The Unexpected Chemistry of Thiacalix[4]arene Monosulfoxide
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
20-08667S
Czech Science Foundation
A2_FCHT_2022_073
Ministry of Education Youth and Sports
PubMed
37175324
PubMed Central
PMC10179807
DOI
10.3390/molecules28093914
PII: molecules28093914
Knihovny.cz E-resources
- Keywords
- X-ray analysis, boronate complex, dealkylation, monosulfoxide, oxidation, regioisomers, spirodienone, thiacalixarene,
- Publication type
- Journal Article MeSH
Thiacalix[4]arene monosulfoxide 4 possesses a very unusual chemistry, as demonstrated by several unprecedented derivatives in calixarene chemistry. Interestingly, compound 4 cannot be prepared by the dealkylation of its corresponding tetramethoxy derivative using BBr3. Instead, the borate complex is formed with a boron bound by the two neighboring phenolic oxygens and a sulfoxide group. A similar type of borate complex with a spirodienone fragment was then isolated as a by-product. The oxidation of monosulfoxide with Chloramine-T did not provide the expected spirodienone moiety, but rather a complex oxathiane-based spiroheterocyclic part containing a chlorine atom. X-ray analyses confirmed the structures of the unusual products and feasible formation mechanisms were proposed. These results provide further evidence of the distinction between thiacalixarene chemistry and the chemistry of classical CH2 analogues.
Department of Solid State Chemistry UCTP Technická 5 166 28 Prague Czech Republic
Laboratory of NMR Spectroscopy UCTP Technická 5 166 28 Prague Czech Republic
See more in PubMed
Mandolini L., Ungaro R. Calixarenes in Action. World Scientific Publishing Company; Singapore: 2000.
Asfari Z., Böhmer V., Harrowfield J., Vicens J. Calixarenes 2001. Kluwer Academic Publishers; Dordrecht, The Netherlands: 2001.
Vicens J., Harrowfield J., Baklouti L. Calixarenes in the Nanoworld. Springer; Dordrecht, The Netherlands: 2007.
Gutsche C.D., Chemistry R.S.O. Calixarenes: An Introduction. RSC Publishing; Cambridge, UK: 2008.
Neri P., Sessler J.L., Wang M.X. Calixarenes and Beyond. Springer; Cham, Germany: 2016.
Kumagai H., Hasegawa M., Miyanari S., Sugawa Y., Sato Y., Hori T., Ueda S., Kamiyama H., Miyano S. Facile synthesis of p-tert-butylthiacalix[4]arene by the reaction of p-tert-butylphenol with elemental sulfur in the presence of a base. Tetrahedron Lett. 1997;38:3971–3972. doi: 10.1016/S0040-4039(97)00792-2. DOI
Kumar R., Lee Y.O., Bhalla V., Kumar M., Kim J.S. Recent developments of thiacalixarene based molecular motifs. Chem. Soc. Rev. 2014;43:4824–4870. doi: 10.1039/c4cs00068d. PubMed DOI
Morohashi N., Narumi F., Iki N., Hattori T., Miyano S. Thiacalixarenes. Chem. Rev. 2006;106:5291–5316. doi: 10.1021/cr050565j. PubMed DOI
Lhoták P. Chemistry of Thiacalixarenes. Eur. J. Org. Chem. 2004;2004:1675–1692. doi: 10.1002/ejoc.200300492. DOI
Litwak A.M., Biali S.E. Oxidative cyclization of calix[4]arenes. J. Org. Chem. 1992;57:1943–1945. doi: 10.1021/jo00033a001. DOI
Agbaria K., Biali S.E. Spirodienone Route for the Stereoselective Methylene Functionalization of p-tert-Butylcalix[4]arene. J. Am. Chem. Soc. 2001;123:12495–12503. doi: 10.1021/ja0117480. PubMed DOI
Agbaria K., Wöhnert J., Biali S.E. Extraannular Fluorinated Calixarenes: Regiospecificity of the Deoxofluorination Reactions of Bis(spirodienol) Derivatives. J. Org. Chem. 2001;66:7059–7066. doi: 10.1021/jo010509s. PubMed DOI
Simaan S., Agbaria K., Biali S.E. Functionalization of the Methylene Groups of p-tert-Butylcalix[4]arene: S−C, N−C, and C−C Bond Formation. J. Org. Chem. 2002;67:6136–6142. doi: 10.1021/jo025949d. PubMed DOI
