• This record comes from PubMed

Magnetic Correlation Spectroscopy in CrSBr

. 2025 Sep 23 ; 19 (37) : 33156-33163. [epub] 20250912

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

CrSBr is an air-stable magnetic van der Waals semiconductor with strong magnetic anisotropy, where the interaction of excitons with the magnetic order enables the optical identification of different magnetic phases. Here, we study the magnetic anisotropy of multilayer CrSBr inside a three-axis vector magnet and correlate magnetic order and optical transitions in emission and absorption. We identify layer-by-layer switching of the magnetization through drastic changes in the optical emission and absorption energy and strength as a function of the applied magnetic field. We correlate optical transitions in reflection spectra with photoluminescence (PL) emission using transfer-matrix analysis and find that ferromagnetic and antiferromagnetic order between layers can coexist in the same crystal. In the multipeak PL emission, the intensity of energetically lower-lying transitions reduces monotonously with increasing field strength, whereas energetically higher-lying transitions around the bright exciton XB brighten close to the saturation field. Using this contrasting behavior, we can therefore correlate transitions with each other.

See more in PubMed

Gibertini M., Koperski M., Morpurgo A. F., Novoselov K. S.. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019;14:408. doi: 10.1038/s41565-019-0438-6. PubMed DOI

Song T., Cai X., Tu M. W.-Y., Zhang X., Huang B., Wilson N. P., Seyler K. L., Zhu L., Taniguchi T., Watanabe K.. et al. Giant tunneling magnetoresistance in spin-filter van der waals heterostructures. Science. 2018;360:1214. doi: 10.1126/science.aar4851. PubMed DOI

Wang Z., Gutiérrez-Lezama I., Ubrig N., Kroner M., Gibertini M., Taniguchi T., Watanabe K., Imamoğlu A., Giannini E., Morpurgo A. F.. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3 . Nat. Commun. 2018;9:2516. doi: 10.1038/s41467-018-04953-8. PubMed DOI PMC

Ahn E. C.. 2D materials for spintronic devices. npj 2D Mater. Appl. 2020;4:17. doi: 10.1038/s41699-020-0152-0. DOI

Mi M., Xiao H., Yu L., Zhang Y., Wang Y., Cao Q., Wang Y.. Two-dimensional magnetic materials for spintronic devices. Mater. Today Nano. 2023;24:100408. doi: 10.1016/j.mtnano.2023.100408. DOI

Liu Y., Wang W., Lu H., Xie Q., Chen L., Yin H., Cheng G., Wu X.. The environmental stability characterization of exfoliated few-layer CrXTe3 (X= Si, Ge) nanosheets. Appl. Surf. Sci. 2020;511:145452. doi: 10.1016/j.apsusc.2020.145452. DOI

Galbiati M., Zatko V., Godel F., Hirschauer P., Vecchiola A., Bouzehouane K., Collin S., Servet B., Cantarero A., Petroff F.. et al. Very long term stabilization of a 2D magnet down to the monolayer for device integration. ACS Appl. Electron. Mater. 2020;2:3508. doi: 10.1021/acsaelm.0c00810. DOI

Gish J. T., Lebedev D., Stanev T. K., Jiang S., Georgopoulos L., Song T. W., Lim G., Garvey E. S., Valdman L., Balogun O.. et al. Ambient-stable two-dimensional CrI3 via organic-inorganic encapsulation. ACS Nano. 2021;15:10659. doi: 10.1021/acsnano.1c03498. PubMed DOI

Shcherbakov D., Stepanov P., Weber D., Wang Y., Hu J., Zhu Y., Watanabe K., Taniguchi T., Mao Z., Windl W.. et al. Raman spectroscopy, photocatalytic degradation, and stabilization of atomically thin chromium tri-iodide. Nano Lett. 2018;18:4214. doi: 10.1021/acs.nanolett.8b01131. PubMed DOI

