• This record comes from PubMed

The Unexpected Chemistry of Thiacalix[4]arene Monosulfoxide

. 2023 May 05 ; 28 (9) : . [epub] 20230505

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
20-08667S Czech Science Foundation
A2_FCHT_2022_073 Ministry of Education Youth and Sports

Thiacalix[4]arene monosulfoxide 4 possesses a very unusual chemistry, as demonstrated by several unprecedented derivatives in calixarene chemistry. Interestingly, compound 4 cannot be prepared by the dealkylation of its corresponding tetramethoxy derivative using BBr3. Instead, the borate complex is formed with a boron bound by the two neighboring phenolic oxygens and a sulfoxide group. A similar type of borate complex with a spirodienone fragment was then isolated as a by-product. The oxidation of monosulfoxide with Chloramine-T did not provide the expected spirodienone moiety, but rather a complex oxathiane-based spiroheterocyclic part containing a chlorine atom. X-ray analyses confirmed the structures of the unusual products and feasible formation mechanisms were proposed. These results provide further evidence of the distinction between thiacalixarene chemistry and the chemistry of classical CH2 analogues.

See more in PubMed

Mandolini L., Ungaro R. Calixarenes in Action. World Scientific Publishing Company; Singapore: 2000.

Asfari Z., Böhmer V., Harrowfield J., Vicens J. Calixarenes 2001. Kluwer Academic Publishers; Dordrecht, The Netherlands: 2001.

Vicens J., Harrowfield J., Baklouti L. Calixarenes in the Nanoworld. Springer; Dordrecht, The Netherlands: 2007.

Gutsche C.D., Chemistry R.S.O. Calixarenes: An Introduction. RSC Publishing; Cambridge, UK: 2008.

Neri P., Sessler J.L., Wang M.X. Calixarenes and Beyond. Springer; Cham, Germany: 2016.

Kumagai H., Hasegawa M., Miyanari S., Sugawa Y., Sato Y., Hori T., Ueda S., Kamiyama H., Miyano S. Facile synthesis of p-tert-butylthiacalix[4]arene by the reaction of p-tert-butylphenol with elemental sulfur in the presence of a base. Tetrahedron Lett. 1997;38:3971–3972. doi: 10.1016/S0040-4039(97)00792-2. DOI

Kumar R., Lee Y.O., Bhalla V., Kumar M., Kim J.S. Recent developments of thiacalixarene based molecular motifs. Chem. Soc. Rev. 2014;43:4824–4870. doi: 10.1039/c4cs00068d. PubMed DOI

Morohashi N., Narumi F., Iki N., Hattori T., Miyano S. Thiacalixarenes. Chem. Rev. 2006;106:5291–5316. doi: 10.1021/cr050565j. PubMed DOI

Lhoták P. Chemistry of Thiacalixarenes. Eur. J. Org. Chem. 2004;2004:1675–1692. doi: 10.1002/ejoc.200300492. DOI

Litwak A.M., Biali S.E. Oxidative cyclization of calix[4]arenes. J. Org. Chem. 1992;57:1943–1945. doi: 10.1021/jo00033a001. DOI

Agbaria K., Biali S.E. Spirodienone Route for the Stereoselective Methylene Functionalization of p-tert-Butylcalix[4]arene. J. Am. Chem. Soc. 2001;123:12495–12503. doi: 10.1021/ja0117480. PubMed DOI

Agbaria K., Wöhnert J., Biali S.E. Extraannular Fluorinated Calixarenes:  Regiospecificity of the Deoxofluorination Reactions of Bis(spirodienol) Derivatives. J. Org. Chem. 2001;66:7059–7066. doi: 10.1021/jo010509s. PubMed DOI

Simaan S., Agbaria K., Biali S.E. Functionalization of the Methylene Groups of p-tert-Butylcalix[4]arene:  S−C, N−C, and C−C Bond Formation. J. Org. Chem. 2002;67:6136–6142. doi: 10.1021/jo025949d. PubMed DOI

Biali S.E. The Spirodienone Route for the Functionalization of Calixarenes. Synlett. 2003;2003:0001–0011. doi: 10.1055/s-2003-36212. DOI

Thulasi S., Savithri A., Varma R.L. Calix[4]bis(spirodienone) as a versatile synthon for upper rim alkoxylation of calixarenes and synthesis of novel triazole-based biscalixarene by ‘CuAAC’ chemistry. Supramol. Chem. 2011;23:501–508. doi: 10.1080/10610278.2011.556252. DOI

