Magnetic Correlation Spectroscopy in CrSBr
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40940029
PubMed Central
PMC12462243
DOI
10.1021/acsnano.5c05470
Knihovny.cz E-resources
- Keywords
- CrSBr, excitons, layered antiferromagnet, magnetic semiconductor, magneto-optics, van der Waals materials,
- Publication type
- Journal Article MeSH
CrSBr is an air-stable magnetic van der Waals semiconductor with strong magnetic anisotropy, where the interaction of excitons with the magnetic order enables the optical identification of different magnetic phases. Here, we study the magnetic anisotropy of multilayer CrSBr inside a three-axis vector magnet and correlate magnetic order and optical transitions in emission and absorption. We identify layer-by-layer switching of the magnetization through drastic changes in the optical emission and absorption energy and strength as a function of the applied magnetic field. We correlate optical transitions in reflection spectra with photoluminescence (PL) emission using transfer-matrix analysis and find that ferromagnetic and antiferromagnetic order between layers can coexist in the same crystal. In the multipeak PL emission, the intensity of energetically lower-lying transitions reduces monotonously with increasing field strength, whereas energetically higher-lying transitions around the bright exciton XB brighten close to the saturation field. Using this contrasting behavior, we can therefore correlate transitions with each other.
See more in PubMed
Gibertini M., Koperski M., Morpurgo A. F., Novoselov K. S.. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019;14:408. doi: 10.1038/s41565-019-0438-6. PubMed DOI
Song T., Cai X., Tu M. W.-Y., Zhang X., Huang B., Wilson N. P., Seyler K. L., Zhu L., Taniguchi T., Watanabe K.. et al. Giant tunneling magnetoresistance in spin-filter van der waals heterostructures. Science. 2018;360:1214. doi: 10.1126/science.aar4851. PubMed DOI
Wang Z., Gutiérrez-Lezama I., Ubrig N., Kroner M., Gibertini M., Taniguchi T., Watanabe K., Imamoğlu A., Giannini E., Morpurgo A. F.. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3 . Nat. Commun. 2018;9:2516. doi: 10.1038/s41467-018-04953-8. PubMed DOI PMC
Ahn E. C.. 2D materials for spintronic devices. npj 2D Mater. Appl. 2020;4:17. doi: 10.1038/s41699-020-0152-0. DOI
Mi M., Xiao H., Yu L., Zhang Y., Wang Y., Cao Q., Wang Y.. Two-dimensional magnetic materials for spintronic devices. Mater. Today Nano. 2023;24:100408. doi: 10.1016/j.mtnano.2023.100408. DOI
Liu Y., Wang W., Lu H., Xie Q., Chen L., Yin H., Cheng G., Wu X.. The environmental stability characterization of exfoliated few-layer CrXTe3 (X= Si, Ge) nanosheets. Appl. Surf. Sci. 2020;511:145452. doi: 10.1016/j.apsusc.2020.145452. DOI
Galbiati M., Zatko V., Godel F., Hirschauer P., Vecchiola A., Bouzehouane K., Collin S., Servet B., Cantarero A., Petroff F.. et al. Very long term stabilization of a 2D magnet down to the monolayer for device integration. ACS Appl. Electron. Mater. 2020;2:3508. doi: 10.1021/acsaelm.0c00810. DOI
