• This record comes from PubMed

Tuning of MoS2 Photoluminescence in Heterostructures with CrSBr

. 2025 Apr 30 ; 17 (17) : 25693-25701. [epub] 20250415

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Monolayers of semiconducting transition metal dichalcogenides (TMDCs) are known for their unique excitonic photoluminescence (PL), which can be tuned by interfacing them with other materials. However, integrating TMDCs into van der Waals heterostructures often results in a significant quenching of the PL because of an increased rate of nonradiative recombination processes. We demonstrate a wide-range tuning of the PL intensity of monolayer MoS2 interfaced with another layered semiconductor, CrSBr. We discover that a thin CrSBr up to ≈20 nm in thickness enhances the PL of MoS2, while a thicker material causes PL quenching, which is associated with changes in the excitonic makeup driven by the charge redistribution in the CrSBr/MoS2 heterostructure. Transport measurements, Kelvin probe force microscopy, and first-principles calculations indicate that this charge redistribution most likely causes n- to p-type doping transition of MoS2 upon contact with CrSBr, facilitated by the type II band alignment and the tendency of CrSBr to act as an electron sink. Furthermore, we fabricate an efficient AC-regime photodetector with a responsivity of 105 A/W from a MoS2/CrSBr heterostructure.

See more in PubMed

Novoselov K. S.; Geim A. K.; Morozov S. V.; Jiang D.; Zhang Y.; Dubonos S. V.; Grigorieva I. V.; Firsov A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. 10.1126/science.1102896. PubMed DOI

Lopez-Sanchez O.; Lembke D.; Kayci M.; Radenovic A.; Kis A. Ultrasensitive Photodetectors Based on Monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501. 10.1038/nnano.2013.100. PubMed DOI

Korn T.; Heydrich S.; Hirmer M.; Schmutzler J.; Schüller C. Low-temperature Photocarrier Dynamics in Monolayer MoS2. Appl. Phys. Lett. 2011, 99, 102109.10.1063/1.3636402. DOI

Wang Q. H.; Kalantar-Zadeh K.; Kis A.; Coleman J. N.; Strano M. S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. 10.1038/nnano.2012.193. PubMed DOI

Splendiani A.; Sun L.; Zhang Y.; Li T.; Kim J.; Chim C.; Galli G.; Wang F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. 10.1021/nl903868w. PubMed DOI

Mak K. F.; Lee C.; Hone J.; Shan J.; Heinz T. F. Atomically Thin MoS2: A New Direct-gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805.10.1103/PhysRevLett.105.136805. PubMed DOI

Mak K. F.; He K.; Lee C.; Lee G. H.; Hone J.; Heinz T. F.; Shan J. Tightly Bound Trions in Monolayer MoS2. Nat. Mater. 2013, 12, 207–211. 10.1038/nmat3505. PubMed DOI

Jones A. M.; Yu H.; Ghimire N. J.; Wu S.; Aivazian G.; Ross J. S.; Zhao B.; Yan J.; Mandrus D. G.; Xiao D.; et al. Optical Generation of Excitonic Valley Coherence in Monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634–638. 10.1038/nnano.2013.151. PubMed DOI

Ross J. S.; Wu S.; Yu H.; Ghimire N. J.; Jones A. M.; Aivazian G.; Yan J.; Mandrus D. G.; Xiao D.; Yao W.; et al. Electrical Control of Neutral and Charged Excitons in a Monolayer Semiconductor. Nat. Commun. 2013, 4, 1474.10.1038/ncomms2498. PubMed DOI

Mak K. F.; He K.; Shan J.; Heinz T. F. Control of Valley Polarization in Monolayer MoS2 by Optical Helicity. Nat. Nanotechnol. 2012, 7, 494–498. 10.1038/nnano.2012.96. PubMed DOI

Sahu S.; Panda J.; Haider G.; Frank O.; Kalbáč M.; Velický M. Self-biased High-responsivity Photodetector Based on a Bi2SeTe2 Topological Insulator. ACS Appl. Electron. Mater. 2023, 5, 6697–6703. 10.1021/acsaelm.3c01195. DOI

Panda J.; Sahu S.; Haider G.; Thakur M. K.; Mosina K.; Velický M.; Vejpravova J.; Sofer Z.; Kalbáč M. Polarization-resolved Position-sensitive Self-powered Binary Photodetection in Multilayer Janus CrSBr. ACS Appl. Mater. Interfaces 2024, 16, 1033–1043. 10.1021/acsami.3c13552. PubMed DOI PMC

Novoselov K. S.; Mishchenko A.; Carvalho A.; Castro Neto A. 2D Materials and van der Waals Heterostructures. Science 2016, 353, aac9439.10.1126/science.aac9439. PubMed DOI

