Single-Molecule Time-Resolved Spectroscopy in a Tunable STM Nanocavity
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
38286028
PubMed Central
PMC10853955
DOI
10.1021/acs.nanolett.3c04314
Knihovny.cz E-resources
- Keywords
- STM, TCSPC, TEPL, nanocavity, photoluminescence, phthalocyanine,
- Publication type
- Journal Article MeSH
Spontaneous fluorescence rates of single-molecule emitters are typically on the order of nanoseconds. However, coupling them with plasmonic nanostructures can substantially increase their fluorescence yields. The confinement between a tip and sample in a scanning tunneling microscope creates a tunable nanocavity, an ideal platform for exploring the yields and excitation decay rates of single-molecule emitters, depending on their coupling strength to the nanocavity. With such a setup, we determine the excitation lifetimes from the direct time-resolved measurements of phthalocyanine fluorescence decays, decoupled from the metal substrates by ultrathin NaCl layers. We find that when the tip is approached to single molecules, their lifetimes are reduced to the picosecond range due to the effect of coupling with the tip-sample nanocavity. On the other hand, ensembles of the adsorbed molecules measured without the nanocavity manifest nanosecond-range lifetimes. This approach overcomes the drawbacks associated with the estimation of lifetimes for single molecules from their respective emission line widths.
Faculty of Mathematics and Physics Charles University; Ke Karlovu 3 CZ12116 Praha 2 Czech Republic
Institute of Physics Czech Academy of Sciences; Cukrovarnická 10 112 CZ16200 Praha 6 Czech Republic
See more in PubMed
Hamann H. F.; Kuno M.; Gallagher A.; Nesbitt D. J. Molecular fluorescence in the vicinity of a nanoscopic probe. J. Chem. Phys. 2001, 114, 8596–8609. 10.1063/1.1365931. DOI
Anger P.; Bharadwaj P.; Novotny L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 2006, 96, 11300210.1103/PhysRevLett.96.113002. PubMed DOI
Kinkhabwala A.; et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 2009, 3, 654–657. 10.1038/nphoton.2009.187. DOI
Purcell E. M.; Torrey H. C.; Pound R. V. Resonance Absorption by Nuclear Magnetic Moments in a Solid. Phys. Rev. 1946, 69, 37.10.1103/PhysRev.69.37. DOI
Lamb W. E. Jr.; Retherford R. C. Fine Structure of the Hydrogen Atom by a Microwave Method. Phys. Rev. 1947, 72, 241.10.1103/PhysRev.72.241. DOI
Ciracì C.; et al. Probing the ultimate limits of plasmonic enhancement. Science 2012, 337, 1072–1074. 10.1126/science.1224823. PubMed DOI PMC
Chikkaraddy R.; et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 2016, 535, 127–130. 10.1038/nature17974. PubMed DOI PMC
Merino P.; Große C.; Rosławska A.; Kuhnke K.; Kern K. Exciton dynamics of C60-based single-photon emitters explored by Hanbury Brown-Twiss scanning tunnelling microscopy. Nat. Commun. 2015, 6, 8461.10.1038/ncomms9461. PubMed DOI PMC
Zhang L.; et al. Electrically driven single-photon emission from an isolated single molecule. Nat. Commun. 2017, 8, 580.10.1038/s41467-017-00681-7. PubMed DOI PMC
Doležal J.; Canola S.; Merino P.; Švec M. Exciton-Trion Conversion Dynamics in a Single Molecule. ACS Nano 2021, 15, 7694–7699. 10.1021/acsnano.1c01318. PubMed DOI PMC
Yang B.; et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photonics 2020, 14, 693–699. 10.1038/s41566-020-0677-y. DOI
Kaiser K.; Lieske L.-A.; Repp J.; Gross L. Charge-state lifetimes of single molecules on few monolayers of NaCl. Nat. Commun. 2023, 14, 4988.10.1038/s41467-023-40692-1. PubMed DOI PMC
Wu S. W.; Nazin G. V.; Ho W. Intramolecular photon emission from a single molecule in a scanning tunneling microscope. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 77, 20543010.1103/PhysRevB.77.205430. DOI
Imada H.; et al. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 2016, 538, 364–367. 10.1038/nature19765. PubMed DOI
Doležal J.; et al. Evidence of exciton-libron coupling in chirally adsorbed single molecules. Nat. Commun. 2022, 13, 6008.10.1038/s41467-022-33653-7. PubMed DOI PMC
Imada H.; Imai-Imada M.; Ouyang X.; Muranaka A.; Kim Y. Anti-Kasha emissions of single molecules in a plasmonic nanocavity. J. Chem. Phys. 2022, 157, 10430210.1063/5.0102087. PubMed DOI