Ziebel M. E., Feuer M. L., Cox J., Zhu X., Dean C. R., Roy X.. Crsbr: an air-stable, two-dimensional magnetic semiconductor. Nano Lett. 2024;24:4319. doi: 10.1021/acs.nanolett.4c00624. PubMed DOI

Ye C., Wang C., Wu Q., Liu S., Zhou J., Wang G., Soll A., Sofer Z., Yue M., Liu X.. et al. Layer-dependent interlayer antiferromagnetic spin reorientation in air-stable semiconductor CrSBr. ACS Nano. 2022;16:11876. doi: 10.1021/acsnano.2c01151. PubMed DOI

Bae Y. J., Wang J., Scheie A., Xu J., Chica D. G., Diederich G. M., Cenker J., Ziebel M. E., Bai Y., Ren H.. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature. 2022;609:282. doi: 10.1038/s41586-022-05024-1. PubMed DOI

Diederich G. M., Cenker J., Ren Y., Fonseca J., Chica D. G., Bae Y. J., Zhu X., Roy X., Cao T., Xiao D.. et al. Tunable interaction between excitons and hybridized magnons in a layered semiconductor. Nat. Nanotechnol. 2023;18:23. doi: 10.1038/s41565-022-01259-1. PubMed DOI

Diederich G. M., Nguyen M., Cenker J., Fonseca J., Pumulo S., Bae Y. J., Chica D. G., Roy X., Zhu X., Xiao D., Ren Y., Xu X.. Exciton dressing by extreme nonlinear magnons in a layered semiconductor. Nat. Nanotechnol. 2025;20:617. doi: 10.1038/s41565-025-01890-8. PubMed DOI

Lin K., Sun X., Dirnberger F., Li Y., Qu J., Wen P., Sofer Z., Söll A., Winnerl S., Helm M.. et al. Strong exciton–phonon coupling as a fingerprint of magnetic ordering in van der waals layered CrSBr. ACS Nano. 2024;18:2898. doi: 10.1021/acsnano.3c07236. PubMed DOI PMC

Mondal P., Markina D. I., Hopf L., Krelle L., Shradha S., Klein J., Glazov M. M., Gerber I., Hagmann K., Klitzing R. v.. et al. Raman polarization switching in CrSBr. npj 2D Mater. Appl. 2025;9:22. doi: 10.1038/s41699-025-00542-8. DOI

Sahu S., Berrezueta-Palacios C., Juergensen S., Mosina K., Sofer Z., Velickỳ M., Kusch P., Frank O.. Resonance raman scattering and anomalous anti-stokes phenomena in CrSBr. Nanoscale. 2025;17:11539. doi: 10.1039/D5NR00562K. PubMed DOI

Dirnberger F., Quan J., Bushati R., Diederich G. M., Florian M., Klein J., Mosina K., Sofer Z., Xu X., Kamra A.. et al. Magneto-optics in a van der waals magnet tuned by self-hybridized polaritons. Nature. 2023;620:533. doi: 10.1038/s41586-023-06275-2. PubMed DOI

Wang T., Zhang D., Yang S., Lin Z., Chen Q., Yang J., Gong Q., Chen Z., Ye Y., Liu W.. Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime. Nat. Commun. 2023;14:5966. doi: 10.1038/s41467-023-41688-7. PubMed DOI PMC

Li C., Shen C., Jiang N., Tang K. K., Liu X., Guo J., Liang Y., Song J., Deng X., Zhang Q.. 2d crsbr enables magnetically controllable exciton-polaritons in an open cavity. Adv. Funct. Mater. 2024;34:2411589. doi: 10.1002/adfm.202411589. DOI

Nessi L., Occhialini C. A., Demir A. K., Powalla L., Comin R.. Magnetic field tunable polaritons in the ultrastrong coupling regime in CrSBr. ACS Nano. 2024;18:34235. doi: 10.1021/acsnano.4c11799. PubMed DOI

