Fluorescence from a single-molecule probe directly attached to a plasmonic STM tip

. 2024 Nov 10 ; 15 (1) : 9733. [epub] 20241110

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39523359

Grantová podpora
MAT2016-78293-C61 Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
PID2019-107338RB-C61 Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
PID2022-139579NB-I00 Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
PID2022-139579NB-I00 Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
IT 1526-22 Eusko Jaurlaritza (Basque Government)
IT 1526-22 Eusko Jaurlaritza (Basque Government)

Odkazy

PubMed 39523359
PubMed Central PMC11551166
DOI 10.1038/s41467-024-53707-2
PII: 10.1038/s41467-024-53707-2
Knihovny.cz E-zdroje

The scanning tunneling microscope (STM) provides access to atomic-scale properties of a conductive sample. While single-molecule tip functionalization has become a standard procedure, fluorescent molecular probes remained absent from the available tool set. Here, the plasmonic tip of an STM is functionalized with a single fluorescent molecule and is scanned on a plasmonic substrate. The tunneling current flowing through the tip-molecule-substrate junction generates a narrow-line emission of light corresponding to the fluorescence of the negatively charged molecule suspended at the apex of the tip, i.e., the emission of the excited molecular anion. The fluorescence of this molecular probe is recorded for tip-substrate nanocavities featuring different plasmonic resonances, for different tip-substrate distances and applied bias voltages, and on different substrates. We demonstrate that the width of the emission peak can be used as a probe of the exciton-plasmon coupling strength and that the energy of the emitted photons is governed by the molecule interactions with its environment. Additionally, we theoretically elucidate why the direct contact of the suspended molecule with the metallic tip does not totally quench the radiative emission of the molecule.

Zobrazit více v PubMed

Temirov, R., Soubatch, S., Neucheva, O., Lassise, A. C. & Tautz, F. S. A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy. N. J. Phys.10, 053012 (2008).

Gross, L. et al. The chemical structure of a molecule resolved by atomic force microscopy. Science325, 1110 (2009). PubMed

Wagner, C. et al. Quantitative imaging of electric surface potentials with single-atom sensitivity. Nat. Mater.18, 853 (2019). PubMed PMC

Mallada, B. et al. Real-space imaging of anisotropic charge of σ-hole by means of kelvin probe force microscopy. Science374, 863 (2021). PubMed

Tallarida, N., Lee, J. & Apkarian, V. A. Tip-enhanced Raman spectromicroscopy on the angstrom scale: bare and co-terminated Ag tips. ACS Nano11, 11393 (2017). PubMed

Lee, J., Tallarida, N., Chen, X., Jensen, L. & Apkarian, V. A. Microscopy with a single-molecule scanning electrometer. Sci. Adv.4, eaat5472 (2018). PubMed PMC

Verlhac, B. et al. Atomic-scale spin sensing with a single molecule at the apex of a scanning tunneling microscope. Science366, 623 (2019). PubMed

Esat, T. et al. A quantum sensor for atomic-scale electric and magnetic fields. Nat. Nanotechnol.19, 1466–1471 (2024). PubMed PMC

Schull, G., Frederiksen, T., Brandbyge, M. & Berndt, R. Passing current through touching molecules. Phys. Rev. Lett.103, 206803 (2009). PubMed

Lafferentz, L. et al. Conductance of a single conjugated polymer as a continuous function of its length. Science323, 1193 (2009). PubMed

Schull, G., Frederiksen, T., Arnau, A., Sánchez-Portal, D. & Berndt, R. Atomic-scale engineering of electrodes for single-molecule contacts. Nat. Nanotechnol.6, 23 (2011). PubMed

Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science299, 542 (2003). PubMed

Zhang, Y. et al. Visualizing coherent intermolecular dipole–dipole coupling in real space. Nature531, 623 (2016). PubMed

Imada, H. et al. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature538, 364 (2016). PubMed

Doppagne, B. et al. Single-molecule tautomerization tracking through space-and time-resolved fluorescence spectroscopy. Nat. Nanotechnol.15, 207 (2020). PubMed

Rosławska, A. et al. Mapping Lamb, Stark, and Purcell effects at a chromophore-picocavity junction with hyper-resolved fluorescence microscopy. Phys. Rev. X12, 011012 (2022).

Doležal, J. et al. Real space visualization of entangled excitonic states in charged molecular assemblies. ACS Nano16, 1082 (2022). PubMed

Yang, B. et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photonics14, 693 (2020).

