Evidence of exciton-libron coupling in chirally adsorbed single molecules

. 2022 Oct 12 ; 13 (1) : 6008. [epub] 20221012

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36224183

Grantová podpora
910120 Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
20-18741S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
20-18741S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
20-18741S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
L100101952 Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)

Odkazy

PubMed 36224183
PubMed Central PMC9556530
DOI 10.1038/s41467-022-33653-7
PII: 10.1038/s41467-022-33653-7
Knihovny.cz E-zdroje

Interplay between motion of nuclei and excitations has an important role in molecular photophysics of natural and artificial structures. Here we provide a detailed analysis of coupling between quantized librational modes (librons) and charged excited states (trions) on single phthalocyanine dyes adsorbed on a surface. By means of tip-induced electroluminescence performed with a scanning probe microscope, we identify libronic signatures in spectra of chirally adsorbed phthalocyanines and find that these signatures are absent from spectra of symmetrically adsorbed species. We create a model of the libronic coupling based on the Franck-Condon principle to simulate the spectral features. Experimentally measured librational spectra match very well the theoretically calculated librational eigenenergies and peak intensities (Franck-Condon factors). Moreover, the comparison reveals an unexpected depopulation channel for the zero libron of the excited state that can be effectively controlled by tuning the size of the nanocavity. Our results showcase the possibility of characterizing the dynamics of molecules by their low-energy molecular modes using µeV-resolved tip-enhanced spectroscopy.

Zobrazit více v PubMed

Cao J, et al. Quantum biology revisited. Sci. Adv. 2020;6:eaaz4888. doi: 10.1126/sciadv.aaz4888. PubMed DOI PMC

Tiwari V, Peters WK, Jonas DM. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl Acad. Sci. USA. 2013;110:1203–1208. doi: 10.1073/pnas.1211157110. PubMed DOI PMC

Panitchayangkoon G, et al. Direct evidence of quantum transport in photosynthetic light-harvesting complexes. Proc. Natl Acad. Sci. USA. 2011;108:20908–20912. doi: 10.1073/pnas.1105234108. PubMed DOI PMC

Schnedermann C, et al. Evidence for a vibrational phase-dependent isotope effect on the photochemistry of vision. Nat. Chem. 2018;10:449–455. doi: 10.1038/s41557-018-0014-y. PubMed DOI

Hahn S, Stock G. Quantum-mechanical modeling of the femtosecond isomerization in rhodopsin. J. Phys. Chem. B. 2000;104:1146–1149. doi: 10.1021/jp992939g. DOI

Kottas GS, Clarke LI, Horinek D, Michl J. Artificial molecular rotors. Chem. Rev. 2005;105:1281–1376. doi: 10.1021/cr0300993. PubMed DOI

Conyard J, et al. Ultrafast dynamics in the power stroke of a molecular rotary motor. Nat. Chem. 2012;4:547–551. doi: 10.1038/nchem.1343. PubMed DOI

Coropceanu V, Chen X-K, Wang T, Zheng Z, Brédas J-L. Charge-transfer electronic states in organic solar cells. Nat. Rev. Mater. 2019;4:689–707. doi: 10.1038/s41578-019-0137-9. DOI

Torres A, Oliboni RS, Rego LGC. Vibronic and coherent effects on interfacial electron transfer dynamics. J. Phys. Chem. Lett. 2015;6:4927–4935. doi: 10.1021/acs.jpclett.5b02191. PubMed DOI

Kuhnke K, Große C, Merino P, Kern K. Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces. Chem. Rev. 2017;117:5174–5222. doi: 10.1021/acs.chemrev.6b00645. PubMed DOI

Qiu XH, Nazin GV, Ho W. Vibrationally resolved fluorescence excited with submolecular precision. Science. 2003;299:542–546. doi: 10.1126/science.1078675. PubMed DOI

Imada H, et al. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature. 2016;538:364–367. doi: 10.1038/nature19765. PubMed DOI

Zhang Y, et al. Visualizing coherent intermolecular dipole–dipole coupling in real space. Nature. 2016;531:623–627. doi: 10.1038/nature17428. PubMed DOI

Doppagne B, et al. Electrofluorochromism at the single-molecule level. Science. 2018;361:251–255. doi: 10.1126/science.aat1603. PubMed DOI

Merino P, Große C, Rosławska A, Kuhnke K, Kern K. Exciton dynamics of C60-based single-photon emitters explored by Hanbury Brown-Twiss scanning tunnelling microscopy. Nat. Commun. 2015;6:8461. doi: 10.1038/ncomms9461. PubMed DOI PMC

Doležal J, et al. Charge carrier injection electroluminescence with CO-functionalized tips on single molecular emitters. Nano Lett. 2019;19:8605–8611. doi: 10.1021/acs.nanolett.9b03180. PubMed DOI PMC

Hung T-C, Kiraly B, Strik JH, Khajetoorians AA, Wegner D. Plasmon-driven motion of an individual molecule. Nano Lett. 2021;21:5006–5012. doi: 10.1021/acs.nanolett.1c00788. PubMed DOI PMC

Rai V, et al. Boosting light emission from single hydrogen phthalocyanine molecules by charging. Nano Lett. 2020;20:7600–7605. doi: 10.1021/acs.nanolett.0c03121. PubMed DOI

Yang B, et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photon. 2020;14:693–699. doi: 10.1038/s41566-020-0677-y. DOI

Imada H, et al. Single-molecule laser nanospectroscopy with micro-electron volt energy resolution. Science. 2021;373:95–98. doi: 10.1126/science.abg8790. PubMed DOI

Zhang R, et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature. 2013;498:82–86. doi: 10.1038/nature12151. PubMed DOI

Lee J, Crampton KT, Tallarida N, Apkarian VA. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature. 2019;568:78–82. doi: 10.1038/s41586-019-1059-9. PubMed DOI

Jaculbia RB, et al. Single-molecule resonance Raman effect in a plasmonic nanocavity. Nat. Nanotechnol. 2020;15:105–110. doi: 10.1038/s41565-019-0614-8. PubMed DOI

Schaffert J, et al. Imaging the dynamics of individually adsorbed molecules. Nat. Mater. 2013;12:223–227. doi: 10.1038/nmat3527. PubMed DOI

Peller D, et al. Sub-cycle atomic-scale forces coherently control a single-molecule switch. Nature. 2020;585:58–62. doi: 10.1038/s41586-020-2620-2. PubMed DOI

Kügel J, Klein L, Leisegang M, Bode M. Analyzing and tuning the energetic landscape of H2Pc tautomerization. J. Phys. Chem. C. 2017;121:28204–28210. doi: 10.1021/acs.jpcc.7b10564. DOI

Kimura K, et al. Selective triplet exciton formation in a single molecule. Nature. 2019;570:210–213. doi: 10.1038/s41586-019-1284-2. PubMed DOI

Doležal J, et al. Real space visualization of entangled excitonic states in charged molecular assemblies. ACS Nano. 2021;15:7694–7699. doi: 10.1021/acsnano.1c01318. PubMed DOI

Miwa K, Imada H, Kawahara S, Kim Y. Effects of molecule-insulator interaction on geometric property of a single phthalocyanine molecule adsorbed on an ultrathin NaCl film. Phys. Rev. B. 2016;93:165419. doi: 10.1103/PhysRevB.93.165419. DOI

Doppagne B, et al. Vibronic spectroscopy with submolecular resolution from STM-induced electroluminescence. Phys. Rev. Lett. 2017;118:127401. doi: 10.1103/PhysRevLett.118.127401. PubMed DOI

Doppagne B, et al. Single-molecule tautomerization tracking through space- and time-resolved fluorescence spectroscopy. Nat. Nanotechnol. 2020;15:207–211. doi: 10.1038/s41565-019-0620-x. PubMed DOI

Baeten Y, Fron E, Ruzié C, Geerts YH, Van Der Auweraer M. Investigation of the Qx–Qy equilibrium in a metal‐free phthalocyanine. ChemPhysChem. 2015;16:992–3996. doi: 10.1002/cphc.201500386. PubMed DOI

Luo Y, et al. Electrically driven single-photon superradiance from molecular chains in a plasmonic nanocavity. Phys. Rev. Lett. 2019;122:233901. doi: 10.1103/PhysRevLett.122.233901. PubMed DOI

Zhang L, et al. Electrically driven single-photon emission from an isolated single molecule. Nat. Commun. 2017;8:580. doi: 10.1038/s41467-017-00681-7. PubMed DOI PMC

Rosławska A, et al. Mapping lamb, stark, and Purcell effects at a chromophore-picocavity junction with hyper-resolved fluorescence microscopy. Phys. Rev. X. 2022;12:011012.

Paulheim A, et al. Inhomogeneous and homogeneous line broadening of optical spectra of PTCDA molecules adsorbed at step edges of alkali Halide surfaces. J. Phys. Chem. C. 2016;120:11926–11937. doi: 10.1021/acs.jpcc.6b01956. DOI

Marquardt C, Paulheim A, Hochheim M, Bredow T, Sokolowski M. Homogeneous and inhomogeneous line shape of the electronic excitation of a single molecule on a surface. Phys. Rev. B. 2021;104:045415. doi: 10.1103/PhysRevB.104.045415. DOI

Patera LL, Queck F, Scheuerer P, Moll N, Repp J. Accessing a charged intermediate state involved in the excitation of single molecules. Phys. Rev. Lett. 2019;123:016001. doi: 10.1103/PhysRevLett.123.016001. PubMed DOI

Martín-Jiménez A, et al. Electronic temperature and two-electron processes in overbias plasmonic emission from tunnel junctions. Nano Lett. 2021;21:7086–7092. doi: 10.1021/acs.nanolett.1c00951. PubMed DOI

Doležal J, Canola S, Merino P, Švec M. Exciton-trion conversion dynamics in a single molecule. ACS Nano. 2021;15:7694–7699. doi: 10.1021/acsnano.1c01318. PubMed DOI PMC

Chai J-D, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008;10:6615–6620. doi: 10.1039/b810189b. PubMed DOI

Martynov AG, et al. Methodological survey of simplified TD-DFT methods for fast and accurate interpretation of UV-Vis-NIR spectra of phthalocyanines. ACS Omega. 2019;4:7265–7284. doi: 10.1021/acsomega.8b03500. PubMed DOI PMC

Frisch, M. J. et al. Gaussian 16, Revision A.03 (Gaussian, Inc., 2016).

Doležal, J., Švec, M., & Hapala, P. Franck–Condon model. Zenodo. 10.5281/zenodo.6726424 (2022).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Submolecular-scale control of phototautomerization

. 2024 Jun ; 19 (6) : 738-743. [epub] 20240227

Light-Controlled Multiconfigurational Conductance Switching in a Single 1D Metal-Organic Wire

. 2024 Apr 02 ; 18 (13) : 9576-9583. [epub] 20240322

Single-Molecule Time-Resolved Spectroscopy in a Tunable STM Nanocavity

. 2024 Feb 07 ; 24 (5) : 1629-1634. [epub] 20240129

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...