Han B., Shan H., Song K. W., Lackner L., Esmann M., Solovyeva V., Eilenberger F., Regner J., Sofer Z., Kyriienko O.. et al. Exciton-polariton condensate in the van der waals magnet CrSBr. arXiv. 2025 doi: 10.48550/arXiv.2501.18233. DOI

Boix-Constant C., Mañas-Valero S., Ruiz A. M., Rybakov A., Konieczny K. A., Pillet S., Baldoví J. J., Coronado E.. Probing the spin dimensionality in single-layer CrSBr van der waals heterostructures by magneto-transport measurements. Adv. Mater. 2022;34:2204940. doi: 10.1002/adma.202204940. PubMed DOI

Telford E. J., Dismukes A. H., Lee K., Cheng M., Wieteska A., Bartholomew A. K., Chen Y.-S., Xu X., Pasupathy A. N., Zhu X., Dean C. R., Roy X.. Layered antiferromagnetism induces large negative magnetoresistance in the van der waals semiconductor CrSBr. Adv. Mater. 2020;32:2003240. doi: 10.1002/adma.202003240. PubMed DOI

Wilson N. P., Lee K., Cenker J., Xie K., Dismukes A. H., Telford E. J., Fonseca J., Sivakumar S., Dean C., Cao T.. et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 2021;20:1657. doi: 10.1038/s41563-021-01070-8. PubMed DOI

Tabataba-Vakili F., Nguyen H. P. G., Rupp A., Mosina K., Papavasileiou A., Watanabe K., Taniguchi T., Maletinsky P., Glazov M. M., Sofer Z., Baimuratov A. S., Hogele A.. Doping-control of excitons and magnetism in few-layer CrSBr. Nat. Commun. 2024;15:4735. doi: 10.1038/s41467-024-49048-9. PubMed DOI PMC

Long F., Ghorbani-Asl M., Mosina K., Li Y., Lin K., Ganss F., Hübner R., Sofer Z., Dirnberger F., Kamra A.. et al. Ferromagnetic interlayer coupling in CrSBr crystals irradiated by ions. Nano Lett. 2023;23:8468. doi: 10.1021/acs.nanolett.3c01920. PubMed DOI PMC

Long F., Li Y., Cheng Y., Mosina K., Kentsch U., Sofer Z., Prucnal S., Helm M., Zhou S.. Rise and fall of the ferromagnetism in CrSBr flakes by non-magnetic ion irradiation. Adv. Phys. Res. 2024;3:2400053. doi: 10.1002/apxr.202400053. DOI

Klein J., Pingault B., Florian M., Heißenbüttel M.-C., Steinhoff A., Song Z., Torres K., Dirnberger F., Curtis J. B., Weile M.. et al. The bulk van der waals layered magnet CrSBr is a quasi-1D material. ACS Nano. 2023;17:5316. doi: 10.1021/acsnano.2c07316. PubMed DOI

Yang K., Wang G., Liu L., Lu D., Wu H.. Triaxial magnetic anisotropy in the two-dimensional ferromagnetic semiconductor CrSBr. Phys. Rev. B. 2021;104:144416. doi: 10.1103/PhysRevB.104.144416. DOI

Liebich M., Florian M., Nilforoushan N., Mooshammer F., Koulouklidis A. D., Wittmann L., Mosina K., Sofer Z., Dirnberger F., Kira M., Huber R.. Controlling coulomb correlations and fine structure of quasi-one-dimensional excitons by magnetic order. Nat. Mater. 2025;24:384. doi: 10.1038/s41563-025-02120-1. PubMed DOI PMC

Shao Y., Dirnberger F., Qiu S., Acharya S., Terres S., Telford E. J., Pashov D., Kim B. S., Ruta F. L., Chica D. G.. Magnetically confined surface and bulk excitons in a layered antiferromagnet. Nat. Mater. 2025;24:391. doi: 10.1038/s41563-025-02129-6. PubMed DOI