Gish J. T., Lebedev D., Stanev T. K., Jiang S., Georgopoulos L., Song T. W., Lim G., Garvey E. S., Valdman L., Balogun O.. et al. Ambient-stable two-dimensional CrI3 via organic-inorganic encapsulation. ACS Nano. 2021;15:10659. doi: 10.1021/acsnano.1c03498. PubMed DOI
Shcherbakov D., Stepanov P., Weber D., Wang Y., Hu J., Zhu Y., Watanabe K., Taniguchi T., Mao Z., Windl W.. et al. Raman spectroscopy, photocatalytic degradation, and stabilization of atomically thin chromium tri-iodide. Nano Lett. 2018;18:4214. doi: 10.1021/acs.nanolett.8b01131. PubMed DOI
Ziebel M. E., Feuer M. L., Cox J., Zhu X., Dean C. R., Roy X.. Crsbr: an air-stable, two-dimensional magnetic semiconductor. Nano Lett. 2024;24:4319. doi: 10.1021/acs.nanolett.4c00624. PubMed DOI
Ye C., Wang C., Wu Q., Liu S., Zhou J., Wang G., Soll A., Sofer Z., Yue M., Liu X.. et al. Layer-dependent interlayer antiferromagnetic spin reorientation in air-stable semiconductor CrSBr. ACS Nano. 2022;16:11876. doi: 10.1021/acsnano.2c01151. PubMed DOI
Bae Y. J., Wang J., Scheie A., Xu J., Chica D. G., Diederich G. M., Cenker J., Ziebel M. E., Bai Y., Ren H.. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature. 2022;609:282. doi: 10.1038/s41586-022-05024-1. PubMed DOI
Diederich G. M., Cenker J., Ren Y., Fonseca J., Chica D. G., Bae Y. J., Zhu X., Roy X., Cao T., Xiao D.. et al. Tunable interaction between excitons and hybridized magnons in a layered semiconductor. Nat. Nanotechnol. 2023;18:23. doi: 10.1038/s41565-022-01259-1. PubMed DOI
Diederich G. M., Nguyen M., Cenker J., Fonseca J., Pumulo S., Bae Y. J., Chica D. G., Roy X., Zhu X., Xiao D., Ren Y., Xu X.. Exciton dressing by extreme nonlinear magnons in a layered semiconductor. Nat. Nanotechnol. 2025;20:617. doi: 10.1038/s41565-025-01890-8. PubMed DOI
Lin K., Sun X., Dirnberger F., Li Y., Qu J., Wen P., Sofer Z., Söll A., Winnerl S., Helm M.. et al. Strong exciton–phonon coupling as a fingerprint of magnetic ordering in van der waals layered CrSBr. ACS Nano. 2024;18:2898. doi: 10.1021/acsnano.3c07236. PubMed DOI PMC
Mondal P., Markina D. I., Hopf L., Krelle L., Shradha S., Klein J., Glazov M. M., Gerber I., Hagmann K., Klitzing R. v.. et al. Raman polarization switching in CrSBr. npj 2D Mater. Appl. 2025;9:22. doi: 10.1038/s41699-025-00542-8. DOI
Sahu S., Berrezueta-Palacios C., Juergensen S., Mosina K., Sofer Z., Velickỳ M., Kusch P., Frank O.. Resonance raman scattering and anomalous anti-stokes phenomena in CrSBr. Nanoscale. 2025;17:11539. doi: 10.1039/D5NR00562K. PubMed DOI
Dirnberger F., Quan J., Bushati R., Diederich G. M., Florian M., Klein J., Mosina K., Sofer Z., Xu X., Kamra A.. et al. Magneto-optics in a van der waals magnet tuned by self-hybridized polaritons. Nature. 2023;620:533. doi: 10.1038/s41586-023-06275-2. PubMed DOI
Wang T., Zhang D., Yang S., Lin Z., Chen Q., Yang J., Gong Q., Chen Z., Ye Y., Liu W.. Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime. Nat. Commun. 2023;14:5966. doi: 10.1038/s41467-023-41688-7. PubMed DOI PMC
Li C., Shen C., Jiang N., Tang K. K., Liu X., Guo J., Liang Y., Song J., Deng X., Zhang Q.. 2d crsbr enables magnetically controllable exciton-polaritons in an open cavity. Adv. Funct. Mater. 2024;34:2411589. doi: 10.1002/adfm.202411589. DOI
