• This record comes from PubMed

Single-Molecule Time-Resolved Spectroscopy in a Tunable STM Nanocavity

. 2024 Feb 07 ; 24 (5) : 1629-1634. [epub] 20240129

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Spontaneous fluorescence rates of single-molecule emitters are typically on the order of nanoseconds. However, coupling them with plasmonic nanostructures can substantially increase their fluorescence yields. The confinement between a tip and sample in a scanning tunneling microscope creates a tunable nanocavity, an ideal platform for exploring the yields and excitation decay rates of single-molecule emitters, depending on their coupling strength to the nanocavity. With such a setup, we determine the excitation lifetimes from the direct time-resolved measurements of phthalocyanine fluorescence decays, decoupled from the metal substrates by ultrathin NaCl layers. We find that when the tip is approached to single molecules, their lifetimes are reduced to the picosecond range due to the effect of coupling with the tip-sample nanocavity. On the other hand, ensembles of the adsorbed molecules measured without the nanocavity manifest nanosecond-range lifetimes. This approach overcomes the drawbacks associated with the estimation of lifetimes for single molecules from their respective emission line widths.

See more in PubMed

Hamann H. F.; Kuno M.; Gallagher A.; Nesbitt D. J. Molecular fluorescence in the vicinity of a nanoscopic probe. J. Chem. Phys. 2001, 114, 8596–8609. 10.1063/1.1365931. DOI

Anger P.; Bharadwaj P.; Novotny L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 2006, 96, 11300210.1103/PhysRevLett.96.113002. PubMed DOI

Kinkhabwala A.; et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 2009, 3, 654–657. 10.1038/nphoton.2009.187. DOI

Purcell E. M.; Torrey H. C.; Pound R. V. Resonance Absorption by Nuclear Magnetic Moments in a Solid. Phys. Rev. 1946, 69, 37.10.1103/PhysRev.69.37. DOI

Lamb W. E. Jr.; Retherford R. C. Fine Structure of the Hydrogen Atom by a Microwave Method. Phys. Rev. 1947, 72, 241.10.1103/PhysRev.72.241. DOI

Ciracì C.; et al. Probing the ultimate limits of plasmonic enhancement. Science 2012, 337, 1072–1074. 10.1126/science.1224823. PubMed DOI PMC

Chikkaraddy R.; et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 2016, 535, 127–130. 10.1038/nature17974. PubMed DOI PMC

Merino P.; Große C.; Rosławska A.; Kuhnke K.; Kern K. Exciton dynamics of C60-based single-photon emitters explored by Hanbury Brown-Twiss scanning tunnelling microscopy. Nat. Commun. 2015, 6, 8461.10.1038/ncomms9461. PubMed DOI PMC

Zhang L.; et al. Electrically driven single-photon emission from an isolated single molecule. Nat. Commun. 2017, 8, 580.10.1038/s41467-017-00681-7. PubMed DOI PMC

Doležal J.; Canola S.; Merino P.; Švec M. Exciton-Trion Conversion Dynamics in a Single Molecule. ACS Nano 2021, 15, 7694–7699. 10.1021/acsnano.1c01318. PubMed DOI PMC

Yang B.; et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photonics 2020, 14, 693–699. 10.1038/s41566-020-0677-y. DOI

Kaiser K.; Lieske L.-A.; Repp J.; Gross L. Charge-state lifetimes of single molecules on few monolayers of NaCl. Nat. Commun. 2023, 14, 4988.10.1038/s41467-023-40692-1. PubMed DOI PMC

Wu S. W.; Nazin G. V.; Ho W. Intramolecular photon emission from a single molecule in a scanning tunneling microscope. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 77, 20543010.1103/PhysRevB.77.205430. DOI

Imada H.; et al. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 2016, 538, 364–367. 10.1038/nature19765. PubMed DOI

Doležal J.; et al. Evidence of exciton-libron coupling in chirally adsorbed single molecules. Nat. Commun. 2022, 13, 6008.10.1038/s41467-022-33653-7. PubMed DOI PMC

Imada H.; Imai-Imada M.; Ouyang X.; Muranaka A.; Kim Y. Anti-Kasha emissions of single molecules in a plasmonic nanocavity. J. Chem. Phys. 2022, 157, 10430210.1063/5.0102087. PubMed DOI

Imada H.; et al. Single-molecule laser nanospectroscopy with micro-electron volt energy resolution. Science 2021, 373, 95–98. 10.1126/science.abg8790. PubMed DOI

Hoang T. B.; Akselrod G. M.; Mikkelsen M. H. Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities. Nano Lett. 2016, 16, 270–275. 10.1021/acs.nanolett.5b03724. PubMed DOI

