Resonant Tip-Enhanced Raman Spectroscopy of a Single-Molecule Kondo System
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
38711331
PubMed Central
PMC11112976
DOI
10.1021/acsnano.4c02105
Knihovny.cz E-resources
- Keywords
- Kondo, PTCDA, SPM, TERS, break-junction, resonant Raman,
- Publication type
- Journal Article MeSH
Tip-enhanced Raman spectroscopy (TERS) under ultrahigh vacuum and cryogenic conditions enables exploration of the relations between the adsorption geometry, electronic state, and vibrational fingerprints of individual molecules. TERS capability of reflecting spin states in open-shell molecular configurations is yet unexplored. Here, we use the tip of a scanning probe microscope to lift a perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecule from a metal surface to bring it into an open-shell spin one-half anionic state. We reveal a correlation between the appearance of a Kondo resonance in differential conductance spectroscopy and concurrent characteristic changes captured by the TERS measurements. Through a detailed investigation of various adsorbed and tip-contacted PTCDA scenarios, we infer that the Raman scattering on suspended PTCDA is resonant with a higher excited state. Theoretical simulation of the vibrational spectra enables a precise assignment of the individual TERS peaks to high-symmetry Ag modes, including the fingerprints of the observed spin state. These findings highlight the potential of TERS in capturing complex interactions between charge, spin, and photophysical properties in nanoscale molecular systems and suggest a pathway for designing single-molecule spin-optical devices.
Faculty of Mathematics and Physics Charles University; Ke Karlovu 3 Praha 2 CZ12116 Czech Republic
Institute of Physics Czech Academy of Sciences; Cukrovarnická 10 112 Praha 6 CZ16200 Czech Republic
Institute of Physics École Polytechnique Fédérale de Lausanne Lausanne CH 1015 Switzerland
Instituto de Ciencia de Materiales de Madrid; CSIC Sor Juana Inés de la Cruz 3 Madrid E28049 Spain
See more in PubMed
Zhang R.; Zhang Y.; Dong Z. C.; Jiang S.; Zhang C.; Chen L. G.; Zhang L.; Liao Y.; Aizpurua J.; Luo Y.; Yang J. L.; Hou J. G. Chemical Mapping of a Single Molecule by Plasmon-Enhanced Raman Scattering. Nature 2013, 498, 82–86. 10.1038/nature12151. PubMed DOI
Lee J.; Crampton K. T.; Tallarida N.; Apkarian V. A. Visualizing Vibrational Normal Modes of a Single Molecule with Atomically Confined Light. Nature 2019, 568, 78–82. 10.1038/s41586-019-1059-9. PubMed DOI
Jaculbia R. B.; Imada H.; Miwa K.; Iwasa T.; Takenaka M.; Yang B.; Kazuma E.; Hayazawa N.; Taketsugu T.; Kim Y. Single-Molecule Resonance Raman Effect in a Plasmonic Nanocavity. Nat. Nanotechnol. 2020, 15, 105–110. 10.1038/s41565-019-0614-8. PubMed DOI
Tallarida N.; Lee J.; Apkarian V. A. Tip-Enhanced Raman Spectromicroscopy on the Angstrom Scale: Bare and CO-Terminated Ag Tips. ACS Nano 2017, 11, 11393–11401. 10.1021/acsnano.7b06022. PubMed DOI
Benz F.; Schmidt M. K.; Dreismann A.; Chikkaraddy R.; Zhang Y.; Demetriadou A.; Carnegie C.; Ohadi H.; De Nijs B.; Esteban R.; Aizpurua J.; Baumberg J. J. Single-Molecule Optomechanics in “Picocavities.. Science 2016, 354, 726–729. 10.1126/science.aah5243. PubMed DOI