Nessi L., Occhialini C. A., Demir A. K., Powalla L., Comin R.. Magnetic field tunable polaritons in the ultrastrong coupling regime in CrSBr. ACS Nano. 2024;18:34235. doi: 10.1021/acsnano.4c11799. PubMed DOI
Han B., Shan H., Song K. W., Lackner L., Esmann M., Solovyeva V., Eilenberger F., Regner J., Sofer Z., Kyriienko O.. et al. Exciton-polariton condensate in the van der waals magnet CrSBr. arXiv. 2025 doi: 10.48550/arXiv.2501.18233. DOI
Boix-Constant C., Mañas-Valero S., Ruiz A. M., Rybakov A., Konieczny K. A., Pillet S., Baldoví J. J., Coronado E.. Probing the spin dimensionality in single-layer CrSBr van der waals heterostructures by magneto-transport measurements. Adv. Mater. 2022;34:2204940. doi: 10.1002/adma.202204940. PubMed DOI
Telford E. J., Dismukes A. H., Lee K., Cheng M., Wieteska A., Bartholomew A. K., Chen Y.-S., Xu X., Pasupathy A. N., Zhu X., Dean C. R., Roy X.. Layered antiferromagnetism induces large negative magnetoresistance in the van der waals semiconductor CrSBr. Adv. Mater. 2020;32:2003240. doi: 10.1002/adma.202003240. PubMed DOI
Wilson N. P., Lee K., Cenker J., Xie K., Dismukes A. H., Telford E. J., Fonseca J., Sivakumar S., Dean C., Cao T.. et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 2021;20:1657. doi: 10.1038/s41563-021-01070-8. PubMed DOI
Tabataba-Vakili F., Nguyen H. P. G., Rupp A., Mosina K., Papavasileiou A., Watanabe K., Taniguchi T., Maletinsky P., Glazov M. M., Sofer Z., Baimuratov A. S., Hogele A.. Doping-control of excitons and magnetism in few-layer CrSBr. Nat. Commun. 2024;15:4735. doi: 10.1038/s41467-024-49048-9. PubMed DOI PMC
Long F., Ghorbani-Asl M., Mosina K., Li Y., Lin K., Ganss F., Hübner R., Sofer Z., Dirnberger F., Kamra A.. et al. Ferromagnetic interlayer coupling in CrSBr crystals irradiated by ions. Nano Lett. 2023;23:8468. doi: 10.1021/acs.nanolett.3c01920. PubMed DOI PMC
Long F., Li Y., Cheng Y., Mosina K., Kentsch U., Sofer Z., Prucnal S., Helm M., Zhou S.. Rise and fall of the ferromagnetism in CrSBr flakes by non-magnetic ion irradiation. Adv. Phys. Res. 2024;3:2400053. doi: 10.1002/apxr.202400053. DOI
Klein J., Pingault B., Florian M., Heißenbüttel M.-C., Steinhoff A., Song Z., Torres K., Dirnberger F., Curtis J. B., Weile M.. et al. The bulk van der waals layered magnet CrSBr is a quasi-1D material. ACS Nano. 2023;17:5316. doi: 10.1021/acsnano.2c07316. PubMed DOI
Yang K., Wang G., Liu L., Lu D., Wu H.. Triaxial magnetic anisotropy in the two-dimensional ferromagnetic semiconductor CrSBr. Phys. Rev. B. 2021;104:144416. doi: 10.1103/PhysRevB.104.144416. DOI
Liebich M., Florian M., Nilforoushan N., Mooshammer F., Koulouklidis A. D., Wittmann L., Mosina K., Sofer Z., Dirnberger F., Kira M., Huber R.. Controlling coulomb correlations and fine structure of quasi-one-dimensional excitons by magnetic order. Nat. Mater. 2025;24:384. doi: 10.1038/s41563-025-02120-1. PubMed DOI PMC
