Submolecular-scale control of phototautomerization

. 2024 Jun ; 19 (6) : 738-743. [epub] 20240227

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38413791

Grantová podpora
771850 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
771850 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
894434 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
206912 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ANR-20-CE24-0010 Agence Nationale de la Recherche (French National Research Agency)
ANR-10-LABX-0039-PALM Agence Nationale de la Recherche (French National Research Agency)

Odkazy

PubMed 38413791
DOI 10.1038/s41565-024-01622-4
PII: 10.1038/s41565-024-01622-4
Knihovny.cz E-zdroje

Optically activated reactions initiate biological processes such as photosynthesis or vision, but can also control polymerization, catalysis or energy conversion. Methods relying on the manipulation of light at macroscopic and mesoscopic scales are used to control on-surface photochemistry, but do not offer atomic-scale control. Here we take advantage of the confinement of the electromagnetic field at the apex of a scanning tunnelling microscope tip to drive the phototautomerization of a free-base phthalocyanine with submolecular precision. We can control the reaction rate and the relative tautomer population through a change in the laser excitation wavelength or through the tip position. Atomically resolved tip-enhanced photoluminescence spectroscopy and hyperspectral mapping unravel an excited-state mediated process, which is quantitatively supported by a comprehensive theoretical model combining ab initio calculations with a parametric open-quantum-system approach. Our experimental strategy may allow insights in other photochemical reactions and proof useful to control complex on-surface reactions.

Zobrazit více v PubMed

Mirkovic, T. et al. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 117, 249–293 (2017). PubMed DOI

Bleger, D. & Hecht, S. Visible-light-activated molecular switches. Angew. Chem. Int. Ed. 54, 11338–11349 (2015). DOI

Corrigan, N., Yeow, J., Judzewitsch, P., Xu, J. & Boyer, C. Seeing the light: advancing materials chemistry through photopolymerization. Angew. Chem. Int. Ed. 58, 5170–5189 (2019). DOI

Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017). DOI

Völker, S. & van der Waals, J. Laser-induced photochemical isomerization of free base porphyrin in an n-octane crystal at 4.2 K. Mol. Phys. 32, 1703–1718 (1976). DOI

Hutchison, J. A., Schwartz, T., Genet, C., Devaux, E. & Ebbesen, T. W. Modifying chemical landscapes by coupling to vacuum fields. Angew. Chem. Int. Ed. 51, 1592–1596 (2012). DOI

Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H PubMed DOI

Böckmann, H. et al. Direct observation of photoinduced tautomerization in single molecules at a metal surface. Nano Lett. 16, 1034–1041 (2016). PubMed DOI

Böckmann, H. et al. Near-field enhanced photochemistry of single molecules in a scanning tunneling microscope junction. Nano Lett. 18, 152–157 (2018). PubMed DOI

Kazuma, E., Jung, J., Ueba, H., Trenary, M. & Kim, Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 360, 521–526 (2018). PubMed DOI

Li, S. et al. Bond-selected photodissociation of single molecules adsorbed on metal surfaces. Phys. Rev. Lett. 122, 077401 (2019). PubMed DOI

Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003). PubMed DOI

Merino, P., Große, C., Rosławska, A., Kuhnke, K. & Kern, K. Exciton dynamics of C PubMed DOI

Zhang, Y. et al. Visualizing coherent intermolecular dipole–dipole coupling in real space. Nature 531, 623–627 (2016). PubMed DOI

Imada, H. et al. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 538, 364–367 (2016). PubMed DOI

Doppagne, B. et al. Electrofluorochromism at the single-molecule level. Science 361, 251–255 (2018). PubMed DOI

Kaiser, K., Gross, L. & Schulz, F. A single-molecule chemical reaction studied by high-resolution atomic force microscopy and scanning tunneling microscopy induced light emission. ACS Nano 13, 6947–6954 (2019). PubMed DOI PMC

Doppagne, B. et al. Single-molecule tautomerization tracking through space- and time-resolved fluorescence spectroscopy. Nat. Nanotechnol. 15, 207–211 (2020). PubMed DOI

Yang, B. et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photon. 14, 693–699 (2020). DOI

Rosławska, A. et al. Gigahertz frame rate imaging of charge-injection dynamics in a molecular light source. Nano Lett. 21, 4577–4583 (2021). PubMed DOI PMC

Cao, S. et al. Energy funnelling within multichromophore architectures monitored with subnanometre resolution. Nat. Chem. 13, 766–770 (2021). PubMed DOI

Imada, H. et al. Single-molecule laser nanospectroscopy with micro–electron volt energy resolution. Science 373, 95–98 (2021). PubMed DOI

Imai-Imada, M. et al. Orbital-resolved visualization of single-molecule photocurrent channels. Nature 603, 829–834 (2022). PubMed DOI

Rosławska, A. et al. Mapping Lamb, Stark, and Purcell effects at a chromophore-picocavity junction with hyper-resolved fluorescence microscopy. Phys. Rev. X 12, 011012 (2022).