Xia F.; Wang H.; Xiao D.; Dubey M.; Ramasubramaniam A. Two-dimensional Material Nanophotonics. Nat. Photonics 2014, 8, 899–907. 10.1038/nphoton.2014.271. DOI

Duan J.; Chava P.; Ghorbani-Asl M.; Erb D.; Hu L.; Krasheninnikov A. V.; Schneider H.; Rebohle L.; Erbe A.; Helm M.; et al. Enhanced Trion Emission in Monolayer MoSe2 by Constructing a Type-I van der Waals Heterostructure. Adv. Funct. Mater. 2021, 31, 2104960.10.1002/adfm.202104960. DOI

Ramos M.; Marques-Moros F.; Esteras D. L.; Mañas-Valero S.; Henríquez-Guerra E.; Gadea M.; Baldoví J. J.; Canet-Ferrer J.; Coronado E.; Calvo M. R. Photoluminescence Enhancement by Band Alignment Engineering in MoS2/FePS3 Van der Waals Heterostructures. ACS Appl. Mater. Interfaces 2022, 14, 33482–33490. 10.1021/acsami.2c05464. PubMed DOI PMC

Serati de Brito C.; Faria Junior P. E.; Ghiasi T. S.; Ingla-Aynés J.; Rabahi C. R.; Cavalini C.; Dirnberger F.; Mañas-Valero S.; Watanabe K.; Taniguchi T.; et al. Charge Transfer and Asymmetric Coupling of MoSe2 Valleys to the Magnetic Order of CrSBr. Nano Lett. 2023, 23, 11073–11081. 10.1021/acs.nanolett.3c03431. PubMed DOI

Bellus M. Z.; Li M.; Lane S. D.; Ceballos F.; Cui Q.; Zeng X. C.; Zhao H. Type-I Van der Waals Heterostructure Formed by MoS2 and ReS2 Monolayers. Nanoscale Horizons 2017, 2, 31–36. 10.1039/C6NH00144K. PubMed DOI

Xiao J.; Zhang L.; Zhou H.; Shao Z.; Liu J.; Zhao Y.; Li Y.; Liu X.; Xie H.; Gao Y.; et al. Type-II Interface Band Alignment in the vdW PbI2–MoSe2 Heterostructure. ACS Appl. Mater. Interfaces 2020, 12, 32099–32105. 10.1021/acsami.0c04985. PubMed DOI

Sahu S.; Haider G.; Rodriguez A.; Plšek J.; Mergl M.; Kalbáč M.; Frank O.; Velický M. Large-area Mechanically-exfoliated Two-dimensional Materials on Arbitrary Substrates. Adv. Mater. Technol. 2023, 8, 2201993.10.1002/admt.202201993. DOI

Wilson N. P.; Lee K.; Cenker J.; Xie K.; Dismukes A. H.; Telford E. J.; Fonseca J.; Sivakumar S.; Dean C.; Cao T.; et al. Interlayer Electronic Coupling on Demand in a 2D Magnetic Semiconductor. Nat. Mater. 2021, 20, 1657–1662. 10.1038/s41563-021-01070-8. PubMed DOI

Wang T.; Zhang D.; Yang S.; Lin Z.; Chen Q.; Yang J.; Gong Q.; Chen Z.; Ye Y.; Liu W. Magnetically-dressed CrSBr Exciton-polaritons in Ultrastrong Coupling Regime. Nat. Commun. 2023, 14, 59066.10.1038/s41467-023-41688-7. PubMed DOI PMC

Mouri S.; Miyauchi Y.; Matsuda K. Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping. Nano Lett. 2013, 13, 5944–5948. 10.1021/nl403036h. PubMed DOI

Park Y.; Li N.; Jung D.; Singh L. T.; Baik J.; Lee E.; Oh D.; Kim Y. D.; Lee J. Y.; Woo J.; et al. Unveiling the Origin of n-type Doping of Natural MoS2: Carbon. npj 2D Mater. Appl. 2023, 7, 60.10.1038/s41699-023-00424-x. DOI

Vaquero D.; Clericò V.; Salvador-Sánchez J.; Martín-Ramos A.; Díaz E.; Domínguez-Adame F.; Meziani Y. M.; Diez E.; Quereda J. Excitons Trions and Rydberg States in Monolayer MoS2 Revealed by Low-Temperature Photocurrent Spectroscopy. Commun. Phys. 2020, 3, 194.10.1038/s42005-020-00460-9. DOI

Godde T.; Schmidt D.; Schmutzler J.; Aßmann M.; Debus J.; Withers F.; Alexeev E.; Del Pozo-Zamudio O.; Skrypka O.; Novoselov K.; et al. Exciton and Trion Dynamics in Atomically Thin MoSe2 and WSe2: Effect of Localization. Phys. Rev. B 2016, 94, 165301.10.1103/physrevb.94.165301. DOI