Imada H.; Imai-Imada M.; Miwa K.; Yamane H.; Iwasa T.; Tanaka Y.; Toriumi N.; Kimura K.; Yokoshi N.; Muranaka A.; Uchiyama M.; Taketsugu T.; Kato Y. K.; Ishihara H.; Kim Y. Single-Molecule Laser Nanospectroscopy with Micro-Electron Volt Energy Resolution. Science 2021, 373, 95–98. 10.1126/science.abg8790. PubMed DOI
Yang B.; Chen G.; Ghafoor A.; Zhang Y.; Zhang Y.; Zhang Y.; Luo Y.; Yang J.; Sandoghdar V.; Aizpurua J.; Dong Z.; Hou J. G. Sub-Nanometre Resolution in Single-Molecule Photoluminescence Imaging. Nat. Photonics 2020, 14, 693–699. 10.1038/s41566-020-0677-y. DOI
Doležal J.; Sagwal A.; de Campos Ferreira R. C.; Švec M. Single-Molecule Time-Resolved Spectroscopy in a Tunable STM Nanocavity. Nano Lett. 2024, 24, 1629–1634. 10.1021/acs.nanolett.3c04314. PubMed DOI PMC
Doležal J.; Canola S.; Merino P.; Švec M. Exciton-Trion Conversion Dynamics in a Single Molecule. ACS Nano 2021, 15, 7694–7699. 10.1021/acsnano.1c01318. PubMed DOI PMC
Doležal J.; Canola S.; Hapala P.; De Campos Ferreira R. C.; Merino P.; Švec M. Real Space Visualization of Entangled Excitonic States in Charged Molecular Assemblies. ACS Nano 2022, 16, 1082–1088. 10.1021/acsnano.1c08816. PubMed DOI
Doppagne B.; Chong M. C.; Bulou H.; Boeglin A.; Scheurer F.; Schull G. Electrofluorochromism at the Single-Molecule Level. Science 2018, 361, 251–255. 10.1126/science.aat1603. PubMed DOI
Qiu X. H.; Nazin G. V.; Ho W. Vibrationally Resolved Fluorescence Excited with Submolecular Precision. Science 2003, 299, 542–546. 10.1126/science.1078675. PubMed DOI
Sheng S.; Ma R.; Wu J. b.; Li W.; Kong L.; Cong X.; Cao D.; Hu W.; Gou J.; Luo J. W.; Cheng P.; Tan P. H.; Jiang Y.; Chen L.; Wu K. The Pentagonal Nature of Self-Assembled Silicon Chains and Magic Clusters on Ag(110). Nano Lett. 2018, 18, 2937–2942. 10.1021/acs.nanolett.8b00289. PubMed DOI
Zhang Y.; Yang B.; Ghafoor A.; Zhang Y.; Zhang Y. F.; Wang R. P.; Yang J. L.; Luo Y.; Dong Z. C.; Hou J. G. Visually Constructing the Chemical Structure of a Single Molecule by Scanning Raman Picoscopy. Natl. Sci. Rev. 2019, 6, 1169–1175. 10.1093/nsr/nwz180. PubMed DOI PMC
Jiang N.; Foley E. T.; Klingsporn J. M.; Sonntag M. D.; Valley N. A.; Dieringer J. A.; Seideman T.; Schatz G. C.; Hersam M. C.; Van Duyne R. P. Observation of Multiple Vibrational Modes in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy Combined with Molecular-Resolution Scanning Tunneling Microscopy. Nano Lett. 2012, 12 (10), 5061–5067. 10.1021/nl2039925. PubMed DOI
Mahapatra S.; Ning Y.; Schultz J. F.; Li L.; Zhang J. L.; Jiang N. Angstrom Scale Chemical Analysis of Metal Supported Trans- and Cis-Regioisomers by Ultrahigh Vacuum Tip-Enhanced Raman Mapping. Nano Lett. 2019, 19 (5), 3267–3272. 10.1021/acs.nanolett.9b00826. PubMed DOI
Wang R. P.; Yang B.; Fu Q.; Zhang Y.; Zhu R.; Dong X. R.; Zhang Y.; Wang B.; Yang J. L.; Luo Y.; Dong Z. C.; Hou J. G. Raman Detection of Bond Breaking and Making of a Chemisorbed Up-Standing Single Molecule at Single-Bond Level. J. Phys. Chem. Lett. 2021, 12, 1961–1968. 10.1021/acs.jpclett.1c00074. PubMed DOI
Chiang N.; Chen X.; Goubert G.; Chulhai D. V.; Chen X.; Pozzi E. A.; Jiang N.; Hersam M. C.; Seideman T.; Jensen L.; Van Duyne R. P. Conformational Contrast of Surface-Mediated Molecular Switches Yields Ångstrom-Scale Spatial Resolution in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy. Nano Lett. 2016, 16, 7774–7778. 10.1021/acs.nanolett.6b03958. PubMed DOI
