Quantum biology revisited

. 2020 Apr ; 6 (14) : eaaz4888. [epub] 20200403

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32284982

Photosynthesis is a highly optimized process from which valuable lessons can be learned about the operating principles in nature. Its primary steps involve energy transport operating near theoretical quantum limits in efficiency. Recently, extensive research was motivated by the hypothesis that nature used quantum coherences to direct energy transfer. This body of work, a cornerstone for the field of quantum biology, rests on the interpretation of small-amplitude oscillations in two-dimensional electronic spectra of photosynthetic complexes. This Review discusses recent work reexamining these claims and demonstrates that interexciton coherences are too short lived to have any functional significance in photosynthetic energy transfer. Instead, the observed long-lived coherences originate from impulsively excited vibrations, generally observed in femtosecond spectroscopy. These efforts, collectively, lead to a more detailed understanding of the quantum aspects of dissipation. Nature, rather than trying to avoid dissipation, exploits it via engineering of exciton-bath interaction to create efficient energy flow.

1 Institut für Theoretische Physik Universität Hamburg Jungiusstrasse 9 20355 Hamburg Germany

Atomically Resolved Dynamics Department Max Planck Institute for the Structure and Dynamics of Matter 22761 Hamburg Germany

Chemical Physics Box 124 Lund University 22100 Lund Sweden

Department of Chemistry and Molecular Biology University of Gothenburg Gothenburg 40530 Sweden

Department of Chemistry Boston University 590 Commonwealth Avenue Boston MA 02215 USA

Department of Chemistry Columbia University 3000 Broadway New York NY 10027 USA

Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA

Department of Physics and Earth Science Jacobs University Bremen Campus Ring 1 28759 Bremen Germany

Department of Physics University of Michigan Ann Arbor MI 48108 USA

Departments of Chemistry and Physics University of Toronto Toronto ON M5S 3H6 Canada

Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore

Faculty of Mathematics and Physics Charles University Ke Karlovu 5 CZ 12116 Prague 2 Czech Republic

Institute of Molecular Cell and Systems Biology College of Medical Veterinary and Life Science University of Glasgow Glasgow G12 8QQ UK

Institute of Theoretical Physics Department of Theoretical Biophysics Johannes Kepler University Linz Altenberger Str 69 4040 Linz Austria

Technische Universität München Dynamische Spektroskopien Fakultät für Chemie Lichtenbergstr 4 85748 Garching Germany and Photonics Institute TU Wien 1040 Vienna Austria

The Hamburg Centre for Ultrafast Imaging Universität Hamburg 22761 Hamburg Germany

Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen Netherlands

Zobrazit více v PubMed

Lambert N., Chen Y.-N., Cheng Y.-C., Li C.-M., Chen G.-Y., Nori F., Quantum biology. Nat. Phys. 9, 10–18 (2013).

Brookes J. C., Quantum effects in biology: Golden rule in enzymes, olfaction, photosynthesis and magnetodetection. Proc. Math Phys. Eng. Sci. 473, 20160822 (2017). PubMed PMC

E. Schrödinger, What is Life? (Cambridge Univ. Press, Cambridge, 1944).

Engel G. S., Calhoun T. R., Read E. L., Ahn T.-K., Mančal T., Cheng Y.-C., Blankenship R. E., Fleming G. R., Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007). PubMed

J. McFadden, J. Al-Khalili, Life on the Edge: The Coming of Age of Quantum Biology. (Broadway Books, 2014).

Mukamel S., Comment on “Coherence and uncertainty in nanostructured organic photovoltaics”. J. Phys. Chem. A 117, 10563–10564 (2013). PubMed

Sundström V., Pullerits T., van Grondelle R., Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J. Phys. Chem. B 103, 2327–2346 (1999).

Dostál J., Pšenčík J., Zigmantas D., In situ mapping of the energy flow through the entire photosynthetic apparatus. Nat. Chem. 8, 705–710 (2016). PubMed

Raszewski G., Renger T., Light harvesting in photosystem II core complexes is limited by the transfer to the trap: Can the core complex turn into a photoprotective mode? J. Am. Chem. Soc. 130, 4431–4446 (2008). PubMed