Shao Y., Dirnberger F., Qiu S., Acharya S., Terres S., Telford E. J., Pashov D., Kim B. S., Ruta F. L., Chica D. G.. Magnetically confined surface and bulk excitons in a layered antiferromagnet. Nat. Mater. 2025;24:391. doi: 10.1038/s41563-025-02129-6. PubMed DOI
Tschudin M. A., Broadway D. A., Siegwolf P., Schrader C., Telford E. J., Gross B., Cox J., Dubois A. E., Chica D. G., Rama-Eiroa R.. et al. Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr. Nat. Commun. 2024;15:6005. doi: 10.1038/s41467-024-49717-9. PubMed DOI PMC
Rizzo D. J., McLeod A. S., Carnahan C., Telford E. J., Dismukes A. H., Wiscons R. A., Dong Y., Nuckolls C., Dean C. R., Pasupathy A. N.. et al. Visualizing atomically layered magnetism in CrSBr. Adv. Mater. 2022;34:2201000. doi: 10.1002/adma.202201000. PubMed DOI
Lee K., Dismukes A. H., Telford E. J., Wiscons R. A., Wang J., Xu X., Nuckolls C., Dean C. R., Roy X., Zhu X.. Magnetic order and symmetry in the 2d semiconductor CrSBr. Nano Lett. 2021;21:3511. doi: 10.1021/acs.nanolett.1c00219. PubMed DOI
Göser O., Paul W., Kahle H.. Magnetic properties of CrSBr. J. Magn. Magn. Mater. 1990;92:129. doi: 10.1016/0304-8853(90)90689-N. DOI
Wang G., Robert C., Glazov M. M., Cadiz F., Courtade E., Amand T., Lagarde D., Taniguchi T., Watanabe K., Urbaszek B.. et al. In-plane propagation of light in transition metal dichalcogenide monolayers: optical selection rules. Phys. Rev. Lett. 2017;119:047401. doi: 10.1103/PhysRevLett.119.047401. PubMed DOI
He M., Rivera P., Van Tuan D., Wilson N. P., Yang M., Taniguchi T., Watanabe K., Yan J., Mandrus D. G., Yu H.. et al. Valley phonons and exciton complexes in a monolayer semiconductor. Nat. Commun. 2020;11:618. doi: 10.1038/s41467-020-14472-0. PubMed DOI PMC
Shree S., Paradisanos I., Marie X., Robert C., Urbaszek B.. Guide to optical spectroscopy of layered semiconductors. Nat. Rev. Phys. 2021;3:39. doi: 10.1038/s42254-020-00259-1. DOI
Godde T., Schmidt D., Schmutzler J., Aßmann M., Debus J., Withers F., Alexeev E., Del Pozo-Zamudio O., Skrypka O., Novoselov K.. et al. Exciton and trion dynamics in atomically thin MoSe2 and WSe2: Effect of localization. Phys. Rev. B. 2016;94:165301. doi: 10.1103/PhysRevB.94.165301. DOI
Huang X., Song Z., Gao Y., Gu P., Watanabe K., Taniguchi T., Yang S., Chen Z., Ye Y.. Intrinsic localized excitons in MoSe2/CrSBr heterostructure. Adv. Mater. 2025;37:2413438. doi: 10.1002/adma.202413438. PubMed DOI
Raja A., Chaves A., Yu J., Arefe G., Hill H. M., Rigosi A. F., Berkelbach T. C., Nagler P., Schüller C., Korn T.. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 2017;8:15251. doi: 10.1038/ncomms15251. PubMed DOI PMC
Stier A. V., Wilson N. P., Clark G., Xu X., Crooker S. A.. Probing the influence of dielectric environment on excitons in monolayer WSe2: insight from high magnetic fields. Nano Lett. 2016;16:7054. doi: 10.1021/acs.nanolett.6b03276. PubMed DOI
Bianchi M., Acharya S., Dirnberger F., Klein J., Pashov D., Mosina K., Sofer Z., Rudenko A. N., Katsnelson M. I., Van Schilfgaarde M.. et al. Paramagnetic electronic structure of crsbr: Comparison between ab initio gw theory and angle-resolved photoemission spectroscopy. Phys. Rev. B. 2023;107:235107. doi: 10.1103/PhysRevB.107.235107. DOI