Biali S.E. The Spirodienone Route for the Functionalization of Calixarenes. Synlett. 2003;2003:0001–0011. doi: 10.1055/s-2003-36212. DOI
Thulasi S., Savithri A., Varma R.L. Calix[4]bis(spirodienone) as a versatile synthon for upper rim alkoxylation of calixarenes and synthesis of novel triazole-based biscalixarene by ‘CuAAC’ chemistry. Supramol. Chem. 2011;23:501–508. doi: 10.1080/10610278.2011.556252. DOI
Litwak A.M., Grynszpan F., Aleksiuk O., Cohen S., Biali S.E. Preparation, stereochemistry, and reactions of the bis(spirodienone) derivatives of p-tert-butylcalix[4]arene. J. Org. Chem. 1993;58:393–402. doi: 10.1021/jo00054a023. DOI
Morohashi N., Kojima M., Suzuki A., Ohba Y. Conversion of Mono- and Tetra-Thiacalix[4]arenes to Sulfilimine Derivatives and Unexpected Formation of Monospirodienone derivatives. Heterocycl. Commun. 2005;11:249–254. doi: 10.1515/HC.2005.11.3-4.249. DOI
Polivkova K., Simanova M., Budka J., Curinova P., Cisarova I., Lhotak P. Unexpected behavior of monospirothiacalix[4]arene under acidic conditions. Tetrahedron Lett. 2009;50:6347–6350. doi: 10.1016/j.tetlet.2009.08.105. DOI
Vrzal L., Kratochvilova-Simanova M., Landovsky T., Polivkova K., Budka J., Dvorakova H., Lhotak P. Application of RDC enhanced NMR spectroscopy in structural analysis of thiacalix[4]arene derivatives. Org. Biomol. Chem. 2015;13:9610–9618. doi: 10.1039/C5OB01424G. PubMed DOI
Arnott G.E. Inherently Chiral Calixarenes: Synthesis and Applications. Chem. Eur. J. 2018;24:1744–1754. doi: 10.1002/chem.201703367. PubMed DOI
Szumna A. Inherently chiral concave molecules-from synthesis to applications. Chem. Soc. Rev. 2010;39:4274–4285. doi: 10.1039/b919527k. PubMed DOI
Kortus D., Eigner V., Lhotak P. Regio- and stereoselectivity of spirodienone formation in 2,14-dithiacalix[4]arene. New J. Chem. 2021;45:8563–8571. doi: 10.1039/D1NJ01257F. DOI
Lhotak P., Himl M., Stibor I., Sykora J., Dvorakova H., Lang J., Petrickova H. Conformational behavior of tetramethoxythiacalix[4]arenes: Solution versus solid-state study. Tetrahedron. 2003;59:7581–7585. doi: 10.1016/S0040-4020(03)01171-2. DOI
Kaiser L., Landovsky T., Salvadori K., Eigner V., Dvorakova H., Lhotak P. Breaking thiacalix[4]arene into pieces—A novel synthetic approach to higher calixarenes bearing mixed (-S-, -CH2-) bridges. RSC Adv. 2021;11:36934–36941. doi: 10.1039/D1RA07464D. PubMed DOI PMC
Fischer C., Katzsch F., Weber E. Easily accessible symmetrically and unsymmetrically bridge disubstituted tetrahydroxycalix[4]arenes in advantageous trans-cone conformation. Tetrahedron Lett. 2013;54:2874–2877. doi: 10.1016/j.tetlet.2013.03.101. DOI
Han B., Wang X., Gao Y., Bai M. Constructing a Nonfluorescent Conformation of AIEgen: A Tetraphenylethene Embedded in the Calix[4]arene’s Skeleton. Chem. A Eur. J. 2016;22:16037–16041. doi: 10.1002/chem.201604062. PubMed DOI
Morohashi N., Kitahara T., Arima T., Tanaka S., Ohba Y., Hattori T. Synthesis of Dinuclear Boron Complexes of Sulfinylcalix[4]arenes: Syn/Anti Stereocontrol by the Arrangement of the Sulfinyl Functions. Org. Lett. 2008;10:2845–2848. doi: 10.1021/ol801011q. PubMed DOI
Čubiňák M., Eigner V., Tobrman T. Bench-Stable Sulfoxide-Based Boronates: Preparation and Application in a Tandem Suzuki Reaction. Adv. Synth. Catal. 2018;360:4604–4614. doi: 10.1002/adsc.201801000. DOI
Firouzabadi H., Jamalian A. Reduction of oxygenated organosulfur compounds. J. Sulfur Chem. 2008;29:53–97. doi: 10.1080/17415990701684776. DOI