R. E. Blankenship, Molecular Mechanisms of Photosynthesis (Wiley-Blackwell, ed. 2, 2014).

R. Croce, R. van Grondelle, H. van Amerogen, I. Van Stokkum, Light-Harvesting in Photosynthesis (CRC Press, 2018).

H. van Amerongen, R. van Grondelle, L. Valkunas, Photosynthetic Excitons (World Scientific, 2000).

Thyrhaug E., Židek K., Dostál J., Bína D., Zigmantas D., Exciton structure and energy transfer in the Fenna-Matthews-Olson complex. J. Phys. Chem. Lett. 7, 1653–1660 (2016). PubMed

Abramavicius D., Palmieri B., Voronine D. V., Šanda F., Mukamel S., Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; quasiparticle versus Supermolecule Perspectives. Chem. Rev. 109, 2350–2408 (2009). PubMed PMC

Müh F., Madjet M. E.-A., Adolphs J., Abdurahman A., Rabenstein B., Ishikita H., Knapp E.-W., Renger T., α-helices direct excitation energy flow in the Fenna–Matthews–Olson protein. Proc. Natl. Acad. Sci. U.S.A. 104, 16862–16867 (2007). PubMed PMC

Adolphs J., Müh F., Madjet M. E.-A., Renger T., Calculation of pigment transition energies in the FMO protein: From simplicity to complexity and back. Photosynth. Res. 95, 197–209 (2008). PubMed

Schmidt am Busch M., Müh F., Madjet M. E.-A., Renger T., The eighth bacteriochlorophyll completes the excitation energy funnel in the FMO protein. J. Phys. Chem. Lett. 2, 93–98 (2011). PubMed

Saer R. G., Stadnytskyi V., Magdaong N. C., Goodson C., Savikhin S., Blankenship R. E., Probing the excitonic landscape of the chlorobaculum tepidum Fenna-Matthews-Olson (FMO) complex: A mutagenesis approach. Biochim. Biophys. Acta Bioenerg. 1858, 288–296 (2017). PubMed

Adolphs J., Renger T., How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Biophys. J. 91, 2778–2797 (2006). PubMed PMC

Wen J., Zhang H., Gross M. L., Blankenship R. E., Membrane orientation of the FMO antenna protein from chlorobaculum tepidum as determined by mass spectrometry-based footprinting. Proc. Natl. Acad. Sci. U.S.A. 106, 6134–6139 (2009). PubMed PMC

Moix J., Wu J., Huo P., Coker D., Cao J., Efficient energy transfer in light-harvesting systems, III: The influence of the eighth bacteriochlorophyll on the dynamics and efficiency in FMO. J. Phys. Chem. Lett. 2, 3045–3052 (2011).

Olbrich C., Strümpfer J., Schulten K., Kleinekathöfer U., Theory and simulation of the environmental effects on FMO electronic transitions. J. Phys. Chem. Lett. 2, 1771–1776 (2011). PubMed PMC

Renger T., Klinger A., Steinecker F., Schmidt am Busch M., Numata J., Müh F., Normal mode analysis of the spectral density of the Fenna-Matthews-Olson Light-Harvesting protein: How the protein dissipates the excess energy of excitons. J. Phys. Chem. B 116, 14565–14580 (2012). PubMed PMC

Chandrasekan S., Aghtar M., Valleau S., Aspuru-Guzik A., Kleinekathöfer U., Influence of force fields and quantum chemistry approach on spectral density of Bchl a in solution and in FMO proteins. J. Phys. Chem. B 119, 9995–10004 (2015). PubMed

Rivera E., Montemayor D., Masia M., Coker D. F., Influence of site-dependent pigment–Protein interactions on excitation energy transfer in photosynthetic light harvesting. J. Phys. Chem. B 117, 5510–5521 (2013). PubMed

Pullerits T., Chachisvilis M., Sundström V., Exciton delocalization length in the B850 antenna of Rhodobacter sphaeroides. J. Phys. Chem. 100, 10787–10792 (1996).

Monshouwer R., Abrahamsson M., van Mourik F., van Grondelle R., Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems. J. Phys. Chem. B 37, 7241–7248 (1997).

C. Shane, An Introduction to Electromagnetic Wave Propagation and Antennas (Springer Science and Business Media, 1996).

Mančal T., Excitation energy transfer in a classical analogue of photosynthetic antennae. J. Phys. Chem. B 117, 11282–11291 (2013). PubMed

Lee S., Richter W., Vathyam S., Warren W. S., Quantum treatment of the effects of dipole-dipole interactions in liquid nuclear magnetic resonance. J. Chem. Phys. 105, 874–900 (1996).

Jeener J., Vlassenbroek A., Broekaert P., Unified derivation of the dipolar field and relaxation terms in the Bloch-Redfield equations of liquid NMR. J. Chem. Phys. 103, 1309–1332 (1995).