Tschudin M. A., Broadway D. A., Siegwolf P., Schrader C., Telford E. J., Gross B., Cox J., Dubois A. E., Chica D. G., Rama-Eiroa R.. et al. Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr. Nat. Commun. 2024;15:6005. doi: 10.1038/s41467-024-49717-9. PubMed DOI PMC

Rizzo D. J., McLeod A. S., Carnahan C., Telford E. J., Dismukes A. H., Wiscons R. A., Dong Y., Nuckolls C., Dean C. R., Pasupathy A. N.. et al. Visualizing atomically layered magnetism in CrSBr. Adv. Mater. 2022;34:2201000. doi: 10.1002/adma.202201000. PubMed DOI

Lee K., Dismukes A. H., Telford E. J., Wiscons R. A., Wang J., Xu X., Nuckolls C., Dean C. R., Roy X., Zhu X.. Magnetic order and symmetry in the 2d semiconductor CrSBr. Nano Lett. 2021;21:3511. doi: 10.1021/acs.nanolett.1c00219. PubMed DOI

Göser O., Paul W., Kahle H.. Magnetic properties of CrSBr. J. Magn. Magn. Mater. 1990;92:129. doi: 10.1016/0304-8853(90)90689-N. DOI

Wang G., Robert C., Glazov M. M., Cadiz F., Courtade E., Amand T., Lagarde D., Taniguchi T., Watanabe K., Urbaszek B.. et al. In-plane propagation of light in transition metal dichalcogenide monolayers: optical selection rules. Phys. Rev. Lett. 2017;119:047401. doi: 10.1103/PhysRevLett.119.047401. PubMed DOI

He M., Rivera P., Van Tuan D., Wilson N. P., Yang M., Taniguchi T., Watanabe K., Yan J., Mandrus D. G., Yu H.. et al. Valley phonons and exciton complexes in a monolayer semiconductor. Nat. Commun. 2020;11:618. doi: 10.1038/s41467-020-14472-0. PubMed DOI PMC

Shree S., Paradisanos I., Marie X., Robert C., Urbaszek B.. Guide to optical spectroscopy of layered semiconductors. Nat. Rev. Phys. 2021;3:39. doi: 10.1038/s42254-020-00259-1. DOI

Godde T., Schmidt D., Schmutzler J., Aßmann M., Debus J., Withers F., Alexeev E., Del Pozo-Zamudio O., Skrypka O., Novoselov K.. et al. Exciton and trion dynamics in atomically thin MoSe2 and WSe2: Effect of localization. Phys. Rev. B. 2016;94:165301. doi: 10.1103/PhysRevB.94.165301. DOI

Huang X., Song Z., Gao Y., Gu P., Watanabe K., Taniguchi T., Yang S., Chen Z., Ye Y.. Intrinsic localized excitons in MoSe2/CrSBr heterostructure. Adv. Mater. 2025;37:2413438. doi: 10.1002/adma.202413438. PubMed DOI

Raja A., Chaves A., Yu J., Arefe G., Hill H. M., Rigosi A. F., Berkelbach T. C., Nagler P., Schüller C., Korn T.. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 2017;8:15251. doi: 10.1038/ncomms15251. PubMed DOI PMC

Stier A. V., Wilson N. P., Clark G., Xu X., Crooker S. A.. Probing the influence of dielectric environment on excitons in monolayer WSe2: insight from high magnetic fields. Nano Lett. 2016;16:7054. doi: 10.1021/acs.nanolett.6b03276. PubMed DOI

Bianchi M., Acharya S., Dirnberger F., Klein J., Pashov D., Mosina K., Sofer Z., Rudenko A. N., Katsnelson M. I., Van Schilfgaarde M.. et al. Paramagnetic electronic structure of crsbr: Comparison between ab initio gw theory and angle-resolved photoemission spectroscopy. Phys. Rev. B. 2023;107:235107. doi: 10.1103/PhysRevB.107.235107. DOI