Imada H.; et al. Single-molecule laser nanospectroscopy with micro-electron volt energy resolution. Science 2021, 373, 95–98. 10.1126/science.abg8790. PubMed DOI
Hoang T. B.; Akselrod G. M.; Mikkelsen M. H. Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities. Nano Lett. 2016, 16, 270–275. 10.1021/acs.nanolett.5b03724. PubMed DOI
Zhang Y.; et al. Visualizing coherent intermolecular dipole-dipole coupling in real space. Nature 2016, 531, 623–627. 10.1038/nature17428. PubMed DOI
Doppagne B.; et al. Vibronic Spectroscopy with Submolecular Resolution from STM-Induced Electroluminescence. Phys. Rev. Lett. 2017, 118, 12740110.1103/PhysRevLett.118.127401. PubMed DOI
Hung T.-C.; Kiraly B.; Strik J. H.; Khajetoorians A. A.; Wegner D. Plasmon-Driven Motion of an Individual Molecule. Nano Lett. 2021, 21, 5006–5012. 10.1021/acs.nanolett.1c00788. PubMed DOI PMC
Doležal J.; et al. Evidence of exciton-libron coupling in chirally adsorbed single molecules. Nat. Commun. 2022, 13, 6008.10.1038/s41467-022-33653-7. PubMed DOI PMC
Aguilar-Galindo F.; Zapata-Herrera M.; Díaz-Tendero S.; Aizpurua J.; Borisov A. G. Effect of a dielectric spacer on electronic and electromagnetic interactions at play in molecular exciton decay at surfaces and in plasmonic gaps. ACS Photonics 2021, 8, 3495–3505. 10.1021/acsphotonics.1c00791. DOI
Paulheim A.; et al. Inhomogeneous and homogeneous line broadening of optical spectra of PTCDA molecules adsorbed at step edges of alkali Halide surfaces. J. Phys. Chem. C Nanomater. Interfaces 2016, 120, 11926–11937. 10.1021/acs.jpcc.6b01956. DOI
Marquardt C.; Paulheim A.; Hochheim M.; Bredow T.; Sokolowski M. Homogeneous and inhomogeneous line shape of the electronic excitation of a single molecule on a surface. Phys. Rev. B Condens. Matter 2021, 104, 04541510.1103/PhysRevB.104.045415. DOI
Rosławska A.; Kaiser K.; Romeo M.; Devaux E.; Scheurer F.; Berciaud S.; Neuman T.; Schull G.. Submolecular-scale control of phototautomerization, 2023; 2305.13157. arXiv,10.48550/arXiv.2305.13157 (accessed 2024-01-22). PubMed DOI
Zhang Y.; et al. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity. Nat. Commun. 2017, 8, 15225.10.1038/ncomms15225. PubMed DOI PMC
Doppagne B.; et al. Electrofluorochromism at the single-molecule level. Science 2018, 361, 251–255. 10.1126/science.aat1603. PubMed DOI
Doležal J.; et al. Mechano-Optical Switching of a Single Molecule with Doublet Emission. ACS Nano 2020, 14, 8931–8938. 10.1021/acsnano.0c03730. PubMed DOI PMC
Neuman T.; Esteban R.; Casanova D.; García-Vidal F. J.; Aizpurua J. Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point-Dipole Approximation. Nano Lett. 2018, 18, 2358–2364. 10.1021/acs.nanolett.7b05297. PubMed DOI
Yang B.; et al. Chemical Enhancement and Quenching in Single-Molecule Tip-Enhanced Raman Spectroscopy. Angew. Chem., Int. Ed. Engl. 2023, 62, e20221879910.1002/anie.202218799. PubMed DOI
Zhang R.; et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 2013, 498, 82–86. 10.1038/nature12151. PubMed DOI
Jaculbia R. B.; et al. Single-molecule resonance Raman effect in a plasmonic nanocavity. Nat. Nanotechnol. 2020, 15, 105–110. 10.1038/s41565-019-0614-8. PubMed DOI
Tallarida N.; Lee J.; Apkarian V. A. Tip-Enhanced Raman Spectromicroscopy on the Angstrom Scale: Bare and CO-Terminated Ag Tips. ACS Nano 2017, 11, 11393–11401. 10.1021/acsnano.7b06022. PubMed DOI
Sibata M. N.; Tedesco A. C.; Marchetti J. M. Photophysicals and photochemicals studies of zinc(II) phthalocyanine in long time circulation micelles for photodynamic therapy use. Eur. J. Pharm. Sci. 2004, 23, 131–138. 10.1016/j.ejps.2004.06.004. PubMed DOI
Ijaz T.; et al. Self-decoupled tetrapodal perylene molecules for luminescence studies of isolated emitters on Au(111). Appl. Phys. Lett. 2019, 115, 17310110.1063/1.5124551. DOI
Liu S.; Wolf M.; Kumagai T. Plasmon-Assisted Resonant Electron Tunneling in a Scanning Tunneling Microscope Junction. Phys. Rev. Lett. 2018, 121, 22680210.1103/PhysRevLett.121.226802. PubMed DOI
Resonant Tip-Enhanced Raman Spectroscopy of a Single-Molecule Kondo System