Sumi H., Theory on rates of excitation-energy transfer between molecular aggregates through distributed transition dipoles with application to the antenna system in bacterial photosynthesis. J. Phys. Chem. B 103, 252–260 (1999).

Bohr N., Über die serienspektra der elemente. Zeitschrift für Physik 2, 423–478 (1920).

A. Nitzan, Chemical Dynamics in the Condensed Phase (Oxford Univ. Press, 2006).

Cotton S. J., Miller W. H., The symmetrical quasi-classical model for electronically non-adiabatic processes applied to energy transfer dynamics in site-exciton models of light-harvesting complexes. J. Chem. Theory Comput. 12, 983–991 (2016). PubMed

Meyera H.-D., Miller W. H., A classical analog for electronic degrees of freedom in nonadiabatic collision processes. J. Chem. Phys. 70, 3214–3223 (1979).

Stock G., Thoss M., Semiclassical description of nonadiabatic quantum dynamics. Phys. Rev. Lett. 78, 578–581 (1997). PubMed

Thoss M., Stock G., Mapping approach to the semiclassical description of nonadiabatic quantum dynamics. Phys. Rev. A 59, 64–79 (1999).

Tempelaar R., Jansen T. L. C., Knoester J., Vibrational beatings conceal evidence of electronic coherence in the FMO light-harvesting complex. J. Phys. Chem. B 118, 12865–12872 (2014). PubMed

Makri N., Makarov D. E., Tensor propagator for iterative quantum time evolution of reduced density matrices. I. Theory. J. Chem. Phys. 102, 4600–4610 (1995).

Makri N., Makarov D. E., Tensor propagator for iterative quantum time evolution of reduced density matrices. II. Numerical methodology. J. Chem. Phys. 102, 4611–4618 (1995).

Nalbach P., Braun D., Thorwart M., Exciton transfer dynamics and quantumness of energy transfer in the Fenna-Matthews-Olson complex. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84, 041926 (2011). PubMed

Mujica-Martinez C. A., Nalbach P., Thorwart M., Quantification of non-Markovian effects in the Fenna-Matthews-Olson complex. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88, 062719 (2013). PubMed

Nalbach P., Mujica-Martinez C. A., Thorwart M., Vibronically coherent speed-up of the excitation energy transfer in the Fenna–Matthews–Olson complex. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91, 022706 (2015). PubMed

Tanimura Y., Kubo R., Time evolution of quantum system in contact with a nearly Gaussian-Markovian noise bath. J. Phys. Soc. Jpn. 58, 101–114 (1989).

Bader J. S., Berne B. J., Quantum and classical relaxation rates from classical simulations. J. Chem. Phys. 100, 8359–8366 (1994).

Egorov S. A., Rabani E., Berne B. J., Vibronic spectra in condensed matter: A comparison of exact quantum mechanical and various semiclassical treatments for harmonic baths. J. Chem. Phys. 108, 1407–1422 (1998).

Miller W. H., Perspective: Quantum or classical coherence? J. Chem. Phys. 136, 210901 (2012). PubMed

Briggs J. S., Eisfeld A., Equivalence of quantum and classical coherence in electronic energy transfer. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83, 051911 (2011). PubMed

Zimanyi E. N., Silbey R. J., Unified treatment of coherent and incoherent electronic energy transfer dynamics using classical electrodynamics. J. Chem. Phys. 133, 144107 (2010). PubMed

Mukamel S., Communications: Signature of quasiparticle entanglement in multidimensional nonlinear optical spectroscopy of aggregates. J. Chem. Phys. 132, 241105 (2010). PubMed

Reppert M., Brumer P., Quantumness in light harvesting is determined by vibrational dynamics. J. Chem. Phys. 149, 234102 (2018). PubMed

U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, ed. 3, 2008).

Feynman R. P., Vernon F. L. Jr., The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys-New York 24, 118–173 (1963).

Chin A. W., Rivas A., Huelga S. F., Plenio M. B., Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials. J. Math. Phys. 51, 092109 (2010).