Xu J.; Zhu X.; Tan S.; Zhang Y.; Li B.; Tian Y.; Shan H.; Cui X.; Zhao A.; Dong Z.; Yang J.; Luo Y.; Wang B.; Hou J. G. Determining Structural and Chemical Heterogeneities of Surface Species at the Single-Bond Limit. Science 2021, 371, 818–822. 10.1126/science.abd1827. PubMed DOI
Ternes M. Probing Magnetic Excitations and Correlations in Single and Coupled Spin Systems with Scanning Tunneling Spectroscopy. Prog. Surf. Sci. 2017, 92, 83–115. 10.1016/j.progsurf.2017.01.001. DOI
Huang Z.; Zhang Y.; He Y.; Song H.; Yin C.; Wu K. A Chemist’s Overview of Surface Electron Spins. Chem. Soc. Rev. 2017, 46, 1955–1976. 10.1039/C6CS00891G. PubMed DOI
Parks J. J.; Champagne A. R.; Costi T. A.; Shum W. W.; Pasupathy A. N.; Neuscamman E.; Flores-Torres S.; Cornaglia P. S.; Aligia A. A.; Balseiro C. A.; Chan G. K. L.; Abruña H. D.; Ralph D. C. Mechanical Control of Spin States in Spin-1 Molecules and the Underscreened Kondo Effect. Science 2010, 328, 1370–1373. 10.1126/science.1186874. PubMed DOI
Robles R.; Lorente N.; Isshiki H.; Liu J.; Katoh K.; Breedlove B. K.; Yamashita M.; Komeda T. Spin Doping of Individual Molecules by Using Single-Atom Manipulation. Nano Lett. 2012, 12, 3609–3612. 10.1021/nl301301e. PubMed DOI
Esat T.; Deilmann T.; Lechtenberg B.; Wagner C.; Krüger P.; Temirov R.; Anders F. B.; Rohlfing M.; Tautz F. S. Transfering Spin into an Extended π Orbital of a Large Molecule. Phys. Rev. B - Condens. Matter Mater. Phys. 2015, 91, 14441510.1103/PhysRevB.91.144415. DOI
de la Torre B.; Švec M.; Hapala P.; Redondo J.; Krejčí O.; Lo R.; Manna D.; Sarmah A.; Nachtigallová D.; Tuček J.; Błoński P.; Otyepka M.; Zbořil R.; Hobza P.; Jelínek P. Non-Covalent Control of Spin-State in Metal-Organic Complex by Positioning on N-Doped Graphene. Nat. Commun. 2018, 9, 1–9. 10.1038/s41467-018-05163-y. PubMed DOI PMC
Zhang X.; Wolf C.; Wang Y.; Aubin H.; Bilgeri T.; Willke P.; Heinrich A. J.; Choi T. Electron Spin Resonance of Single Iron Phthalocyanine Molecules and Role of Their Non-Localized Spins in Magnetic Interactions. Nat. Chem. 2022, 14, 59–65. 10.1038/s41557-021-00827-7. PubMed DOI
Cirera B.; Litman Y.; Lin C.; Akkoush A.; Hammud A.; Wolf M.; Rossi M.; Kumagai T. Charge Transfer-Mediated Dramatic Enhancement of Raman Scattering upon Molecular Point Contact Formation. Nano Lett. 2022, 22, 2170–2176. 10.1021/acs.nanolett.1c02626. PubMed DOI PMC
Liu S.; Bonafe F. P.; Appel H.; Rubio A.; Wolf M.; Kumagai T. Inelastic Light Scattering in the Vicinity of a Single-Atom Quantum Point Contact in a Plasmonic Picocavity. ACS Nano 2023, 17, 10172–10180. 10.1021/acsnano.3c00261. PubMed DOI
Yang B.; Chen G.; Ghafoor A.; Zhang Y.; Zhang X.; Li H.; Dong X.; Wang R.; Zhang Y.; Zhang Y.; Dong Z. Chemical Enhancement and Quenching in Single-Molecule Tip-Enhanced Raman Spectroscopy. Angew. Chem. 2023, 135, e20221879910.1002/ange.202218799. PubMed DOI
Cirera B.; Wolf M.; Kumagai T. Joule Heating in Single-Molecule Point Contacts Studied by Tip-Enhanced Raman Spectroscopy. ACS Nano 2022, 16, 16443–16451. 10.1021/acsnano.2c05642. PubMed DOI