Litwak A.M., Grynszpan F., Aleksiuk O., Cohen S., Biali S.E. Preparation, stereochemistry, and reactions of the bis(spirodienone) derivatives of p-tert-butylcalix[4]arene. J. Org. Chem. 1993;58:393–402. doi: 10.1021/jo00054a023. DOI

Morohashi N., Kojima M., Suzuki A., Ohba Y. Conversion of Mono- and Tetra-Thiacalix[4]arenes to Sulfilimine Derivatives and Unexpected Formation of Monospirodienone derivatives. Heterocycl. Commun. 2005;11:249–254. doi: 10.1515/HC.2005.11.3-4.249. DOI

Polivkova K., Simanova M., Budka J., Curinova P., Cisarova I., Lhotak P. Unexpected behavior of monospirothiacalix[4]arene under acidic conditions. Tetrahedron Lett. 2009;50:6347–6350. doi: 10.1016/j.tetlet.2009.08.105. DOI

Vrzal L., Kratochvilova-Simanova M., Landovsky T., Polivkova K., Budka J., Dvorakova H., Lhotak P. Application of RDC enhanced NMR spectroscopy in structural analysis of thiacalix[4]arene derivatives. Org. Biomol. Chem. 2015;13:9610–9618. doi: 10.1039/C5OB01424G. PubMed DOI

Arnott G.E. Inherently Chiral Calixarenes: Synthesis and Applications. Chem. Eur. J. 2018;24:1744–1754. doi: 10.1002/chem.201703367. PubMed DOI

Szumna A. Inherently chiral concave molecules-from synthesis to applications. Chem. Soc. Rev. 2010;39:4274–4285. doi: 10.1039/b919527k. PubMed DOI

Kortus D., Eigner V., Lhotak P. Regio- and stereoselectivity of spirodienone formation in 2,14-dithiacalix[4]arene. New J. Chem. 2021;45:8563–8571. doi: 10.1039/D1NJ01257F. DOI

Lhotak P., Himl M., Stibor I., Sykora J., Dvorakova H., Lang J., Petrickova H. Conformational behavior of tetramethoxythiacalix[4]arenes: Solution versus solid-state study. Tetrahedron. 2003;59:7581–7585. doi: 10.1016/S0040-4020(03)01171-2. DOI

Kaiser L., Landovsky T., Salvadori K., Eigner V., Dvorakova H., Lhotak P. Breaking thiacalix[4]arene into pieces—A novel synthetic approach to higher calixarenes bearing mixed (-S-, -CH2-) bridges. RSC Adv. 2021;11:36934–36941. doi: 10.1039/D1RA07464D. PubMed DOI PMC

Fischer C., Katzsch F., Weber E. Easily accessible symmetrically and unsymmetrically bridge disubstituted tetrahydroxycalix[4]arenes in advantageous trans-cone conformation. Tetrahedron Lett. 2013;54:2874–2877. doi: 10.1016/j.tetlet.2013.03.101. DOI

Han B., Wang X., Gao Y., Bai M. Constructing a Nonfluorescent Conformation of AIEgen: A Tetraphenylethene Embedded in the Calix[4]arene’s Skeleton. Chem. A Eur. J. 2016;22:16037–16041. doi: 10.1002/chem.201604062. PubMed DOI

Morohashi N., Kitahara T., Arima T., Tanaka S., Ohba Y., Hattori T. Synthesis of Dinuclear Boron Complexes of Sulfinylcalix[4]arenes: Syn/Anti Stereocontrol by the Arrangement of the Sulfinyl Functions. Org. Lett. 2008;10:2845–2848. doi: 10.1021/ol801011q. PubMed DOI

Čubiňák M., Eigner V., Tobrman T. Bench-Stable Sulfoxide-Based Boronates: Preparation and Application in a Tandem Suzuki Reaction. Adv. Synth. Catal. 2018;360:4604–4614. doi: 10.1002/adsc.201801000. DOI

Firouzabadi H., Jamalian A. Reduction of oxygenated organosulfur compounds. J. Sulfur Chem. 2008;29:53–97. doi: 10.1080/17415990701684776. DOI

Roy C.D., Brown H.C. Dibromoborane-dimethyl sulfide: A new, mild, chemoselective reagent for the rapid deoxygenation of sulfoxides to sulfides†. J. Chem. Res. 2006;2006:642–644. doi: 10.3184/030823406779173622. DOI