Huo P., Coker D. F., Iterative linearized density matrix propagation for modeling coherent excitation energy transfer in photosynthetic light harvesting. J. Chem. Phys. 133, 184108 (2010). PubMed

Moix J. M., Ma J., Cao J., Förster reson0061nce energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation. J. Chem. Phys. 142, 094108 (2015). PubMed

Tanimura Y., Reduced hierarchy equation of motion approach with Drude plus Brownian spectral distribution: Probing electron transfer processes by means of two-dimensional correlation spectroscopy. J. Chem. Phys. 137, 22A550 (2012). PubMed

Lee H., Cheng Y.-C., Fleming G. R., Coherence dynamics in photosynthesis: protein protection of excitonic coherence. Science 316, 1462–1465 (2007). PubMed

Chin A. W., Huelga S. F., Plenio M. B., Coherence and decoherence in biological systems: Principles of noise-assisted transport and the origin of long-lived coherences. Philos. Trans. A Math Phys. Eng. Sci. 370, 3638–3657 (2012). PubMed

Rolczynski B. S., Zheng H., Singh V. P., Navotnaya P., Ginzburg A. R., Caram J. R., Ashraf K., Gardiner A. T., Yeh S.-H., Kais S., Cogdell R. J., Engel G. S., Correlated protein environments drive quantum coherence lifetimes in photosynthetic pigment-protein complexes. Chem 4, 138–149 (2018).

Brumer P., Shapiro M., Molecular response in one-photon absorption via natural thermal light vs. pulsed laser excitation. Proc. Natl. Acad. Sci. U.S.A. 109, 19575–19578 (2012). PubMed PMC

Mančal T., Valkunas L., Exciton dynamics in photosynthetic complexes: Excitation by coherent and incoherent light. New J. Phys. 12, 065044 (2010).

J. Olšina, A. G. Dijkstra, C. Wang, J. Cao, Can natural sunlight induce coherent exciton dynamics? arXiv:1408.5385 (2014).

Chan H. C. H., Gamel O. E., Fleming G. R., Whaley K. B., Single-photon absorption by single photosynthetic light-harvesting complexes. J. Phys. B At. Mol. Opt. Phys. 51, 054002 (2018).

Müh F., Plöckinger M., Renger T., Electrostatic asymmetry in the Reaction Center of Photosystem II. J. Phys. Chem. Lett. 8, 850–858 (2017). PubMed

Butkus V., Zigmantas D., Valkunas L., Abramavicius D., Vibrational vs. electronic coherences in 2D spectrum of molecular systems. Chem. Phys. Lett. 545, 40–43 (2012).

Duan H.-G., Nalbach P., Prokhorenko V. I., Mukamel S., Thorwart M., On the origin of oscillations in two-dimensional spectra of excitonically-coupled molecular systems. New J. Phys. 17, 072002 (2015).

Halpin A., Johnson P. J. M., Tempelaar R., Murphy R. S., Knoester J., Jansen T. L. C., Miller R. J. D., Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences. Nat. Chem. 6, 196–201 (2014). PubMed

Aslangul C., Kottis P., Density operator description of excitons in molecular aggregates: Optical absorption and motion. I. The dimer problem. Phys. Rev. B 10, 4364–4382 (1974).

Wang L., Allodi M. A., Engel G. S., Quantum coherences reveal excited-state dynamics in biophysical systems. Nat. Rev. Chem. 3, 477–490 (2019).

Cheng Y.-C., Fleming G. R., Coherence quantum beats in two-dimensional electronic spectroscopy. J. Phys. Chem. A 112, 4254–4260 (2008). PubMed

Nemeth A., Milota F., Mančal T., Lukeš V., Hauer J., Kauffmann H. F., Sperling J., Vibrational wave packet induced oscillations in two-dimensional electronic spectra. I. Experiments. J. Chem. Phys. 132, 184514 (2010).

Mančal T., Nemeth A., Milota F., Lukeš V., Kauffmann H. F., Sperling J., Vibrational wave packet induced oscillations in two-dimensional electronic spectra. II. Theory. J. Chem. Phys. 132, 184515 (2010).

Dostál J., Mančal T., Vácha F., Pšenčík J., Zigmantas D., Unraveling the nature of coherent beatings in chlorosomes. J. Chem. Phys. 140, 115103 (2014). PubMed

Butkus V., Zigmantas D., Abramavicius D., Valkunas L., Distinctive character of electronic and vibrational coherences in disordered molecular aggregates. Chem. Phys. Lett. 587, 93–98 (2013).

Mančal T., Christensson N., Lukeš V., Milota F., Bixner O., Kauffmann H. F., Hauer J., System-dependent signatures of electronic and vibrational coherences in electronic two-dimensional spectra. J. Phys. Chem. Lett. 3, 1497–1502 (2012). PubMed

Yue S., Wang Z., Leng X., Zhu R.-D., Chen H.-L., Weng Y.-X., Coupling of multi-vibrational modes in bacteriochlorophyll a in solution observed with 2D electronic spectroscopy. Chem. Phys. Lett. 683, 591–597 (2017).

