• This record comes from PubMed

Breaking thiacalix[4]arene into pieces - a novel synthetic approach to higher calixarenes bearing mixed (-S-, -CH2-) bridges

. 2021 Nov 10 ; 11 (58) : 36934-36941. [epub] 20211117

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection

Document type Journal Article

A novel approach to calix[5-7]arenes possessing mixed (S and CH2) bridges within the skeleton is based on the reaction of thiacalix[4]arene monosulfoxide with BuLi leading to a linear phenolic tetramer in essentially quantitative yield. This key intermediate is then cyclized with suitable building blocks to give macrocyclic calixarene analogues. Compared to the traditional stepwise construction of similar systems, this procedure based on thiacalixarene cleavage represents a scalable, robust, and straightforward synthesis and enables the preparation of larger calixarenes on a gram scale. As shown by 1H NMR and UV-vis titration experiments, the mixed-bridge calix[7]arene is able to recognize fullerenes C60 and C70, thus showing possible applications of such systems. The structures of the mixed bridge systems were confirmed by single crystal X-ray analysis, and the behavior of novel macrocyclic skeletons in solution was studied using dynamic NMR techniques.

See more in PubMed

Neri P., Sessler J. L. and Wang M. X., Calixarenes and Beyond, Springer, Cham, Switzerland, 2016

Gutsche C. D., Calixarenes: An Introduction, Royal Society of Chemistry, Cambridge, UK, 2nd edn, 2008

Vicens J., Harrowfield J. and Backlouti L., Calixarenes in the Nanoworld, Springer, Dordrecht, The Netherlands, 2007

Asfari Z., Böhmer V., Harrowfield J. and Vicens J., Calixarenes 2001, Kluwer, Dordrecht, The Netherlands, 2001

Mandolini L. and Ungaro R., Calixarenes in Action, Imperial College Press, London, 2000

Kumagai H. Hasegawa M. Miyanari S. Sugawa Y. Sato Y. Hori T. Ueda S. Kamiyama H. Miyano S. Tetrahedron Lett. 1997;38:3971–3972. doi: 10.1016/S0040-4039(97)00792-2. DOI

Kumar R. Lee Y. O. Bhalla V. Kumar M. Kim J. S. Chem. Soc. Rev. 2014;43:4824–4870. doi: 10.1039/C4CS00068D. PubMed DOI

Morohashi N. Narumi F. Iki N. Hattori T. Miyano S. Chem. Rev. 2006;106:5291–5316. doi: 10.1021/cr050565j. PubMed DOI

Lhotak P. Eur. J. Org. Chem. 2004:1675–1692. doi: 10.1002/ejoc.200300492. DOI

Sone T. Ohba Y. Moriya K. Kumada H. Ito K. Tetrahedron. 1997;53:10689–10698. doi: 10.1016/S0040-4020(97)00700-X. DOI

Kon N. Iki N. Yamane Y. Shirasaki S. Miyano S. Tetrahedron Lett. 2004;45(1):207–211. doi: 10.1016/j.tetlet.2003.10.121. DOI

Hucko M. Dvorakova H. Eigner V. Lhotak P. Chem. Commun. 2015;51(32):7051–7053. doi: 10.1039/C5CC00819K. PubMed DOI

Kortus D. Miksatko J. Kundrat O. Babor M. Eigner V. Dvorakova H. Lhotak P. J. Org. Chem. 2019;84:11572–11580. doi: 10.1021/acs.joc.9b01493. PubMed DOI

Kortus D. Kundrat O. Tlusty M. Cejka J. Dvorakova H. Lhotak P. New J. Chem. 2020;44:14496–14504. doi: 10.1039/D0NJ03468A. DOI

Lhotak P. Himl M. Stibor I. Sykora J. Dvorakova H. Petrickova H. Tetrahedron. 2003;59:7581–7585. doi: 10.1016/S0040-4020(03)01171-2. DOI

Morohashi N. Iki N. Onodera T. Kabuto C. Miyano S. Tetrahedron Lett. 2000;41:5093–5097. doi: 10.1016/S0040-4039(00)00780-2. DOI

Miksatko J. Eigner V. Lhotak P. RSC Adv. 2017;7:53407–53414. doi: 10.1039/C7RA11218A. DOI

Ohba Y. Moriya K. Sone T. Bull. Chem. Soc. Jpn. 1991;64:576–582. doi: 10.1246/bcsj.64.576. DOI

Yu S. Wang Y. Ma Y. Wang L. Zhu J. Liu S. Inorg. Chim. Acta. 2017;468:159–170. doi: 10.1016/j.ica.2017.07.022. DOI

Morohashi N. Ishiwata T. Ito K. Ohba Y. Tetrahedron Lett. 2004;45:799–802. doi: 10.1016/j.tetlet.2003.11.041. DOI

Gutsche C. D. Bauer L. J. J. Am. Chem. Soc. 1985;107:6052–6059. doi: 10.1021/ja00307a038. DOI

Biali S. E. Böhmer V. Columbus I. Ferguson G. Grüttner C. Grynszpan F. Paulus E. F. Thondorf I. J. Chem. Soc., Perkin Trans. 2. 1998:2261–2269. doi: 10.1039/A803470B. DOI

Kortus D. Krizova K. Dvorakova H. Eigner V. Lhotak P. Tetrahedron Lett. 2021;69:152924. doi: 10.1016/j.tetlet.2021.152924. DOI

Ito K. Yamamori Y. Ohba Y. Sone T. Synth. Commun. 2000;30:1167–1177. doi: 10.1080/00397910008087137. DOI

Georghiou P. E., Calixarenes and Fullerenes, in Calixarenes and Beyond, ed. P. Neri, J. L. Sessler and M. X. Wang, Springer Int. Publishing Switzerland, 2016, pp. 879–919

Delgado J. L. and Nierengarten J. F., Fullerenes and Calixarenes, in Calixarenes in the Nanoworld, ed. J. Vicens, J. Harrowfield and L. Backlouti, Springer, Dordrecht, The Netherlands, 2007, pp. 173–196

Lhoták P. and Kundrát O., Fullerene Receptors Based on Calixarene Derivatives in Artificial Receptors for Chemical Sensors, ed. V. Mirsky and A. Yatsimirsky, Wiley-VCH Verlag, Weinheim, Germany, 2011, pp. 249–272

The binding constants were calculated using the Bindfit application freely available at: http://supramolecular.org

Teraura H. Ito K. Morohashi N. Ohba Y. Heterocycl. Commun. 2003;9:443–448.

Palatinus L. Chapuis G. J. Appl. Crystallogr. 2007;40:786–790. doi: 10.1107/S0021889807029238. DOI

Betteridge P. W. Carruthers J. R. Cooper R. I. Prout K. Watkin D. J. J. Appl. Crystallogr. 2003;36:1487. doi: 10.1107/S0021889803021800. DOI

Rohlicek J. Husak M. J. Appl. Crystallogr. 2007;40:600. doi: 10.1107/S0021889807018894. DOI

Brandenburg K., DIAMOND, Crystal Impact GbR, Bonn, Germany, 1999

Newest 20 citations...

See more in
Medvik | PubMed

The Unexpected Chemistry of Thiacalix[4]arene Monosulfoxide

. 2023 May 05 ; 28 (9) : . [epub] 20230505

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...