Submolecular-scale control of phototautomerization
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
771850
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
771850
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
894434
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
206912
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ANR-20-CE24-0010
Agence Nationale de la Recherche (French National Research Agency)
ANR-10-LABX-0039-PALM
Agence Nationale de la Recherche (French National Research Agency)
PubMed
38413791
DOI
10.1038/s41565-024-01622-4
PII: 10.1038/s41565-024-01622-4
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Optically activated reactions initiate biological processes such as photosynthesis or vision, but can also control polymerization, catalysis or energy conversion. Methods relying on the manipulation of light at macroscopic and mesoscopic scales are used to control on-surface photochemistry, but do not offer atomic-scale control. Here we take advantage of the confinement of the electromagnetic field at the apex of a scanning tunnelling microscope tip to drive the phototautomerization of a free-base phthalocyanine with submolecular precision. We can control the reaction rate and the relative tautomer population through a change in the laser excitation wavelength or through the tip position. Atomically resolved tip-enhanced photoluminescence spectroscopy and hyperspectral mapping unravel an excited-state mediated process, which is quantitatively supported by a comprehensive theoretical model combining ab initio calculations with a parametric open-quantum-system approach. Our experimental strategy may allow insights in other photochemical reactions and proof useful to control complex on-surface reactions.
Institut des Sciences Moléculaires d'Orsay UMR 8214 CNRS Université Paris Saclay Orsay France
Institute of Physics Czech Academy of Sciences Prague Czech Republic
Max Planck Institut für Festkörperforschung Stuttgart Germany
Zobrazit více v PubMed
Mirkovic, T. et al. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 117, 249–293 (2017). PubMed DOI
Bleger, D. & Hecht, S. Visible-light-activated molecular switches. Angew. Chem. Int. Ed. 54, 11338–11349 (2015). DOI
Corrigan, N., Yeow, J., Judzewitsch, P., Xu, J. & Boyer, C. Seeing the light: advancing materials chemistry through photopolymerization. Angew. Chem. Int. Ed. 58, 5170–5189 (2019). DOI
Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017). DOI
Völker, S. & van der Waals, J. Laser-induced photochemical isomerization of free base porphyrin in an n-octane crystal at 4.2 K. Mol. Phys. 32, 1703–1718 (1976). DOI
Hutchison, J. A., Schwartz, T., Genet, C., Devaux, E. & Ebbesen, T. W. Modifying chemical landscapes by coupling to vacuum fields. Angew. Chem. Int. Ed. 51, 1592–1596 (2012). DOI
Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H PubMed DOI
Böckmann, H. et al. Direct observation of photoinduced tautomerization in single molecules at a metal surface. Nano Lett. 16, 1034–1041 (2016). PubMed DOI
Böckmann, H. et al. Near-field enhanced photochemistry of single molecules in a scanning tunneling microscope junction. Nano Lett. 18, 152–157 (2018). PubMed DOI
Kazuma, E., Jung, J., Ueba, H., Trenary, M. & Kim, Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 360, 521–526 (2018). PubMed DOI
Li, S. et al. Bond-selected photodissociation of single molecules adsorbed on metal surfaces. Phys. Rev. Lett. 122, 077401 (2019). PubMed DOI
Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003). PubMed DOI
Merino, P., Große, C., Rosławska, A., Kuhnke, K. & Kern, K. Exciton dynamics of C PubMed DOI
Zhang, Y. et al. Visualizing coherent intermolecular dipole–dipole coupling in real space. Nature 531, 623–627 (2016). PubMed DOI
Imada, H. et al. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 538, 364–367 (2016). PubMed DOI
Doppagne, B. et al. Electrofluorochromism at the single-molecule level. Science 361, 251–255 (2018). PubMed DOI
Kaiser, K., Gross, L. & Schulz, F. A single-molecule chemical reaction studied by high-resolution atomic force microscopy and scanning tunneling microscopy induced light emission. ACS Nano 13, 6947–6954 (2019). PubMed DOI PMC
Doppagne, B. et al. Single-molecule tautomerization tracking through space- and time-resolved fluorescence spectroscopy. Nat. Nanotechnol. 15, 207–211 (2020). PubMed DOI
Yang, B. et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photon. 14, 693–699 (2020). DOI
Rosławska, A. et al. Gigahertz frame rate imaging of charge-injection dynamics in a molecular light source. Nano Lett. 21, 4577–4583 (2021). PubMed DOI PMC
Cao, S. et al. Energy funnelling within multichromophore architectures monitored with subnanometre resolution. Nat. Chem. 13, 766–770 (2021). PubMed DOI
Imada, H. et al. Single-molecule laser nanospectroscopy with micro–electron volt energy resolution. Science 373, 95–98 (2021). PubMed DOI
Imai-Imada, M. et al. Orbital-resolved visualization of single-molecule photocurrent channels. Nature 603, 829–834 (2022). PubMed DOI
Rosławska, A. et al. Mapping Lamb, Stark, and Purcell effects at a chromophore-picocavity junction with hyper-resolved fluorescence microscopy. Phys. Rev. X 12, 011012 (2022).