Collini E., Wong C. Y., Wilk K. E., Curmi P. M. G., Brumer P., Scholes G. D., Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010). PubMed

Harel E., Engel G. S., Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2). Proc. Natl. Acad. Sci. U.S.A. 109, 706–711 (2012). PubMed PMC

Brixner T., Stenger J., Vaswani H. M., Cho M., Blankenship R. E., Fleming G. R., Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005). PubMed

Zigmantas D., Read E. L., Mančal T., Brixner T., Gardiner A. T., Cogdell R. J., Fleming G. R., Two-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex. Proc. Natl. Acad. Sci. U.S.A. 103, 12672–12677 (2006). PubMed PMC

Vos M. H., Lambry J. C., Robles S. J., Youvan D. C., Breton J., Martin J. L., Direct observation of vibrational coherence in bacterial reaction centers using femtosecond absorption-spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 88, 8885–8889 (1991). PubMed PMC

Vos M. H., Rappaport F., Lambry J.-C., Breton J., Martin J.-L., Visualization of coherent nuclear motion in a membrane-protein by femtosecond spectroscopy. Nature 363, 320–325 (1993).

Chachisvilis M., Pullerits T., Jones M. R., Hunter C. N., Sundström V., Vibrational dynamics in the light-harvesting complexes of the photosynthetic bacterium Rhodobacter sphaeroides. Chem. Phys. Lett. 224, 345–354 (1994).

Savikhin S., Buck D. R., Struve W. S., Oscillating anisotropies in a bacteriochlorophyll protein: Evidence for quantum beating between exciton levels. Chem. Phys. 223, 303–312 (1997).

Schlau-Cohen G. S., Ishizaki A., Calhoun T. R., Ginsberg N. S., Ballottari M., Bassi R., Fleming G. R., Elucidation of the timescales and origin of quantum electronic coherence in LHCII. Nat. Chem. 4, 389–395 (2012). PubMed

Panitchayangkoon G., Hayes D., Fransted K. A., Caram J. R., Harel E., Wen J., Blankenship R. E., Engel G. S., Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl. Acad. Sci. U.S.A. 107, 12766–12770 (2010). PubMed PMC

Paleček D., Edlund P., Westenhoff S., Zigmantas D., Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center. Sci. Adv. 3, e1603141 (2017). PubMed PMC

Duan H.-G., Prokhorenko V. I., Cogdell R. J., Ashraf K., Stevens A. L., Thorwart M., Miller R. J. D., Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer. Proc. Natl. Acad. Sci. U.S.A. 114, 8493–8498 (2017). PubMed PMC

Maiuri M., Ostroumov E. E., Saer R. G., Blankenship R. E., Scholes G. D., Coherent wavepackets in the Fenna-Matthews-Olson complex are robust to excitonic-structure perturbations caused by mutagenesis. Nat. Chem. 10, 177–183 (2018). PubMed

Thyrhaug E., Tempelaar R., Alcocer M. J. P., Žídek K., Bína D., Knoester J., Jansen T. L. C., Zigmantas D., Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex. Nat. Chem. 10, 780–786 (2018). PubMed

Policht V. R., Niedringhaus A., Ogilvie J. P., Characterization of vibrational coherence in monomeric bacteriochlorophyll a by two-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 9, 6631–6637 (2018). PubMed

Duan H.-G., Stevens A. L., Nalbach P., Thorwart M., Prokhorenko V. I., Miller R. J. D., Two-dimensional electronic spectroscopy of light-harvesting complex II at ambient temperature: A joint experimental and theoretical study. J. Phys. Chem. B 119, 12017–12027 (2015). PubMed

Duan H.-G., Prokhorenko V. I., Wientjes E., Croce R., Thorwart M., Miller R. J. D., Primary charge separation in the Photosystem II reaction center revealed by a Global Analysis of the two-dimensional electronic spectra. Sci. Rep. 7, 12347 (2017). PubMed PMC

Tiwari V., Peters W. K., Jonas D. M., Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl. Acad. Sci. U.S.A. 110, 1203–1208 (2013). PubMed PMC

Christensson N., Kauffmann H. F., Pullerits T., Mančal T., Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116, 7449–7454 (2012). PubMed PMC