Singh A.; Moody G.; Tran K.; Scott M. E.; Overbeck V.; Berghäuser G.; Schaibley J.; Seifert E. J.; Pleskot D.; Gabor N. M.; et al. Trion Formation Dynamics in Monolayer Transition Metal Dichalcogenides. Phys. Rev. B 2016, 93, 041401.10.1103/physrevb.93.041401. DOI

Lee Y.; Ghimire G.; Roy S.; Kim Y.; Seo C.; Sood A.; Jang J. I.; Kim J. Impeding Exciton–exciton Annihilation in Monolayer WS2 by Laser Irradiation. ACS Photonics 2018, 5, 2904–2911. 10.1021/acsphotonics.8b00249. DOI

Lien D. H.; Uddin S. Z.; Yeh M.; Amani M.; Kim H.; Ager III J. W.; Yablonovitch E.; Javey A. Electrical Suppression of All Nonradiative Recombination Pathways in Monolayer Semiconductors. Science 2019, 364, 468–471. 10.1126/science.aaw8053. PubMed DOI

Yu Y.; Lee D.; Jeong B. The Dependence of the Work Function of Pt (111) on Surface Carbon Investigated with near Ambient Pressure X-ray Photoelectron Spectroscopy. Appl. Surf. Sci. 2023, 607, 155005.10.1016/j.apsusc.2022.155005. DOI

Kim J. H.; Lee J.; Kim J. H.; Hwang C.; Lee C.; Park J. Y. Work Function Variation of MoS2 Atomic Layers Grown with Chemical Vapor Deposition: The Effects of Thickness and the Adsorption of Water/Oxygen Molecules. Appl. Phys. Lett. 2015, 106, 251606.10.1063/1.4923202. DOI

Smolenski S.; Wen M.; Li Q.; Downey E.; Alfrey A.; Liu W.; Kondusamy A. L. N.; Bostwick A.; Jozwiak C.; Rotenberg E.; Zhao L.; Deng H.; Lv B.; Zgid D.; Gull E.; Jo N. H. Large Exciton Binding Energy in a Bulk van der Waals Magnet from Quasi-1D Electronic Localization. Nat. Commun. 2025, 16, 1134.10.1038/s41467-025-56457-x. PubMed DOI PMC

Guo Y.; Li J.; Zhan X.; Wang C.; Li M.; Zhang B.; Wang Z.; Liu Y.; Yang K.; Wang H.; et al. Van der Waals Polarity-engineered 3D Integration of 2D Complementary Logic. Nature 2024, 630, 346–352. 10.1038/s41586-024-07438-5. PubMed DOI PMC

Klein J.; Pingault B.; Florian M.; Heißenbüttel M. C.; Steinhoff A.; Song Z.; Torres K.; Dirnberger F.; Curtis J. B.; Weile M.; et al. The Bulk van der Waals Layered Magnet CrSBr is a Quasi-1D Material. ACS Nano 2023, 17, 5316–5328. 10.1021/acsnano.2c07316. PubMed DOI

Nourbakhsh A.; Zubair A.; Dresselhaus M. S.; Palacios T. Transport Properties of a MoS2/WSe2 Heterojunction Transistor and its Potential for Application. Nano Lett. 2016, 16, 1359–1366. 10.1021/acs.nanolett.5b04791. PubMed DOI

Wei L.; Wu Z.; Wei Y.; Li C.; Fu Z.; Han J.; Yang X.; Xie J.; Tian Z.; Zhou H.; et al. High-gain and Tunable Linear Photodetection in 2D Tunneling Heterostructures Through Potential Engineering. Adv. Funct. Mater. 2024, 34, 2411736.10.1002/adfm.202411736. DOI

Klein J.; Song Z.; Pingault B.; Dirnberger F.; Chi H.; Curtis J. B.; Dana R.; Bushati R.; Quan J.; Dekanovsky L.; et al. Sensing the Local Magnetic Environment Through Optically Active Defects in a Layered Magnetic Semiconductor. ACS Nano 2022, 17, 288–299. 10.1021/acsnano.2c07655. PubMed DOI

Heine V. Theory of Surface States. Phys. Rev. 1965, 138, A1689.10.1103/PhysRev.138.A1689. DOI

Monch W. On the Physics of Metal-semiconductor Interfaces. Rep. Prog. Phys. 1990, 53, 221.10.1088/0034-4885/53/3/001. DOI