Guindon Y., Atkinson J.G., Morton H.E. Deoxygenation of sulfoxides with boron bromide reagents. J. Org. Chem. 1984;49:4538–4540. doi: 10.1021/jo00197a043. DOI

Georghiou P.E., Ashram M., Clase H.J., Bridson J.N. Spirodienone and Bis(spirodienone) Derivatives of Calix[4]naphthalenes. J. Org. Chem. 1998;63:1819–1826. doi: 10.1021/jo971541i. DOI

Zhang F., Kumamaru K., Yamamoto H. Synthesis, Conformational Studies and Inclusion Properties of Tetrakis[(2-pyridylmethyl)oxy]thiacalix[4]arenes. J. Incl. Phenom. Macrocycl. Chem. 2002;42:51–60. doi: 10.1023/A:1014540609454. DOI

Morohashi N., Katagiri H., Iki N., Yamane Y., Kabuto C., Hattori T., Miyano S. Synthesis of All Stereoisomers of Sulfinylcalix[4]arenes1. J. Org. Chem. 2003;68:2324–2333. doi: 10.1021/jo026801x. PubMed DOI

Gutsche C.D., Bauer L.J. Calixarenes. 13. The conformational properties of calix[4]arenes, calix[6]arenes, calix[8]arenes, and oxacalixarenes. J. Am. Chem. Soc. 1985;107:6052–6059. doi: 10.1021/ja00307a038. DOI

Kusano T., Tabatabai M., Okamoto Y., Böhmer V. The Cone-to-Cone Interconversion of Partially O-Methylated Calix[4]arenes:  First Experimental Values for the Energy Barriers. J. Am. Chem. Soc. 1999;121:3789–3790. doi: 10.1021/ja9837811. DOI

Kortus D., Krizova K., Dvorakova H., Eigner V., Lhotak P. Synthesis of 2,8-dithiacalix[4]arene based on fragment condensation. Tetrahedron Lett. 2021;69:152924. doi: 10.1016/j.tetlet.2021.152924. DOI

Miksatko J., Eigner V., Kohout M., Lhotak P. Regio-/stereoselective formation of monosulfoxides from thiacalix[4]arenes in all possible conformations. Tetrahedron Lett. 2017;58:1687–1691. doi: 10.1016/j.tetlet.2017.03.043. DOI

Miksatko J., Eigner V., Dvorakova H., Lhotak P. Selective oxidation of thiacalix[4]arene (cone) to all corresponding sulfoxides. Tetrahedron Lett. 2016;57:3781–3784. doi: 10.1016/j.tetlet.2016.07.022. DOI

Heasley V.L., Elliott S.L., Erdman P.E., Figueroa D.E., Krosley K.W., Louie T.J., Moore H.B., Mudge B.P., Nogales D.F., Nordeen J., et al. Chlorination of α,β-unsaturated ketones and esters in the presence of acid scavengers. J. Chem. Soc. Perkin Trans. 2. 1991:393–399. doi: 10.1039/P29910000393. DOI

Wriede U., Fernandez M., West K.F., Harcour D., Moore H.W. Synthesis of halodimethoxy-1,2-benzoquinones. J. Org. Chem. 1987;52:4485–4489. doi: 10.1021/jo00229a011. DOI

Bruker . APEX4, SAINT and SADABS. Bruker AXS Inc.; Madison, WI, USA: 2021.

Sheldrick G. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A. 2015;71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC

Betteridge P., Carruthers J., Cooper R., Prout K., Watkin D. CRYSTALS version 12: Software for guided crystal structure analysis. J. Appl. Crystallogr. 2003;36:1487. doi: 10.1107/S0021889803021800. DOI

Rohlíček J., Hušák M. MCE2005–a new version of a program for fast interactive visualization of electron and similar density maps optimized for small molecules. J. Appl. Crystallogr. 2007;40:600–601. doi: 10.1107/S0021889807018894. DOI

Spek A. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D. 2009;65:148–155. doi: 10.1107/S090744490804362X. PubMed DOI PMC

Rigaku O.D. CrysAlis PRO. Rigaku Oxford Diffraction Ltd.; Yarnton, UK: 2020.

Palatinus L., Chapuis G. SUPERFLIP—A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007;40:786–790. doi: 10.1107/S0021889807029238. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...