E. J.; Pleskot D.; Gabor N. M.; et al. Trion Formation Dynamics in Monolayer Transition Metal Dichalcogenides. Phys. Rev. B 2016, 93, 041401.10.1103/physrevb.93.041401. DOI
Lee Y.; Ghimire G.; Roy S.; Kim Y.; Seo C.; Sood A.; Jang J. I.; Kim J. Impeding Exciton–exciton Annihilation in Monolayer WS2 by Laser Irradiation. ACS Photonics 2018, 5, 2904–2911. 10.1021/acsphotonics.8b00249. DOI
Lien D. H.; Uddin S. Z.; Yeh M.; Amani M.; Kim H.; Ager III J. W.; Yablonovitch E.; Javey A. Electrical Suppression of All Nonradiative Recombination Pathways in Monolayer Semiconductors. Science 2019, 364, 468–471. 10.1126/science.aaw8053. PubMed DOI
Yu Y.; Lee D.; Jeong B. The Dependence of the Work Function of Pt (111) on Surface Carbon Investigated with near Ambient Pressure X-ray Photoelectron Spectroscopy. Appl. Surf. Sci. 2023, 607, 155005.10.1016/j.apsusc.2022.155005. DOI
Kim J. H.; Lee J.; Kim J. H.; Hwang C.; Lee C.; Park J. Y. Work Function Variation of MoS2 Atomic Layers Grown with Chemical Vapor Deposition: The Effects of Thickness and the Adsorption of Water/Oxygen Molecules. Appl. Phys. Lett. 2015, 106, 251606.10.1063/1.4923202. DOI
Smolenski S.; Wen M.; Li Q.; Downey E.; Alfrey A.; Liu W.; Kondusamy A. L. N.; Bostwick A.; Jozwiak C.; Rotenberg E.; Zhao L.; Deng H.; Lv B.; Zgid D.; Gull E.; Jo N. H. Large Exciton Binding Energy in a Bulk van der Waals Magnet from Quasi-1D Electronic Localization. Nat. Commun. 2025, 16, 1134.10.1038/s41467-025-56457-x. PubMed DOI PMC
Guo Y.; Li J.; Zhan X.; Wang C.; Li M.; Zhang B.; Wang Z.; Liu Y.; Yang K.; Wang H.; et al. Van der Waals Polarity-engineered 3D Integration of 2D Complementary Logic. Nature 2024, 630, 346–352. 10.1038/s41586-024-07438-5. PubMed DOI PMC
Klein J.; Pingault B.; Florian M.; Heißenbüttel M. C.; Steinhoff A.; Song Z.; Torres K.; Dirnberger F.; Curtis J. B.; Weile M.; et al. The Bulk van der Waals Layered Magnet CrSBr is a Quasi-1D Material. ACS Nano 2023, 17, 5316–5328. 10.1021/acsnano.2c07316. PubMed DOI
Nourbakhsh A.; Zubair A.; Dresselhaus M. S.; Palacios T. Transport Properties of a MoS2/WSe2 Heterojunction Transistor and its Potential for Application. Nano Lett. 2016, 16, 1359–1366. 10.1021/acs.nanolett.5b04791. PubMed DOI
Wei L.; Wu Z.; Wei Y.; Li C.; Fu Z.; Han J.; Yang X.; Xie J.; Tian Z.; Zhou H.; et al. High-gain and Tunable Linear Photodetection in 2D Tunneling Heterostructures Through Potential Engineering. Adv. Funct. Mater. 2024, 34, 2411736.10.1002/adfm.202411736. DOI
Klein J.; Song Z.; Pingault B.; Dirnberger F.; Chi H.; Curtis J. B.; Dana R.; Bushati R.; Quan J.; Dekanovsky L.; et al. Sensing the Local Magnetic Environment Through Optically Active Defects in a Layered Magnetic Semiconductor. ACS Nano 2022, 17, 288–299. 10.1021/acsnano.2c07655. PubMed DOI
Heine V. Theory of Surface States. Phys. Rev. 1965, 138, A1689.10.1103/PhysRev.138.A1689. DOI
Monch W. On the Physics of Metal-semiconductor Interfaces. Rep. Prog. Phys. 1990, 53, 221.10.1088/0034-4885/53/3/001. DOI
Kobayashi N.; Masumoto H.; Takahashi S.; Maekawa S. Giant Dielectric and Magnetoelectric Responses in Insulating Nanogranular Films at Room Temperature. Nat. Commun. 2014, 5, 4417.10.1038/ncomms5417. PubMed DOI PMC