Temirov R.; Lassise A.; Anders F. B.; Tautz F. S. Kondo Effect by Controlled Cleavage of a Single-Molecule Contact. Nanotechnology 2008, 19, 06540110.1088/0957-4484/19/6/065401. PubMed DOI
Romaner L.; Nabok D.; Puschnig P.; Zojer E.; Ambrosch-Draxl C. New Journal of Physics Theoretical Study of PTCDA Adsorbed on the Coinage Metal Surfaces, Ag(111), Au(111) and Cu(111). New J. Phys. 2009, 11, 05301010.1088/1367-2630/11/5/053010. DOI
Žonda M.; Stetsovych O.; Korytár R.; Ternes M.; Temirov R.; Raccanelli A.; Tautz F. S.; Jelínek P.; Novotný T.; Švec M. Resolving Ambiguity of the Kondo Temperature Determination in Mechanically Tunable Single-Molecule Kondo Systems. J. Phys. Chem. Lett. 2021, 12, 6320–6325. 10.1021/acs.jpclett.1c01544. PubMed DOI
Esat T.; Friedrich N.; Tautz F. S.; Temirov R. A Standing Molecule as a Single-Electron Field Emitter. Nature 2018, 558, 573–576. 10.1038/s41586-018-0223-y. PubMed DOI
Wagner C.; Green M. F.; Leinen P.; Deilmann T.; Krüger P.; Rohlfing M.; Temirov R.; Tautz F. S. Scanning Quantum Dot Microscopy. Phys. Rev. Lett. 2015, 115, 02610110.1103/PhysRevLett.115.026101. PubMed DOI
Liu S.; Wolf M.; Kumagai T. Plasmon-Assisted Resonant Electron Tunneling in a Scanning Tunneling Microscope Junction. Phys. Rev. Lett. 2018, 121, 22680210.1103/PhysRevLett.121.226802. PubMed DOI
Rohlfing M.; Temirov R.; Tautz F. S. Adsorption Structure and Scanning Tunneling Data of a Prototype Organic-Inorganic Interface: PTCDA on Ag(111). Phys. Rev. B - Condens. Matter Mater. Phys. 2007, 76 (11), 11542110.1103/PhysRevB.76.115421. DOI
Kimura K.; Miwa K.; Imada H.; Imai-Imada M.; Kawahara S.; Takeya J.; Kawai M.; Galperin M.; Kim Y. Selective Triplet Exciton Formation in a Single Molecule. Nature 2019, 570 (7760), 210–213. 10.1038/s41586-019-1284-2. PubMed DOI
Neuman T.; Esteban R.; Casanova D.; García-Vidal F. J.; Aizpurua J. Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point-Dipole Approximation. Nano Lett. 2018, 18, 2358–2364. 10.1021/acs.nanolett.7b05297. PubMed DOI
Neuman T.; Esteban R.; Giedke G.; Schmidt M. K.; Aizpurua J. Quantum Description of Surface-Enhanced Resonant Raman Scattering within a Hybrid-Optomechanical Model. Phys. Rev. A 2019, 100, 04342210.1103/PhysRevA.100.043422. DOI
Scholz R.; Kobitski A. Y.; Kampen T.; Schreiber M.; Zahn D.; Jungnickel G.; Elstner M.; Sternberg M.; Frauenheim T. Resonant Raman Spectroscopy of 3,4,9,10-Perylene-Tetracarboxylic-Dianhydride Epitaxial Films. Phys. Rev. B 2000, 61, 13659.10.1103/PhysRevB.61.13659. DOI
Kobitski A. Y.; Salvan G.; Scholz R.; Tenne D.; Kampen T. U.; Wagner H. P.; Zahn D. R. T. Raman Spectroscopy of the PTCDA–Inorganic Semiconductor Interface: Evidence for Charge Transfer. Appl. Surf. Sci. 2002, 190, 386–389. 10.1016/S0169-4332(01)00898-4. DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams-Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. J.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford CT. 2016.
Santoro F.; Lami A.; Improta R.; Bloino J.; Barone V. Effective Method for the Computation of Optical Spectra of Large Molecules at Finite Temperature Including the Duschinsky and Herzberg-Teller Effect: The Qx Band of Porphyrin as a Case Study. J. Chem. Phys. 2008, 128, 29.10.1063/1.2929846. PubMed DOI