Womick J. M., Moran A. M., Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes. J. Phys. Chem. B 115, 1347–1356 (2011). PubMed

Fuller F. D., Pan J., Gelzinis A., Butkus V., Senlik S. S., Wilcox D. E., Yocum C. F., Valkunas L., Abramavicius D., Ogilvie J. P., Vibronic coherence in oxygenic photosynthesis. Nat. Chem. 6, 706–711 (2014). PubMed

Romero E., Augulis R., Novoderezhkin V. I., Ferretti M., Thieme J., Zigmantas D., van Grondelle R., Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 676–682 (2014). PubMed PMC

Yeh S.-H., Hoehn R. D., Allodi M. A., Engel G. S., Kais S., Elucidation of near-resonance vibronic coherence lifetimes by nonadiabatic electronic-vibrational state character mixing. Proc. Natl. Acad. Sci. U.S.A. 116, 18263–18268 (2019). PubMed PMC

Duan H.-G., Thorwart M., Miller R. J. D., Does electronic coherence enhance anticorrelated pigment vibrations under realistic conditions? J. Chem. Phys. 151, 114115 (2019). PubMed

Jiang X.-P., Brumer P., Creation and dynamics of molecular states prepared with coherent vs partially coherent pulsed light. J. Chem. Phys. 94, 5833–5843 (1991).

Renger T., Marcus R. A., On the relation of protein dynamics and exciton relaxation in pigment-protein complexes: An estimation of the spectral density and a theory for the calculation of optical spectra. J. Chem. Phys. 116, 9997–10019 (2002).

Wendling M., Pullerits T., Przyjalgowski M. A., Vulto S. I. E., Aartsma T. J., van Grondelle R., van Amerongen H., Electron-vibrational coupling in the Fenna-Matthews-Olson complex of Prosthecochloris aestuarii determined by temperature-dependent absorption and fluorescence line-narrowing measurements. J. Phys. Chem. B 104, 5825–5831 (2000).

Tronrud D. E., Wen J., Gay L., Blankenship R. E., The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria. Photosynth. Res. 100, 79–87 (2009). PubMed

Adolphs J., Maier F., Renger T., Wavelength-dependent exciton-vibrational coupling in the water-soluble chlorophyll binding protein revealed by multilevel theory of difference fluorescence line-narrowing. J. Phys. Chem. B 122, 8891–8899 (2018). PubMed

Hein B., Kreisbeck C., Kramer T., Rodríguez M., Modelling of oscillation in two-dimensional echo-spectra of the Fenna–Matthews–Olson complex. New J. Phys. 14, 023018 (2012).

Dinh T.-C., Renger T., Towards an exact theory of linear absorbance and circular dichroism of pigment-protein complexes: Importance of non-secular contribution. J. Chem. Phys. 142, 034104 (2015). PubMed

Ma J., Cao J., Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. I. Full cumulant expansions and system-bath entanglement. J. Chem. Phys. 142, 094106 (2015). PubMed

Wendling M., Przyjalgowski M. A., Gülen D., Vulto S. I. E., Aartsma T. J., van Grondelle R., van Amerongen H., The quantitative relationship between structure and polarized spectroscopy in the FMO complex of Prosthecochloris aestuarii: Refining experiments and simulations. Photosynth. Res. 71, 99–123 (2002). PubMed

Raszewski G., Saenger W., Renger T., Theory of optical spectra of photosystem II reaction centers: Location of the triplet state and the identity of the primary electron donor. Biophys. J. 88, 986–998 (2005). PubMed PMC

Parendekar P. V., Tully J. C., Mixed quantum-classical equilibrium. J. Chem. Phys. 122, 094102 (2005). PubMed

Miller W. H., Cotton S. J., Communication: Note on detailed balance in symmetrical quasi-classical models for electronically non-adiabatic dynamics. J. Chem. Phys. 142, 131103 (2015). PubMed

Lindorfer D., Renger T., Theory of anisotropic circular dichroism of excitonically coupled systems: Application to the baseplate of green sulfur bacteria. J. Phys. Chem. B 122, 2747–2756 (2018). PubMed

Lax M., The Franck-Condon principle and its application to crystals. J. Chem. Phys. 20, 1752–1760 (1952).

Dostál J., Vácha F., Pšenčík J., Zigmantas D., 2D electronic spectroscopy reveals excitonic structure in the baseplate of a chlorosome. J. Phys. Chem. Lett. 5, 1743–1747 (2014). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...