Zhang Y.; et al. Visualizing coherent intermolecular dipole-dipole coupling in real space. Nature 2016, 531, 623–627. 10.1038/nature17428. PubMed DOI

Doppagne B.; et al. Vibronic Spectroscopy with Submolecular Resolution from STM-Induced Electroluminescence. Phys. Rev. Lett. 2017, 118, 12740110.1103/PhysRevLett.118.127401. PubMed DOI

Hung T.-C.; Kiraly B.; Strik J. H.; Khajetoorians A. A.; Wegner D. Plasmon-Driven Motion of an Individual Molecule. Nano Lett. 2021, 21, 5006–5012. 10.1021/acs.nanolett.1c00788. PubMed DOI PMC

Doležal J.; et al. Evidence of exciton-libron coupling in chirally adsorbed single molecules. Nat. Commun. 2022, 13, 6008.10.1038/s41467-022-33653-7. PubMed DOI PMC

Aguilar-Galindo F.; Zapata-Herrera M.; Díaz-Tendero S.; Aizpurua J.; Borisov A. G. Effect of a dielectric spacer on electronic and electromagnetic interactions at play in molecular exciton decay at surfaces and in plasmonic gaps. ACS Photonics 2021, 8, 3495–3505. 10.1021/acsphotonics.1c00791. DOI

Paulheim A.; et al. Inhomogeneous and homogeneous line broadening of optical spectra of PTCDA molecules adsorbed at step edges of alkali Halide surfaces. J. Phys. Chem. C Nanomater. Interfaces 2016, 120, 11926–11937. 10.1021/acs.jpcc.6b01956. DOI

Marquardt C.; Paulheim A.; Hochheim M.; Bredow T.; Sokolowski M. Homogeneous and inhomogeneous line shape of the electronic excitation of a single molecule on a surface. Phys. Rev. B Condens. Matter 2021, 104, 04541510.1103/PhysRevB.104.045415. DOI

Rosławska A.; Kaiser K.; Romeo M.; Devaux E.; Scheurer F.; Berciaud S.; Neuman T.; Schull G.. Submolecular-scale control of phototautomerization, 2023; 2305.13157. arXiv,10.48550/arXiv.2305.13157 (accessed 2024-01-22). PubMed DOI

Zhang Y.; et al. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity. Nat. Commun. 2017, 8, 15225.10.1038/ncomms15225. PubMed DOI PMC

Doppagne B.; et al. Electrofluorochromism at the single-molecule level. Science 2018, 361, 251–255. 10.1126/science.aat1603. PubMed DOI

Doležal J.; et al. Mechano-Optical Switching of a Single Molecule with Doublet Emission. ACS Nano 2020, 14, 8931–8938. 10.1021/acsnano.0c03730. PubMed DOI PMC

Neuman T.; Esteban R.; Casanova D.; García-Vidal F. J.; Aizpurua J. Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point-Dipole Approximation. Nano Lett. 2018, 18, 2358–2364. 10.1021/acs.nanolett.7b05297. PubMed DOI

Yang B.; et al. Chemical Enhancement and Quenching in Single-Molecule Tip-Enhanced Raman Spectroscopy. Angew. Chem., Int. Ed. Engl. 2023, 62, e20221879910.1002/anie.202218799. PubMed DOI

Zhang R.; et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 2013, 498, 82–86. 10.1038/nature12151. PubMed DOI

Jaculbia R. B.; et al. Single-molecule resonance Raman effect in a plasmonic nanocavity. Nat. Nanotechnol. 2020, 15, 105–110. 10.1038/s41565-019-0614-8. PubMed DOI

Tallarida N.; Lee J.; Apkarian V. A. Tip-Enhanced Raman Spectromicroscopy on the Angstrom Scale: Bare and CO-Terminated Ag Tips. ACS Nano 2017, 11, 11393–11401. 10.1021/acsnano.7b06022. PubMed DOI

Sibata M. N.; Tedesco A. C.; Marchetti J. M. Photophysicals and photochemicals studies of zinc(II) phthalocyanine in long time circulation micelles for photodynamic therapy use. Eur. J. Pharm. Sci. 2004, 23, 131–138. 10.1016/j.ejps.2004.06.004. PubMed DOI

Ijaz T.; et al. Self-decoupled tetrapodal perylene molecules for luminescence studies of isolated emitters on Au(111). Appl. Phys. Lett. 2019, 115, 17310110.1063/1.5124551. DOI

Liu S.; Wolf M.; Kumagai T. Plasmon-Assisted Resonant Electron Tunneling in a Scanning Tunneling Microscope Junction. Phys. Rev. Lett. 2018, 121, 22680210.1103/PhysRevLett.121.226802. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...