Biswas R.; Sinha C. Quenching Effect of Oscillating Potential on Anisotropic Resonant Transmission Through a Phosphorene Electrostatic Barrier. Sci. Rep. 2021, 11, 2881.10.1038/s41598-021-82323-z. PubMed DOI PMC
Boev M.; Kovalev V.; Kibis O. Optically Induced Resonant Tunneling of Electrons in Nanostructures. Sci. Rep. 2023, 13, 19625.10.1038/s41598-023-46998-w. PubMed DOI PMC
Linhart W.; Rybak M.; Birowska M.; Scharoch P.; Mosina K.; Mazanek V.; Kaczorowski D.; Sofer Z.; Kudrawiec R. Optical Markers of Magnetic Phase Transition in CrSBr. J. Mater. Chem. C 2023, 11, 8423–8430. 10.1039/D3TC01216F. DOI
Konstantatos G.; Badioli M.; Gaudreau L.; Osmond J.; Bernechea M.; De Arquer F. P. G.; Gatti F.; Koppens F. H. Hybrid Graphene–quantum Dot Phototransistors with Ultrahigh Gain. Nat. Nanotechnol. 2012, 7, 363–368. 10.1038/nnano.2012.60. PubMed DOI
Island J. O.; Blanter S. I.; Buscema M.; van der Zant H. S.; Castellanos-Gomez A. Gate Controlled Photocurrent Generation Mechanisms in High-gain In2Se3 Phototransistors. Nano Lett. 2015, 15, 7853–7858. 10.1021/acs.nanolett.5b02523. PubMed DOI
Konstantatos G.; Clifford J.; Levina L.; Sargent E. H. Sensitive Solution-processed Visible-wavelength Photodetectors. Nat. Photonics 2007, 1, 531–534. 10.1038/nphoton.2007.147. DOI
Khan S.; Khan A.; Azadmanjiri J.; Kumar Roy P.; Děkanovský L.; Sofer Z.; Numan A. 2D Heterostructures for Highly Efficient Photodetectors: From Advanced Synthesis to Characterizations, Mechanisms, and Device Applications. Adv. Photonics Res. 2022, 3, 2100342.10.1002/adpr.202100342. DOI
Klein J.; Pham T.; Thomsen J.; Curtis J.; Denneulin T.; Lorke M.; Florian M.; Steinhoff A.; Wiscons R.; Luxa J.; et al. Control of Structure and Spin Texture in the Van der Waals Layered Magnet CrSBr. Nat. Commun. 2022, 13, 5420.10.1038/s41467-022-32737-8. PubMed DOI PMC
Fernández Garrillo P. A.; Grévin B.; Chevalier N.; Borowik Ł. Calibrated Work Function Mapping by Kelvin Probe Force Microscopy. Rev. Sci. Instrum. 2018, 89, 043702.10.1063/1.5007619. PubMed DOI
Giannozzi P.; Baroni S.; Bonini N.; Calandra M.; Car R.; Cavazzoni C.; Ceresoli D.; Chiarotti G. L.; Cococcioni M.; Dabo I.; Dal Corso A.; de Gironcoli S.; Fabris S.; Fratesi G.; Gebauer R.; Gerstmann U.; Gougoussis C.; Kokalj A.; Lazzeri M.; Martin-Samos L.; et al. QUANTUM ESPRESSO: A Modular and Open-source Software Project for Quantum Simulations of Materials. J. Phys.: Condens. Matter 2009, 21 (19pp), 395502.10.1088/0953-8984/21/39/395502. PubMed DOI
Giannozzi P.; Andreussi O.; Brumme T.; Bunau O.; Buongiorno Nardelli M.; Calandra M.; Car R.; Cavazzoni C.; Ceresoli D.; Cococcioni M.; Colonna N.; Carnimeo I.; Dal Corso A.; de Gironcoli S.; Delugas P.; DiStasio R. A. Jr.; Ferretti A.; Floris A.; Fratesi G.; Fugallo G.; et al. Advanced Capabilities for Materials Modelling with QUANTUM ESPRESSO. J. Phys.: Condens. Matter 2017, 29, 465901.10.1088/1361-648x/aa8f79. PubMed DOI
Boix-Constant C.; Mañas-Valero S.; Ruiz A. M.; Rybakov A.; Konieczny K. A.; Pillet S.; Baldoví J. J.; Coronado E. Probing the Spin Dimensionality in Single-layer CrSBr Van der Waals Heterostructures by Magneto-transport Measurements. Adv. Mater. 2022, 34, 2204940.10.1002/adma.202204940. PubMed DOI