Roy C.D., Brown H.C. Dibromoborane-dimethyl sulfide: A new, mild, chemoselective reagent for the rapid deoxygenation of sulfoxides to sulfides†. J. Chem. Res. 2006;2006:642–644. doi: 10.3184/030823406779173622. DOI
Guindon Y., Atkinson J.G., Morton H.E. Deoxygenation of sulfoxides with boron bromide reagents. J. Org. Chem. 1984;49:4538–4540. doi: 10.1021/jo00197a043. DOI
Georghiou P.E., Ashram M., Clase H.J., Bridson J.N. Spirodienone and Bis(spirodienone) Derivatives of Calix[4]naphthalenes. J. Org. Chem. 1998;63:1819–1826. doi: 10.1021/jo971541i. DOI
Zhang F., Kumamaru K., Yamamoto H. Synthesis, Conformational Studies and Inclusion Properties of Tetrakis[(2-pyridylmethyl)oxy]thiacalix[4]arenes. J. Incl. Phenom. Macrocycl. Chem. 2002;42:51–60. doi: 10.1023/A:1014540609454. DOI
Morohashi N., Katagiri H., Iki N., Yamane Y., Kabuto C., Hattori T., Miyano S. Synthesis of All Stereoisomers of Sulfinylcalix[4]arenes1. J. Org. Chem. 2003;68:2324–2333. doi: 10.1021/jo026801x. PubMed DOI
Gutsche C.D., Bauer L.J. Calixarenes. 13. The conformational properties of calix[4]arenes, calix[6]arenes, calix[8]arenes, and oxacalixarenes. J. Am. Chem. Soc. 1985;107:6052–6059. doi: 10.1021/ja00307a038. DOI
Kusano T., Tabatabai M., Okamoto Y., Böhmer V. The Cone-to-Cone Interconversion of Partially O-Methylated Calix[4]arenes: First Experimental Values for the Energy Barriers. J. Am. Chem. Soc. 1999;121:3789–3790. doi: 10.1021/ja9837811. DOI
Kortus D., Krizova K., Dvorakova H., Eigner V., Lhotak P. Synthesis of 2,8-dithiacalix[4]arene based on fragment condensation. Tetrahedron Lett. 2021;69:152924. doi: 10.1016/j.tetlet.2021.152924. DOI
Miksatko J., Eigner V., Kohout M., Lhotak P. Regio-/stereoselective formation of monosulfoxides from thiacalix[4]arenes in all possible conformations. Tetrahedron Lett. 2017;58:1687–1691. doi: 10.1016/j.tetlet.2017.03.043. DOI
Miksatko J., Eigner V., Dvorakova H., Lhotak P. Selective oxidation of thiacalix[4]arene (cone) to all corresponding sulfoxides. Tetrahedron Lett. 2016;57:3781–3784. doi: 10.1016/j.tetlet.2016.07.022. DOI
Heasley V.L., Elliott S.L., Erdman P.E., Figueroa D.E., Krosley K.W., Louie T.J., Moore H.B., Mudge B.P., Nogales D.F., Nordeen J., et al. Chlorination of α,β-unsaturated ketones and esters in the presence of acid scavengers. J. Chem. Soc. Perkin Trans. 2. 1991:393–399. doi: 10.1039/P29910000393. DOI
Wriede U., Fernandez M., West K.F., Harcour D., Moore H.W. Synthesis of halodimethoxy-1,2-benzoquinones. J. Org. Chem. 1987;52:4485–4489. doi: 10.1021/jo00229a011. DOI
Bruker . APEX4, SAINT and SADABS. Bruker AXS Inc.; Madison, WI, USA: 2021.
Sheldrick G. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A. 2015;71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC
Betteridge P., Carruthers J., Cooper R., Prout K., Watkin D. CRYSTALS version 12: Software for guided crystal structure analysis. J. Appl. Crystallogr. 2003;36:1487. doi: 10.1107/S0021889803021800. DOI
Rohlíček J., Hušák M. MCE2005–a new version of a program for fast interactive visualization of electron and similar density maps optimized for small molecules. J. Appl. Crystallogr. 2007;40:600–601. doi: 10.1107/S0021889807018894. DOI
Spek A. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D. 2009;65:148–155. doi: 10.1107/S090744490804362X. PubMed DOI PMC
Rigaku O.D. CrysAlis PRO. Rigaku Oxford Diffraction Ltd.; Yarnton, UK: 2020.
Palatinus L., Chapuis G. SUPERFLIP—A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007;40:786–790. doi: 10.1107/S0021889807029238. DOI