Fluorescence from a single-molecule probe directly attached to a plasmonic STM tip
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MAT2016-78293-C61
Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
PID2019-107338RB-C61
Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
PID2022-139579NB-I00
Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
PID2022-139579NB-I00
Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
IT 1526-22
Eusko Jaurlaritza (Basque Government)
IT 1526-22
Eusko Jaurlaritza (Basque Government)
PubMed
39523359
PubMed Central
PMC11551166
DOI
10.1038/s41467-024-53707-2
PII: 10.1038/s41467-024-53707-2
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The scanning tunneling microscope (STM) provides access to atomic-scale properties of a conductive sample. While single-molecule tip functionalization has become a standard procedure, fluorescent molecular probes remained absent from the available tool set. Here, the plasmonic tip of an STM is functionalized with a single fluorescent molecule and is scanned on a plasmonic substrate. The tunneling current flowing through the tip-molecule-substrate junction generates a narrow-line emission of light corresponding to the fluorescence of the negatively charged molecule suspended at the apex of the tip, i.e., the emission of the excited molecular anion. The fluorescence of this molecular probe is recorded for tip-substrate nanocavities featuring different plasmonic resonances, for different tip-substrate distances and applied bias voltages, and on different substrates. We demonstrate that the width of the emission peak can be used as a probe of the exciton-plasmon coupling strength and that the energy of the emitted photons is governed by the molecule interactions with its environment. Additionally, we theoretically elucidate why the direct contact of the suspended molecule with the metallic tip does not totally quench the radiative emission of the molecule.
4 Physical Institute Solids and Nanostructures Georg August Universität Göttingen Göttingen Germany
CIC nanoGUNE BRTA Donostia San Sebastián Spain
Department of Electricity and Electronics FCT ZTF UPV EHU Leioa Spain
Donostia International Physics Center Donostia San Sebastián Spain
IKERBASQUE Basque Foundation for Science Bilbao Spain
Institute of Experimental and Applied Physics University of Regensburg Regensburg Germany
Institute of Physics Czech Academy of Sciences Prague Czech Republic
Materials Physics Center CSIC UPV EHU Donostia San Sebastián Spain
Université de Strasbourg CNRS IPCMS Strasbourg France
Université Paris Saclay CNRS Institut des Sciences Moléculaires d'Orsay Orsay France
Zobrazit více v PubMed
Temirov, R., Soubatch, S., Neucheva, O., Lassise, A. C. & Tautz, F. S. A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy. N. J. Phys.10, 053012 (2008).
Gross, L. et al. The chemical structure of a molecule resolved by atomic force microscopy. Science325, 1110 (2009). PubMed
Wagner, C. et al. Quantitative imaging of electric surface potentials with single-atom sensitivity. Nat. Mater.18, 853 (2019). PubMed PMC
Mallada, B. et al. Real-space imaging of anisotropic charge of σ-hole by means of kelvin probe force microscopy. Science374, 863 (2021). PubMed
Tallarida, N., Lee, J. & Apkarian, V. A. Tip-enhanced Raman spectromicroscopy on the angstrom scale: bare and co-terminated Ag tips. ACS Nano11, 11393 (2017). PubMed
Lee, J., Tallarida, N., Chen, X., Jensen, L. & Apkarian, V. A. Microscopy with a single-molecule scanning electrometer. Sci. Adv.4, eaat5472 (2018). PubMed PMC
Verlhac, B. et al. Atomic-scale spin sensing with a single molecule at the apex of a scanning tunneling microscope. Science366, 623 (2019). PubMed
Esat, T. et al. A quantum sensor for atomic-scale electric and magnetic fields. Nat. Nanotechnol.19, 1466–1471 (2024). PubMed PMC
Schull, G., Frederiksen, T., Brandbyge, M. & Berndt, R. Passing current through touching molecules. Phys. Rev. Lett.103, 206803 (2009). PubMed
Lafferentz, L. et al. Conductance of a single conjugated polymer as a continuous function of its length. Science323, 1193 (2009). PubMed
Schull, G., Frederiksen, T., Arnau, A., Sánchez-Portal, D. & Berndt, R. Atomic-scale engineering of electrodes for single-molecule contacts. Nat. Nanotechnol.6, 23 (2011). PubMed
Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science299, 542 (2003). PubMed
Zhang, Y. et al. Visualizing coherent intermolecular dipole–dipole coupling in real space. Nature531, 623 (2016). PubMed
Imada, H. et al. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature538, 364 (2016). PubMed
Doppagne, B. et al. Single-molecule tautomerization tracking through space-and time-resolved fluorescence spectroscopy. Nat. Nanotechnol.15, 207 (2020). PubMed
Rosławska, A. et al. Mapping Lamb, Stark, and Purcell effects at a chromophore-picocavity junction with hyper-resolved fluorescence microscopy. Phys. Rev. X12, 011012 (2022).