Lin K., Li Y., Ghorbani-Asl M., Sofer Z., Winnerl S., Erbe A., Krasheninnikov A. V., Helm M., Zhou S., Dan Y.. et al. Probing the band splitting near the γ point in the van der waals magnetic semiconductor CrSBr. J. Phys. Chem. Lett. 2024;15:6010. doi: 10.1021/acs.jpclett.4c00968. PubMed DOI

Komar R., Łopion A., Goryca M., Rybak M., Woźniak T., Mosina K., Söll A., Sofer Z., Pacuski W., Faugeras C.. et al. Colossal magneto-excitonic effects in 2D van der waals magnetic semiconductor crsbr. arXiv. 2024 doi: 10.48550/arXiv.2409.00187. DOI

Smolenski S., Wen M., Li Q., Downey E., Alfrey A., Liu W., Kondusamy A. L., Bostwick A., Jozwiak C., Rotenberg E.. et al. Large exciton binding energy in a bulk van der waals magnet from quasi-1D electronic localization. Nat. Commun. 2025;16:1134. doi: 10.1038/s41467-025-56457-x. PubMed DOI PMC

Qian T.-X., Zhou J., Cai T.-Y., Ju S.. Anisotropic electron-hole excitation and large linear dichroism in the two-dimensional ferromagnet CrSBr with in-plane magnetization. Phys. Rev. Res. 2023;5:033143. doi: 10.1103/PhysRevResearch.5.033143. DOI

Datta B., Adak P. C., Yu S., Valiyaparambil Dharmapalan A., Hall S. J., Vakulenko A., Komissarenko F., Kurganov E., Quan J., Wang W.. Magnon-mediated exciton–exciton interaction in a van der waals antiferromagnet. Nat. Mater. 2025;1:1027. doi: 10.1038/s41563-025-02183-0. PubMed DOI

Moubah R., Magnus F., Warnatz T., Pálsson G. K., Kapaklis V., Ukleev V., Devishvili A., Palisaitis J., Persson P., Hjörvarsson B.. Discrete layer-by-layer magnetic switching in Fe/MgO (001) superlattices. Phys. Rev. Appl. 2016;5:044011. doi: 10.1103/PhysRevApplied.5.044011. DOI

Marques-Moros F., Boix-Constant C., Mañas-Valero S., Canet-Ferrer J., Coronado E.. Interplay between optical emission and magnetism in the van der waals magnetic semiconductor CrSBr in the two-dimensional limit. ACS Nano. 2023;17:13224. doi: 10.1021/acsnano.3c00375. PubMed DOI PMC

Klein J., Pham T., Thomsen J., Curtis J., Denneulin T., Lorke M., Florian M., Steinhoff A., Wiscons R., Luxa J.. et al. Control of structure and spin texture in the van der waals layered magnet CrSBr. Nat. Commun. 2022;13:5420. doi: 10.1038/s41467-022-32737-8. PubMed DOI PMC

Robert C., Semina M., Cadiz F., Manca M., Courtade E., Taniguchi T., Watanabe K., Cai H., Tongay S., Lassagne B.. et al. Optical spectroscopy of excited exciton states in MoS2 monolayers in van der waals heterostructures. Phys. Rev. Mater. 2018;2:011001. doi: 10.1103/PhysRevMaterials.2.011001. DOI

Malitson I. H.. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 1965;55:1205. doi: 10.1364/JOSA.55.001205. DOI

Schinke, C. ; Christian Peest, P. ; Schmidt, J. ; Brendel, R. ; Bothe, K. ; Vogt, M. R. ; Kroger, I. ; Winter, S. ; Schirmacher, A. ; Lim, S. ; Nguyen, H. T. ; MacDonald, D. . Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon. AIP Adv. 2015, 5. 10.1063/1.4923379. DOI

Lee S.-Y., Jeong T.-Y., Jung S., Yee K.-J.. Refractive index dispersion of hexagonal boron nitride in the visible and near-infrared. Phys. Status Solidi B. 2019;256:1800417. doi: 10.1002/pssb.201800417. DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...