Breaking thiacalix[4]arene into pieces - a novel synthetic approach to higher calixarenes bearing mixed (-S-, -CH2-) bridges
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
35494352
PubMed Central
PMC9044755
DOI
10.1039/d1ra07464d
PII: d1ra07464d
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
A novel approach to calix[5-7]arenes possessing mixed (S and CH2) bridges within the skeleton is based on the reaction of thiacalix[4]arene monosulfoxide with BuLi leading to a linear phenolic tetramer in essentially quantitative yield. This key intermediate is then cyclized with suitable building blocks to give macrocyclic calixarene analogues. Compared to the traditional stepwise construction of similar systems, this procedure based on thiacalixarene cleavage represents a scalable, robust, and straightforward synthesis and enables the preparation of larger calixarenes on a gram scale. As shown by 1H NMR and UV-vis titration experiments, the mixed-bridge calix[7]arene is able to recognize fullerenes C60 and C70, thus showing possible applications of such systems. The structures of the mixed bridge systems were confirmed by single crystal X-ray analysis, and the behavior of novel macrocyclic skeletons in solution was studied using dynamic NMR techniques.
Department of Physical Chemistry UCTP 166 28 Prague 6 Czech Republic
Department of Solid State Chemistry UCTP 166 28 Prague 6 Czech Republic
Laboratory of NMR Spectroscopy UCTP 166 28 Prague 6 Czech Republic
See more in PubMed
Neri P., Sessler J. L. and Wang M. X., Calixarenes and Beyond, Springer, Cham, Switzerland, 2016
Gutsche C. D., Calixarenes: An Introduction, Royal Society of Chemistry, Cambridge, UK, 2nd edn, 2008
Vicens J., Harrowfield J. and Backlouti L., Calixarenes in the Nanoworld, Springer, Dordrecht, The Netherlands, 2007
Asfari Z., Böhmer V., Harrowfield J. and Vicens J., Calixarenes 2001, Kluwer, Dordrecht, The Netherlands, 2001
Mandolini L. and Ungaro R., Calixarenes in Action, Imperial College Press, London, 2000
Kumagai H. Hasegawa M. Miyanari S. Sugawa Y. Sato Y. Hori T. Ueda S. Kamiyama H. Miyano S. Tetrahedron Lett. 1997;38:3971–3972. doi: 10.1016/S0040-4039(97)00792-2. DOI
Kumar R. Lee Y. O. Bhalla V. Kumar M. Kim J. S. Chem. Soc. Rev. 2014;43:4824–4870. doi: 10.1039/C4CS00068D. PubMed DOI
Morohashi N. Narumi F. Iki N. Hattori T. Miyano S. Chem. Rev. 2006;106:5291–5316. doi: 10.1021/cr050565j. PubMed DOI
Lhotak P. Eur. J. Org. Chem. 2004:1675–1692. doi: 10.1002/ejoc.200300492. DOI
Sone T. Ohba Y. Moriya K. Kumada H. Ito K. Tetrahedron. 1997;53:10689–10698. doi: 10.1016/S0040-4020(97)00700-X. DOI
Kon N. Iki N. Yamane Y. Shirasaki S. Miyano S. Tetrahedron Lett. 2004;45(1):207–211. doi: 10.1016/j.tetlet.2003.10.121. DOI
Hucko M. Dvorakova H. Eigner V. Lhotak P. Chem. Commun. 2015;51(32):7051–7053. doi: 10.1039/C5CC00819K. PubMed DOI
Kortus D. Miksatko J. Kundrat O. Babor M. Eigner V. Dvorakova H. Lhotak P. J. Org. Chem. 2019;84:11572–11580. doi: 10.1021/acs.joc.9b01493. PubMed DOI
Kortus D. Kundrat O. Tlusty M. Cejka J. Dvorakova H. Lhotak P. New J. Chem. 2020;44:14496–14504. doi: 10.1039/D0NJ03468A. DOI
Lhotak P. Himl M. Stibor I. Sykora J. Dvorakova H. Petrickova H. Tetrahedron. 2003;59:7581–7585. doi: 10.1016/S0040-4020(03)01171-2. DOI
Morohashi N. Iki N. Onodera T. Kabuto C. Miyano S. Tetrahedron Lett. 2000;41:5093–5097. doi: 10.1016/S0040-4039(00)00780-2. DOI
Miksatko J. Eigner V. Lhotak P. RSC Adv. 2017;7:53407–53414. doi: 10.1039/C7RA11218A. DOI
Ohba Y. Moriya K. Sone T. Bull. Chem. Soc. Jpn. 1991;64:576–582. doi: 10.1246/bcsj.64.576. DOI
Yu S. Wang Y. Ma Y. Wang L. Zhu J. Liu S. Inorg. Chim. Acta. 2017;468:159–170. doi: 10.1016/j.ica.2017.07.022. DOI
Morohashi N. Ishiwata T. Ito K. Ohba Y. Tetrahedron Lett. 2004;45:799–802. doi: 10.1016/j.tetlet.2003.11.041. DOI
Gutsche C. D. Bauer L. J. J. Am. Chem. Soc. 1985;107:6052–6059. doi: 10.1021/ja00307a038. DOI
Biali S. E. Böhmer V. Columbus I. Ferguson G. Grüttner C. Grynszpan F. Paulus E. F. Thondorf I. J. Chem. Soc., Perkin Trans. 2. 1998:2261–2269. doi: 10.1039/A803470B. DOI
Kortus D. Krizova K. Dvorakova H. Eigner V. Lhotak P. Tetrahedron Lett. 2021;69:152924. doi: 10.1016/j.tetlet.2021.152924. DOI
Ito K. Yamamori Y. Ohba Y. Sone T. Synth. Commun. 2000;30:1167–1177. doi: 10.1080/00397910008087137. DOI
Georghiou P. E., Calixarenes and Fullerenes, in Calixarenes and Beyond, ed. P. Neri, J. L. Sessler and M. X. Wang, Springer Int. Publishing Switzerland, 2016, pp. 879–919
Delgado J. L. and Nierengarten J. F., Fullerenes and Calixarenes, in Calixarenes in the Nanoworld, ed. J. Vicens, J. Harrowfield and L. Backlouti, Springer, Dordrecht, The Netherlands, 2007, pp. 173–196
Lhoták P. and Kundrát O., Fullerene Receptors Based on Calixarene Derivatives in Artificial Receptors for Chemical Sensors, ed. V. Mirsky and A. Yatsimirsky, Wiley-VCH Verlag, Weinheim, Germany, 2011, pp. 249–272
The binding constants were calculated using the Bindfit application freely available at: http://supramolecular.org
Teraura H. Ito K. Morohashi N. Ohba Y. Heterocycl. Commun. 2003;9:443–448.
Palatinus L. Chapuis G. J. Appl. Crystallogr. 2007;40:786–790. doi: 10.1107/S0021889807029238. DOI
Betteridge P. W. Carruthers J. R. Cooper R. I. Prout K. Watkin D. J. J. Appl. Crystallogr. 2003;36:1487. doi: 10.1107/S0021889803021800. DOI
Rohlicek J. Husak M. J. Appl. Crystallogr. 2007;40:600. doi: 10.1107/S0021889807018894. DOI
Brandenburg K., DIAMOND, Crystal Impact GbR, Bonn, Germany, 1999
The Unexpected Chemistry of Thiacalix[4]arene Monosulfoxide