Lin K., Li Y., Ghorbani-Asl M., Sofer Z., Winnerl S., Erbe A., Krasheninnikov A. V., Helm M., Zhou S., Dan Y.. et al. Probing the band splitting near the γ point in the van der waals magnetic semiconductor CrSBr. J. Phys. Chem. Lett. 2024;15:6010. doi: 10.1021/acs.jpclett.4c00968. PubMed DOI
Komar R., Łopion A., Goryca M., Rybak M., Woźniak T., Mosina K., Söll A., Sofer Z., Pacuski W., Faugeras C.. et al. Colossal magneto-excitonic effects in 2D van der waals magnetic semiconductor crsbr. arXiv. 2024 doi: 10.48550/arXiv.2409.00187. DOI
Smolenski S., Wen M., Li Q., Downey E., Alfrey A., Liu W., Kondusamy A. L., Bostwick A., Jozwiak C., Rotenberg E.. et al. Large exciton binding energy in a bulk van der waals magnet from quasi-1D electronic localization. Nat. Commun. 2025;16:1134. doi: 10.1038/s41467-025-56457-x. PubMed DOI PMC
Qian T.-X., Zhou J., Cai T.-Y., Ju S.. Anisotropic electron-hole excitation and large linear dichroism in the two-dimensional ferromagnet CrSBr with in-plane magnetization. Phys. Rev. Res. 2023;5:033143. doi: 10.1103/PhysRevResearch.5.033143. DOI
Datta B., Adak P. C., Yu S., Valiyaparambil Dharmapalan A., Hall S. J., Vakulenko A., Komissarenko F., Kurganov E., Quan J., Wang W.. Magnon-mediated exciton–exciton interaction in a van der waals antiferromagnet. Nat. Mater. 2025;1:1027. doi: 10.1038/s41563-025-02183-0. PubMed DOI
Moubah R., Magnus F., Warnatz T., Pálsson G. K., Kapaklis V., Ukleev V., Devishvili A., Palisaitis J., Persson P., Hjörvarsson B.. Discrete layer-by-layer magnetic switching in Fe/MgO (001) superlattices. Phys. Rev. Appl. 2016;5:044011. doi: 10.1103/PhysRevApplied.5.044011. DOI
Marques-Moros F., Boix-Constant C., Mañas-Valero S., Canet-Ferrer J., Coronado E.. Interplay between optical emission and magnetism in the van der waals magnetic semiconductor CrSBr in the two-dimensional limit. ACS Nano. 2023;17:13224. doi: 10.1021/acsnano.3c00375. PubMed DOI PMC
Klein J., Pham T., Thomsen J., Curtis J., Denneulin T., Lorke M., Florian M., Steinhoff A., Wiscons R., Luxa J.. et al. Control of structure and spin texture in the van der waals layered magnet CrSBr. Nat. Commun. 2022;13:5420. doi: 10.1038/s41467-022-32737-8. PubMed DOI PMC
Robert C., Semina M., Cadiz F., Manca M., Courtade E., Taniguchi T., Watanabe K., Cai H., Tongay S., Lassagne B.. et al. Optical spectroscopy of excited exciton states in MoS2 monolayers in van der waals heterostructures. Phys. Rev. Mater. 2018;2:011001. doi: 10.1103/PhysRevMaterials.2.011001. DOI
Malitson I. H.. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 1965;55:1205. doi: 10.1364/JOSA.55.001205. DOI
Schinke, C. ; Christian Peest, P. ; Schmidt, J. ; Brendel, R. ; Bothe, K. ; Vogt, M. R. ; Kroger, I. ; Winter, S. ; Schirmacher, A. ; Lim, S. ; Nguyen, H. T. ; MacDonald, D. . Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon. AIP Adv. 2015, 5. 10.1063/1.4923379. DOI
Lee S.-Y., Jeong T.-Y., Jung S., Yee K.-J.. Refractive index dispersion of hexagonal boron nitride in the visible and near-infrared. Phys. Status Solidi B. 2019;256:1800417. doi: 10.1002/pssb.201800417. DOI