Doležal, J. et al. Evidence of exciton-libron coupling in chirally adsorbed single molecules. Nat. Commun. 13, 6008 (2022). PubMed DOI PMC
Imada, H., Imai-Imada, M., Ouyang, X., Muranaka, A. & Kim, Y. Anti-Kasha emissions of single molecules in a plasmonic nanocavity. J. Chem. Phys. 157, 104302 (2022). PubMed DOI
Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013). PubMed DOI
Lee, J., Crampton, K. T., Tallarida, N. & Apkarian, V. A. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature 568, 78–82 (2019). PubMed DOI
Liu, S. et al. Resolving the correlation between tip-enhanced resonance Raman scattering and local electronic states with 1 nm resolution. Nano Lett. 19, 5725–5731 (2019). PubMed DOI PMC
Li, L. et al. Angstrom-scale spectroscopic visualization of interfacial interactions in an organic/borophene vertical heterostructure. J. Am. Chem. Soc. 143, 15624–15634 (2021). PubMed DOI
Orrit, M. & Bernard, J. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990). PubMed DOI
Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006). PubMed DOI
Kühn, S., Håkanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006). PubMed DOI
Chen, T. et al. Optical super-resolution imaging of surface reactions. Chem. Rev. 117, 7510–7537 (2017). PubMed DOI
Trebbia, J.-B., Deplano, Q., Tamarat, P. & Lounis, B. Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters. Nat. Commun. 13, 2962 (2022). PubMed DOI PMC
Kügel, J., Klein, L., Leisegang, M. & Bode, M. Analyzing and tuning the energetic landscape of H DOI
Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007). PubMed DOI
Auwärter, W. et al. A surface-anchored molecular four-level conductance switch based on single proton transfer. Nat. Nanotechnol. 7, 41–46 (2012). DOI
Kumagai, T. et al. Controlling intramolecular hydrogen transfer in a porphycene molecule with single atoms or molecules located nearby. Nat. Chem. 6, 41–46 (2013). PubMed DOI
Kumagai, T. et al. Thermally and vibrationally induced tautomerization of single porphycene molecules on a Cu(110) surface. Phys. Rev. Lett. 111, 246101 (2013). PubMed DOI
Murray, C. et al. Visible luminescence spectroscopy of free-base and zinc phthalocyanines isolated in cryogenic matrices. Phys. Chem. Chem. Phys. 13, 17543–17554 (2011). PubMed DOI
Coohill, T. P. Action spectra again? Photochem. Photobiol. 54, 859–870 (1991). PubMed DOI
Urbieta, M. et al. Atomic-scale lightning rod effect in plasmonic picocavities: a classical view to a quantum effect. ACS Nano 12, 585–595 (2018). PubMed DOI
Comstock, M. J. et al. Reversible photomechanical switching of individual engineered molecules at a metallic surface. Phys. Rev. Lett. 99, 038301 (2007). PubMed DOI
Bazarnik, M., Henzl, J., Czajka, R. & Morgenstern, K. Light driven reactions of single physisorbed azobenzenes. Chem. Commun. 47, 7764 (2011). DOI
Nacci, C., Baroncini, M., Credi, A. & Grill, L. Reversible photoswitching and isomer-dependent diffusion of single azobenzene tetramers on a metal surface. Angew. Chem. Int. Ed. 57, 15034–15039 (2018). DOI
Miura, A. et al. Light- and STM-tip-induced formation of one-dimensional and two-dimensional organic nanostructures. Langmuir 19, 6474–6482 (2003). DOI
Para, F. et al. Micrometre-long covalent organic fibres by photoinitiated chain-growth radical polymerization on an alkali-halide surface. Nat. Chem. 10, 1112–1117 (2018). PubMed DOI
Clair, S. & de Oteyza, D. G. Controlling a chemical coupling reaction on a surface: tools and strategies for on-surface synthesis. Chem. Rev. 119, 4717–4776 (2019). PubMed DOI PMC
Grossmann, L. et al. On-surface photopolymerization of two-dimensional polymers ordered on the mesoscale. Nat. Chem. 13, 730–736 (2021). PubMed DOI
Garg, M. & Kern, K. Attosecond coherent manipulation of electrons in tunneling microscopy. Science 367, 411–415 (2020). PubMed DOI
Peller, D. et al. Sub-cycle atomic-scale forces coherently control a single-molecule switch. Nature 585, 58–62 (2020). PubMed DOI
Zhang, C. et al. Fabrication of silver tips for scanning tunneling microscope induced luminescence. Rev. Sci. Instrum. 82, 083101 (2011). PubMed DOI
Ramanauskaite, L., Xu, H., Griskonis, E., Batiuskaite, D. & Snitka, V. Comparison and evaluation of silver probe preparation techniques for tip-enhanced Raman spectroscopy. Plasmonics 13, 1907–1919 (2018). DOI
Lombana, A. et al. Nanoscale mapping of photo-induced charge carriers generated at interfaces of a donor/acceptor 2D-assembly by light-assisted-scanning tunneling microscopy. Adv. Mater. Interfaces 7, 2001325 (2020). DOI
Kim, Y., Motobayashi, K., Frederiksen, T., Ueba, H. & Kawai, M. Action spectroscopy for single-molecule reactions—experiments and theory. Prog. Surf. Sci. 90, 85–143 (2015). DOI
Liu, S., Hammud, A., Wolf, M. & Kumagai, T. Anti-Stokes light scattering mediated by electron transfer across a biased plasmonic nanojunction. ACS Photonics 8, 2610–2617 (2021). DOI
Fluorescence from a single-molecule probe directly attached to a plasmonic STM tip
Single-Molecule Time-Resolved Spectroscopy in a Tunable STM Nanocavity