Doležal, J. et al. Real space visualization of entangled excitonic states in charged molecular assemblies. ACS Nano16, 1082 (2022). PubMed
Yang, B. et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photonics14, 693 (2020).
Imada, H. et al. Single-molecule laser nanospectroscopy with micro-electron volt energy resolution. Science373, 95 (2021). PubMed
Rosławska, A. et al. Submolecular-scale control of phototautomerization. Nat. Nanotechnol.19, 738–743 (2024). PubMed
Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced raman scattering. Nature498, 82 (2013). PubMed
Lee, J., Crampton, K. T., Tallarida, N. & Apkarian, V. A. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature568, 78 (2019). PubMed
Michaelis, J., Hettich, C., Mlynek, J. & Sandoghdar, V. Optical microscopy using a single-molecule light source. Nature405, 325 (2000). PubMed
Cadeddu, D. et al. A fiber-coupled quantum-dot on a photonic tip. Appl. Phys. Lett.108, 011112 (2016).
Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys.77, 056503 (2014). PubMed
Doppagne, B. et al. Electrofluorochromism at the single-molecule level. Science361, 251 (2018). PubMed
Wagner, C. et al. Scanning quantum dot microscopy. Phys. Rev. Lett.115, 026101 (2015). PubMed
Temirov, R. et al. Molecular model of a quantum dot beyond the constant interaction approximation. Phys. Rev. Lett.120, 206801 (2018). PubMed
Fournier, N., Wagner, C., Weiss, C., Temirov, R. & Tautz, F. S. Force-controlled lifting of molecular wires. Phys. Rev. B Condens. Matter84, 16 (2011).
Knol, M. et al. The stabilization potential of a standing molecule. Sci. Adv.7, eabj9751 (2021). PubMed PMC
Arefi, H. H., Corken, D., Tautz, F. S., Maurer, R. J. & Wagner, C. Design principles for metastable standing molecules. J. Phys. Chem. C.126, 6880 (2022). PubMed PMC
Temirov, R., Lassise, A., Anders, F. B. & Tautz, F. S. Kondo effect by controlled cleavage of a single-molecule contact. Nanotechnology19, 065401 (2008). PubMed
Esat, T., Friedrich, N., Tautz, F. S. & Temirov, R. A standing molecule as a single-electron field emitter. Nature558, 573 (2018). PubMed
Esat, T., Ternes, M., Temirov, R. & Tautz, F. S. Electron spin secluded inside a bottom-up assembled standing metal-molecule nanostructure. Phys. Rev. Res.5, 033200 (2023).
Paulheim, A. et al. Surface induced vibrational modes in the fluorescence spectra of PTCDA adsorbed on the KCl(100) and NaCl(100) surfaces. PCCP18, 32891 (2016). PubMed
Kimura, K. et al. Selective triplet exciton formation in a single molecule. Nature570, 210 (2019). PubMed
Imada, H. et al. Single-molecule investigation of energy dynamics in a coupled plasmon-exciton system. Phys. Rev. Lett.119, 013901 (2017). PubMed
Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature535, 127 (2016). PubMed PMC
Schell, A. W. et al. Scanning single quantum emitter fluorescence lifetime imaging: quantitative analysis of the local density of photonic states. Nano Lett.14, 2623 (2014). PubMed
Zhang, Y. et al. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity. Nat. Commun.8, 15225 (2017). PubMed PMC
Imai-Imada, M. et al. Energy-level alignment of a single molecule on ultrathin insulating film. Phys. Rev. B98, 201403 (2018).
Aguilar-Galindo, F., Zapata-Herrera, M., Díaz-Tendero, S., Aizpurua, J. & Borisov, A. G. Effect of a dielectric spacer on electronic and electromagnetic interactions at play in molecular exciton decay at surfaces and in plasmonic gaps. ACS Photonics8, 3495 (2021).
Miwa, K. et al. Many-body state description of single-molecule electroluminescence driven by a scanning tunneling microscope. Nano Lett.19, 2803 (2019). PubMed
Jiang, S. et al. Many-body description of STM-induced fluorescence of charged molecules. Phys. Rev. Lett.130, 126202 (2023). PubMed
Dweydari, A. W. & Mee, C. H. B. Work function measurements on (100) and (110) surfaces of silver. Phys. Status Solidi A27, 223 (1975).
Chulkov, E., Silkin, V. & Echenique, P. Image potential states on metal surfaces: binding energies and wave functions. Surf. Sci.437, 330 (1999).
Newville, M. et al. 10.5281/zenodo.5570790 (2021).
Horcas, I. et al. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007). PubMed
Friedrich, N. et al. Experimental data supporting the paper “Fluorescent single-molecule plasmonic STM probes with preserved molecular fluorescence", Zenodo, 10.5281/zenodo.13841357 (2024).
Gaussian 16 revision C.01, Frisch, M. J. et al. Gaussian, Inc., Wallingford CT https://gaussian.com/citation_b01/ (2016).