Doležal, J. et al. Evidence of exciton-libron coupling in chirally adsorbed single molecules. Nat. Commun. 13, 6008 (2022). PubMed DOI PMC

Imada, H., Imai-Imada, M., Ouyang, X., Muranaka, A. & Kim, Y. Anti-Kasha emissions of single molecules in a plasmonic nanocavity. J. Chem. Phys. 157, 104302 (2022). PubMed DOI

Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013). PubMed DOI

Lee, J., Crampton, K. T., Tallarida, N. & Apkarian, V. A. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature 568, 78–82 (2019). PubMed DOI

Liu, S. et al. Resolving the correlation between tip-enhanced resonance Raman scattering and local electronic states with 1 nm resolution. Nano Lett. 19, 5725–5731 (2019). PubMed DOI PMC

Li, L. et al. Angstrom-scale spectroscopic visualization of interfacial interactions in an organic/borophene vertical heterostructure. J. Am. Chem. Soc. 143, 15624–15634 (2021). PubMed DOI

Orrit, M. & Bernard, J. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990). PubMed DOI

Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006). PubMed DOI

Kühn, S., Håkanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006). PubMed DOI

Chen, T. et al. Optical super-resolution imaging of surface reactions. Chem. Rev. 117, 7510–7537 (2017). PubMed DOI

Trebbia, J.-B., Deplano, Q., Tamarat, P. & Lounis, B. Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters. Nat. Commun. 13, 2962 (2022). PubMed DOI PMC

Kügel, J., Klein, L., Leisegang, M. & Bode, M. Analyzing and tuning the energetic landscape of H DOI

Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007). PubMed DOI

Auwärter, W. et al. A surface-anchored molecular four-level conductance switch based on single proton transfer. Nat. Nanotechnol. 7, 41–46 (2012). DOI

Kumagai, T. et al. Controlling intramolecular hydrogen transfer in a porphycene molecule with single atoms or molecules located nearby. Nat. Chem. 6, 41–46 (2013). PubMed DOI

Kumagai, T. et al. Thermally and vibrationally induced tautomerization of single porphycene molecules on a Cu(110) surface. Phys. Rev. Lett. 111, 246101 (2013). PubMed DOI

Murray, C. et al. Visible luminescence spectroscopy of free-base and zinc phthalocyanines isolated in cryogenic matrices. Phys. Chem. Chem. Phys. 13, 17543–17554 (2011). PubMed DOI

Coohill, T. P. Action spectra again? Photochem. Photobiol. 54, 859–870 (1991). PubMed DOI

Urbieta, M. et al. Atomic-scale lightning rod effect in plasmonic picocavities: a classical view to a quantum effect. ACS Nano 12, 585–595 (2018). PubMed DOI

Comstock, M. J. et al. Reversible photomechanical switching of individual engineered molecules at a metallic surface. Phys. Rev. Lett. 99, 038301 (2007). PubMed DOI

Bazarnik, M., Henzl, J., Czajka, R. & Morgenstern, K. Light driven reactions of single physisorbed azobenzenes. Chem. Commun. 47, 7764 (2011). DOI

Nacci, C., Baroncini, M., Credi, A. & Grill, L. Reversible photoswitching and isomer-dependent diffusion of single azobenzene tetramers on a metal surface. Angew. Chem. Int. Ed. 57, 15034–15039 (2018). DOI

Miura, A. et al. Light- and STM-tip-induced formation of one-dimensional and two-dimensional organic nanostructures. Langmuir 19, 6474–6482 (2003). DOI

Para, F. et al. Micrometre-long covalent organic fibres by photoinitiated chain-growth radical polymerization on an alkali-halide surface. Nat. Chem. 10, 1112–1117 (2018). PubMed DOI

Clair, S. & de Oteyza, D. G. Controlling a chemical coupling reaction on a surface: tools and strategies for on-surface synthesis. Chem. Rev. 119, 4717–4776 (2019). PubMed DOI PMC

Grossmann, L. et al. On-surface photopolymerization of two-dimensional polymers ordered on the mesoscale. Nat. Chem. 13, 730–736 (2021). PubMed DOI

Garg, M. & Kern, K. Attosecond coherent manipulation of electrons in tunneling microscopy. Science 367, 411–415 (2020). PubMed DOI

Peller, D. et al. Sub-cycle atomic-scale forces coherently control a single-molecule switch. Nature 585, 58–62 (2020). PubMed DOI

Zhang, C. et al. Fabrication of silver tips for scanning tunneling microscope induced luminescence. Rev. Sci. Instrum. 82, 083101 (2011). PubMed DOI

Ramanauskaite, L., Xu, H., Griskonis, E., Batiuskaite, D. & Snitka, V. Comparison and evaluation of silver probe preparation techniques for tip-enhanced Raman spectroscopy. Plasmonics 13, 1907–1919 (2018). DOI

Lombana, A. et al. Nanoscale mapping of photo-induced charge carriers generated at interfaces of a donor/acceptor 2D-assembly by light-assisted-scanning tunneling microscopy. Adv. Mater. Interfaces 7, 2001325 (2020). DOI

Kim, Y., Motobayashi, K., Frederiksen, T., Ueba, H. & Kawai, M. Action spectroscopy for single-molecule reactions—experiments and theory. Prog. Surf. Sci. 90, 85–143 (2015). DOI

Liu, S., Hammud, A., Wolf, M. & Kumagai, T. Anti-Stokes light scattering mediated by electron transfer across a biased plasmonic nanojunction. ACS Photonics 8, 2610–2617 (2021). DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...