Imada, H. et al. Single-molecule laser nanospectroscopy with micro-electron volt energy resolution. Science373, 95 (2021). PubMed

Rosławska, A. et al. Submolecular-scale control of phototautomerization. Nat. Nanotechnol.19, 738–743 (2024). PubMed

Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced raman scattering. Nature498, 82 (2013). PubMed

Lee, J., Crampton, K. T., Tallarida, N. & Apkarian, V. A. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature568, 78 (2019). PubMed

Michaelis, J., Hettich, C., Mlynek, J. & Sandoghdar, V. Optical microscopy using a single-molecule light source. Nature405, 325 (2000). PubMed

Cadeddu, D. et al. A fiber-coupled quantum-dot on a photonic tip. Appl. Phys. Lett.108, 011112 (2016).

Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys.77, 056503 (2014). PubMed

Doppagne, B. et al. Electrofluorochromism at the single-molecule level. Science361, 251 (2018). PubMed

Wagner, C. et al. Scanning quantum dot microscopy. Phys. Rev. Lett.115, 026101 (2015). PubMed

Temirov, R. et al. Molecular model of a quantum dot beyond the constant interaction approximation. Phys. Rev. Lett.120, 206801 (2018). PubMed

Fournier, N., Wagner, C., Weiss, C., Temirov, R. & Tautz, F. S. Force-controlled lifting of molecular wires. Phys. Rev. B Condens. Matter84, 16 (2011).

Knol, M. et al. The stabilization potential of a standing molecule. Sci. Adv.7, eabj9751 (2021). PubMed PMC

Arefi, H. H., Corken, D., Tautz, F. S., Maurer, R. J. & Wagner, C. Design principles for metastable standing molecules. J. Phys. Chem. C.126, 6880 (2022). PubMed PMC

Temirov, R., Lassise, A., Anders, F. B. & Tautz, F. S. Kondo effect by controlled cleavage of a single-molecule contact. Nanotechnology19, 065401 (2008). PubMed

Esat, T., Friedrich, N., Tautz, F. S. & Temirov, R. A standing molecule as a single-electron field emitter. Nature558, 573 (2018). PubMed

Esat, T., Ternes, M., Temirov, R. & Tautz, F. S. Electron spin secluded inside a bottom-up assembled standing metal-molecule nanostructure. Phys. Rev. Res.5, 033200 (2023).

Paulheim, A. et al. Surface induced vibrational modes in the fluorescence spectra of PTCDA adsorbed on the KCl(100) and NaCl(100) surfaces. PCCP18, 32891 (2016). PubMed

Kimura, K. et al. Selective triplet exciton formation in a single molecule. Nature570, 210 (2019). PubMed

Imada, H. et al. Single-molecule investigation of energy dynamics in a coupled plasmon-exciton system. Phys. Rev. Lett.119, 013901 (2017). PubMed

Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature535, 127 (2016). PubMed PMC

Schell, A. W. et al. Scanning single quantum emitter fluorescence lifetime imaging: quantitative analysis of the local density of photonic states. Nano Lett.14, 2623 (2014). PubMed

Zhang, Y. et al. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity. Nat. Commun.8, 15225 (2017). PubMed PMC

Imai-Imada, M. et al. Energy-level alignment of a single molecule on ultrathin insulating film. Phys. Rev. B98, 201403 (2018).

Aguilar-Galindo, F., Zapata-Herrera, M., Díaz-Tendero, S., Aizpurua, J. & Borisov, A. G. Effect of a dielectric spacer on electronic and electromagnetic interactions at play in molecular exciton decay at surfaces and in plasmonic gaps. ACS Photonics8, 3495 (2021).

Miwa, K. et al. Many-body state description of single-molecule electroluminescence driven by a scanning tunneling microscope. Nano Lett.19, 2803 (2019). PubMed

Jiang, S. et al. Many-body description of STM-induced fluorescence of charged molecules. Phys. Rev. Lett.130, 126202 (2023). PubMed

Dweydari, A. W. & Mee, C. H. B. Work function measurements on (100) and (110) surfaces of silver. Phys. Status Solidi A27, 223 (1975).

Chulkov, E., Silkin, V. & Echenique, P. Image potential states on metal surfaces: binding energies and wave functions. Surf. Sci.437, 330 (1999).

Newville, M. et al. 10.5281/zenodo.5570790 (2021).

Horcas, I. et al. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007). PubMed

Friedrich, N. et al. Experimental data supporting the paper “Fluorescent single-molecule plasmonic STM probes with preserved molecular fluorescence", Zenodo, 10.5281/zenodo.13841357 (2024).

Gaussian 16 revision C.01, Frisch, M. J. et al. Gaussian, Inc., Wallingford CT https://gaussian.com/citation_b01/ (2016).

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace