Evidence of exciton-libron coupling in chirally adsorbed single molecules
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
910120
Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
20-18741S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
20-18741S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
20-18741S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
L100101952
Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
PubMed
36224183
PubMed Central
PMC9556530
DOI
10.1038/s41467-022-33653-7
PII: 10.1038/s41467-022-33653-7
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Interplay between motion of nuclei and excitations has an important role in molecular photophysics of natural and artificial structures. Here we provide a detailed analysis of coupling between quantized librational modes (librons) and charged excited states (trions) on single phthalocyanine dyes adsorbed on a surface. By means of tip-induced electroluminescence performed with a scanning probe microscope, we identify libronic signatures in spectra of chirally adsorbed phthalocyanines and find that these signatures are absent from spectra of symmetrically adsorbed species. We create a model of the libronic coupling based on the Franck-Condon principle to simulate the spectral features. Experimentally measured librational spectra match very well the theoretically calculated librational eigenenergies and peak intensities (Franck-Condon factors). Moreover, the comparison reveals an unexpected depopulation channel for the zero libron of the excited state that can be effectively controlled by tuning the size of the nanocavity. Our results showcase the possibility of characterizing the dynamics of molecules by their low-energy molecular modes using µeV-resolved tip-enhanced spectroscopy.
Faculty of Mathematics and Physics Charles University CZ12116 Praha 2 Czech Republic
Institute of Physics Czech Academy of Sciences CZ16200 Praha 6 Czech Republic
Instituto de Ciencia de Materiales de Madrid; CSIC E28049 Madrid Spain
Zobrazit více v PubMed
Cao J, et al. Quantum biology revisited. Sci. Adv. 2020;6:eaaz4888. doi: 10.1126/sciadv.aaz4888. PubMed DOI PMC
Tiwari V, Peters WK, Jonas DM. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl Acad. Sci. USA. 2013;110:1203–1208. doi: 10.1073/pnas.1211157110. PubMed DOI PMC
Panitchayangkoon G, et al. Direct evidence of quantum transport in photosynthetic light-harvesting complexes. Proc. Natl Acad. Sci. USA. 2011;108:20908–20912. doi: 10.1073/pnas.1105234108. PubMed DOI PMC
Schnedermann C, et al. Evidence for a vibrational phase-dependent isotope effect on the photochemistry of vision. Nat. Chem. 2018;10:449–455. doi: 10.1038/s41557-018-0014-y. PubMed DOI
Hahn S, Stock G. Quantum-mechanical modeling of the femtosecond isomerization in rhodopsin. J. Phys. Chem. B. 2000;104:1146–1149. doi: 10.1021/jp992939g. DOI
Kottas GS, Clarke LI, Horinek D, Michl J. Artificial molecular rotors. Chem. Rev. 2005;105:1281–1376. doi: 10.1021/cr0300993. PubMed DOI
Conyard J, et al. Ultrafast dynamics in the power stroke of a molecular rotary motor. Nat. Chem. 2012;4:547–551. doi: 10.1038/nchem.1343. PubMed DOI
Coropceanu V, Chen X-K, Wang T, Zheng Z, Brédas J-L. Charge-transfer electronic states in organic solar cells. Nat. Rev. Mater. 2019;4:689–707. doi: 10.1038/s41578-019-0137-9. DOI
Torres A, Oliboni RS, Rego LGC. Vibronic and coherent effects on interfacial electron transfer dynamics. J. Phys. Chem. Lett. 2015;6:4927–4935. doi: 10.1021/acs.jpclett.5b02191. PubMed DOI
Kuhnke K, Große C, Merino P, Kern K. Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces. Chem. Rev. 2017;117:5174–5222. doi: 10.1021/acs.chemrev.6b00645. PubMed DOI
Qiu XH, Nazin GV, Ho W. Vibrationally resolved fluorescence excited with submolecular precision. Science. 2003;299:542–546. doi: 10.1126/science.1078675. PubMed DOI
Imada H, et al. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature. 2016;538:364–367. doi: 10.1038/nature19765. PubMed DOI
Zhang Y, et al. Visualizing coherent intermolecular dipole–dipole coupling in real space. Nature. 2016;531:623–627. doi: 10.1038/nature17428. PubMed DOI
Doppagne B, et al. Electrofluorochromism at the single-molecule level. Science. 2018;361:251–255. doi: 10.1126/science.aat1603. PubMed DOI
Merino P, Große C, Rosławska A, Kuhnke K, Kern K. Exciton dynamics of C60-based single-photon emitters explored by Hanbury Brown-Twiss scanning tunnelling microscopy. Nat. Commun. 2015;6:8461. doi: 10.1038/ncomms9461. PubMed DOI PMC
Doležal J, et al. Charge carrier injection electroluminescence with CO-functionalized tips on single molecular emitters. Nano Lett. 2019;19:8605–8611. doi: 10.1021/acs.nanolett.9b03180. PubMed DOI PMC
Hung T-C, Kiraly B, Strik JH, Khajetoorians AA, Wegner D. Plasmon-driven motion of an individual molecule. Nano Lett. 2021;21:5006–5012. doi: 10.1021/acs.nanolett.1c00788. PubMed DOI PMC
Rai V, et al. Boosting light emission from single hydrogen phthalocyanine molecules by charging. Nano Lett. 2020;20:7600–7605. doi: 10.1021/acs.nanolett.0c03121. PubMed DOI
Yang B, et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photon. 2020;14:693–699. doi: 10.1038/s41566-020-0677-y. DOI
Imada H, et al. Single-molecule laser nanospectroscopy with micro-electron volt energy resolution. Science. 2021;373:95–98. doi: 10.1126/science.abg8790. PubMed DOI
Zhang R, et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature. 2013;498:82–86. doi: 10.1038/nature12151. PubMed DOI
Lee J, Crampton KT, Tallarida N, Apkarian VA. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature. 2019;568:78–82. doi: 10.1038/s41586-019-1059-9. PubMed DOI
Jaculbia RB, et al. Single-molecule resonance Raman effect in a plasmonic nanocavity. Nat. Nanotechnol. 2020;15:105–110. doi: 10.1038/s41565-019-0614-8. PubMed DOI
Schaffert J, et al. Imaging the dynamics of individually adsorbed molecules. Nat. Mater. 2013;12:223–227. doi: 10.1038/nmat3527. PubMed DOI
Peller D, et al. Sub-cycle atomic-scale forces coherently control a single-molecule switch. Nature. 2020;585:58–62. doi: 10.1038/s41586-020-2620-2. PubMed DOI
Kügel J, Klein L, Leisegang M, Bode M. Analyzing and tuning the energetic landscape of H2Pc tautomerization. J. Phys. Chem. C. 2017;121:28204–28210. doi: 10.1021/acs.jpcc.7b10564. DOI
Kimura K, et al. Selective triplet exciton formation in a single molecule. Nature. 2019;570:210–213. doi: 10.1038/s41586-019-1284-2. PubMed DOI
Doležal J, et al. Real space visualization of entangled excitonic states in charged molecular assemblies. ACS Nano. 2021;15:7694–7699. doi: 10.1021/acsnano.1c01318. PubMed DOI
Miwa K, Imada H, Kawahara S, Kim Y. Effects of molecule-insulator interaction on geometric property of a single phthalocyanine molecule adsorbed on an ultrathin NaCl film. Phys. Rev. B. 2016;93:165419. doi: 10.1103/PhysRevB.93.165419. DOI
Doppagne B, et al. Vibronic spectroscopy with submolecular resolution from STM-induced electroluminescence. Phys. Rev. Lett. 2017;118:127401. doi: 10.1103/PhysRevLett.118.127401. PubMed DOI
Doppagne B, et al. Single-molecule tautomerization tracking through space- and time-resolved fluorescence spectroscopy. Nat. Nanotechnol. 2020;15:207–211. doi: 10.1038/s41565-019-0620-x. PubMed DOI
Baeten Y, Fron E, Ruzié C, Geerts YH, Van Der Auweraer M. Investigation of the Qx–Qy equilibrium in a metal‐free phthalocyanine. ChemPhysChem. 2015;16:992–3996. doi: 10.1002/cphc.201500386. PubMed DOI
Luo Y, et al. Electrically driven single-photon superradiance from molecular chains in a plasmonic nanocavity. Phys. Rev. Lett. 2019;122:233901. doi: 10.1103/PhysRevLett.122.233901. PubMed DOI
Zhang L, et al. Electrically driven single-photon emission from an isolated single molecule. Nat. Commun. 2017;8:580. doi: 10.1038/s41467-017-00681-7. PubMed DOI PMC
Rosławska A, et al. Mapping lamb, stark, and Purcell effects at a chromophore-picocavity junction with hyper-resolved fluorescence microscopy. Phys. Rev. X. 2022;12:011012.
Paulheim A, et al. Inhomogeneous and homogeneous line broadening of optical spectra of PTCDA molecules adsorbed at step edges of alkali Halide surfaces. J. Phys. Chem. C. 2016;120:11926–11937. doi: 10.1021/acs.jpcc.6b01956. DOI
Marquardt C, Paulheim A, Hochheim M, Bredow T, Sokolowski M. Homogeneous and inhomogeneous line shape of the electronic excitation of a single molecule on a surface. Phys. Rev. B. 2021;104:045415. doi: 10.1103/PhysRevB.104.045415. DOI
Patera LL, Queck F, Scheuerer P, Moll N, Repp J. Accessing a charged intermediate state involved in the excitation of single molecules. Phys. Rev. Lett. 2019;123:016001. doi: 10.1103/PhysRevLett.123.016001. PubMed DOI
Martín-Jiménez A, et al. Electronic temperature and two-electron processes in overbias plasmonic emission from tunnel junctions. Nano Lett. 2021;21:7086–7092. doi: 10.1021/acs.nanolett.1c00951. PubMed DOI
Doležal J, Canola S, Merino P, Švec M. Exciton-trion conversion dynamics in a single molecule. ACS Nano. 2021;15:7694–7699. doi: 10.1021/acsnano.1c01318. PubMed DOI PMC
Chai J-D, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008;10:6615–6620. doi: 10.1039/b810189b. PubMed DOI
Martynov AG, et al. Methodological survey of simplified TD-DFT methods for fast and accurate interpretation of UV-Vis-NIR spectra of phthalocyanines. ACS Omega. 2019;4:7265–7284. doi: 10.1021/acsomega.8b03500. PubMed DOI PMC
Frisch, M. J. et al. Gaussian 16, Revision A.03 (Gaussian, Inc., 2016).
Doležal, J., Švec, M., & Hapala, P. Franck–Condon model. Zenodo. 10.5281/zenodo.6726424 (2022).
Submolecular-scale control of phototautomerization
Light-Controlled Multiconfigurational Conductance Switching in a Single 1D Metal-Organic Wire
Single-Molecule Time-Resolved Spectroscopy in a Tunable STM Nanocavity