Kobayashi N.; Masumoto H.; Takahashi S.; Maekawa S. Giant Dielectric and Magnetoelectric Responses in Insulating Nanogranular Films at Room Temperature. Nat. Commun. 2014, 5, 4417.10.1038/ncomms5417. PubMed DOI PMC

Biswas R.; Sinha C. Quenching Effect of Oscillating Potential on Anisotropic Resonant Transmission Through a Phosphorene Electrostatic Barrier. Sci. Rep. 2021, 11, 2881.10.1038/s41598-021-82323-z. PubMed DOI PMC

Boev M.; Kovalev V.; Kibis O. Optically Induced Resonant Tunneling of Electrons in Nanostructures. Sci. Rep. 2023, 13, 19625.10.1038/s41598-023-46998-w. PubMed DOI PMC

Linhart W.; Rybak M.; Birowska M.; Scharoch P.; Mosina K.; Mazanek V.; Kaczorowski D.; Sofer Z.; Kudrawiec R. Optical Markers of Magnetic Phase Transition in CrSBr. J. Mater. Chem. C 2023, 11, 8423–8430. 10.1039/D3TC01216F. DOI

Konstantatos G.; Badioli M.; Gaudreau L.; Osmond J.; Bernechea M.; De Arquer F. P. G.; Gatti F.; Koppens F. H. Hybrid Graphene–quantum Dot Phototransistors with Ultrahigh Gain. Nat. Nanotechnol. 2012, 7, 363–368. 10.1038/nnano.2012.60. PubMed DOI

Island J. O.; Blanter S. I.; Buscema M.; van der Zant H. S.; Castellanos-Gomez A. Gate Controlled Photocurrent Generation Mechanisms in High-gain In2Se3 Phototransistors. Nano Lett. 2015, 15, 7853–7858. 10.1021/acs.nanolett.5b02523. PubMed DOI

Konstantatos G.; Clifford J.; Levina L.; Sargent E. H. Sensitive Solution-processed Visible-wavelength Photodetectors. Nat. Photonics 2007, 1, 531–534. 10.1038/nphoton.2007.147. DOI

Khan S.; Khan A.; Azadmanjiri J.; Kumar Roy P.; Děkanovský L.; Sofer Z.; Numan A. 2D Heterostructures for Highly Efficient Photodetectors: From Advanced Synthesis to Characterizations, Mechanisms, and Device Applications. Adv. Photonics Res. 2022, 3, 2100342.10.1002/adpr.202100342. DOI

Klein J.; Pham T.; Thomsen J.; Curtis J.; Denneulin T.; Lorke M.; Florian M.; Steinhoff A.; Wiscons R.; Luxa J.; et al. Control of Structure and Spin Texture in the Van der Waals Layered Magnet CrSBr. Nat. Commun. 2022, 13, 5420.10.1038/s41467-022-32737-8. PubMed DOI PMC

Fernández Garrillo P. A.; Grévin B.; Chevalier N.; Borowik Ł. Calibrated Work Function Mapping by Kelvin Probe Force Microscopy. Rev. Sci. Instrum. 2018, 89, 043702.10.1063/1.5007619. PubMed DOI

Giannozzi P.; Baroni S.; Bonini N.; Calandra M.; Car R.; Cavazzoni C.; Ceresoli D.; Chiarotti G. L.; Cococcioni M.; Dabo I.; Dal Corso A.; de Gironcoli S.; Fabris S.; Fratesi G.; Gebauer R.; Gerstmann U.; Gougoussis C.; Kokalj A.; Lazzeri M.; Martin-Samos L.; et al. QUANTUM ESPRESSO: A Modular and Open-source Software Project for Quantum Simulations of Materials. J. Phys.: Condens. Matter 2009, 21 (19pp), 395502.10.1088/0953-8984/21/39/395502. PubMed DOI

Giannozzi P.; Andreussi O.; Brumme T.; Bunau O.; Buongiorno Nardelli M.; Calandra M.; Car R.; Cavazzoni C.; Ceresoli D.; Cococcioni M.; Colonna N.; Carnimeo I.; Dal Corso A.; de Gironcoli S.; Delugas P.; DiStasio R. A. Jr.; Ferretti A.; Floris A.; Fratesi G.; Fugallo G.; et al. Advanced Capabilities for Materials Modelling with QUANTUM ESPRESSO. J. Phys.: Condens. Matter 2017, 29, 465901.10.1088/1361-648x/aa8f79. PubMed DOI

Boix-Constant C.; Mañas-Valero S.; Ruiz A. M.; Rybakov A.; Konieczny K. A.; Pillet S.; Baldoví J. J.; Coronado E. Probing the Spin Dimensionality in Single-layer CrSBr Van der Waals Heterostructures by Magneto-transport Measurements. Adv. Mater. 2022, 34, 2204940.10.1002/adma.202204940. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...