Quantum biology revisited
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., přehledy
PubMed
32284982
PubMed Central
PMC7124948
DOI
10.1126/sciadv.aaz4888
PII: aaz4888
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- fotosyntéza * MeSH
- kvantová teorie * MeSH
- přenos energie * MeSH
- spektrální analýza MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- teoretické modely MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- světlosběrné proteinové komplexy MeSH
Photosynthesis is a highly optimized process from which valuable lessons can be learned about the operating principles in nature. Its primary steps involve energy transport operating near theoretical quantum limits in efficiency. Recently, extensive research was motivated by the hypothesis that nature used quantum coherences to direct energy transfer. This body of work, a cornerstone for the field of quantum biology, rests on the interpretation of small-amplitude oscillations in two-dimensional electronic spectra of photosynthetic complexes. This Review discusses recent work reexamining these claims and demonstrates that interexciton coherences are too short lived to have any functional significance in photosynthetic energy transfer. Instead, the observed long-lived coherences originate from impulsively excited vibrations, generally observed in femtosecond spectroscopy. These efforts, collectively, lead to a more detailed understanding of the quantum aspects of dissipation. Nature, rather than trying to avoid dissipation, exploits it via engineering of exciton-bath interaction to create efficient energy flow.
1 Institut für Theoretische Physik Universität Hamburg Jungiusstrasse 9 20355 Hamburg Germany
Chemical Physics Box 124 Lund University 22100 Lund Sweden
Department of Chemistry and Molecular Biology University of Gothenburg Gothenburg 40530 Sweden
Department of Chemistry Boston University 590 Commonwealth Avenue Boston MA 02215 USA
Department of Chemistry Columbia University 3000 Broadway New York NY 10027 USA
Department of Physics and Earth Science Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
Department of Physics University of Michigan Ann Arbor MI 48108 USA
Departments of Chemistry and Physics University of Toronto Toronto ON M5S 3H6 Canada
Faculty of Mathematics and Physics Charles University Ke Karlovu 5 CZ 12116 Prague 2 Czech Republic
The Hamburg Centre for Ultrafast Imaging Universität Hamburg 22761 Hamburg Germany
Zobrazit více v PubMed
Lambert N., Chen Y.-N., Cheng Y.-C., Li C.-M., Chen G.-Y., Nori F., Quantum biology. Nat. Phys. 9, 10–18 (2013).
Brookes J. C., Quantum effects in biology: Golden rule in enzymes, olfaction, photosynthesis and magnetodetection. Proc. Math Phys. Eng. Sci. 473, 20160822 (2017). PubMed PMC
E. Schrödinger, What is Life? (Cambridge Univ. Press, Cambridge, 1944).
Engel G. S., Calhoun T. R., Read E. L., Ahn T.-K., Mančal T., Cheng Y.-C., Blankenship R. E., Fleming G. R., Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007). PubMed
J. McFadden, J. Al-Khalili, Life on the Edge: The Coming of Age of Quantum Biology. (Broadway Books, 2014).
Mukamel S., Comment on “Coherence and uncertainty in nanostructured organic photovoltaics”. J. Phys. Chem. A 117, 10563–10564 (2013). PubMed
Sundström V., Pullerits T., van Grondelle R., Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J. Phys. Chem. B 103, 2327–2346 (1999).
Dostál J., Pšenčík J., Zigmantas D., In situ mapping of the energy flow through the entire photosynthetic apparatus. Nat. Chem. 8, 705–710 (2016). PubMed
Raszewski G., Renger T., Light harvesting in photosystem II core complexes is limited by the transfer to the trap: Can the core complex turn into a photoprotective mode? J. Am. Chem. Soc. 130, 4431–4446 (2008). PubMed
R. E. Blankenship, Molecular Mechanisms of Photosynthesis (Wiley-Blackwell, ed. 2, 2014).
R. Croce, R. van Grondelle, H. van Amerogen, I. Van Stokkum, Light-Harvesting in Photosynthesis (CRC Press, 2018).
H. van Amerongen, R. van Grondelle, L. Valkunas, Photosynthetic Excitons (World Scientific, 2000).
Thyrhaug E., Židek K., Dostál J., Bína D., Zigmantas D., Exciton structure and energy transfer in the Fenna-Matthews-Olson complex. J. Phys. Chem. Lett. 7, 1653–1660 (2016). PubMed
Abramavicius D., Palmieri B., Voronine D. V., Šanda F., Mukamel S., Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; quasiparticle versus Supermolecule Perspectives. Chem. Rev. 109, 2350–2408 (2009). PubMed PMC
Müh F., Madjet M. E.-A., Adolphs J., Abdurahman A., Rabenstein B., Ishikita H., Knapp E.-W., Renger T., α-helices direct excitation energy flow in the Fenna–Matthews–Olson protein. Proc. Natl. Acad. Sci. U.S.A. 104, 16862–16867 (2007). PubMed PMC
Adolphs J., Müh F., Madjet M. E.-A., Renger T., Calculation of pigment transition energies in the FMO protein: From simplicity to complexity and back. Photosynth. Res. 95, 197–209 (2008). PubMed
Schmidt am Busch M., Müh F., Madjet M. E.-A., Renger T., The eighth bacteriochlorophyll completes the excitation energy funnel in the FMO protein. J. Phys. Chem. Lett. 2, 93–98 (2011). PubMed
Saer R. G., Stadnytskyi V., Magdaong N. C., Goodson C., Savikhin S., Blankenship R. E., Probing the excitonic landscape of the chlorobaculum tepidum Fenna-Matthews-Olson (FMO) complex: A mutagenesis approach. Biochim. Biophys. Acta Bioenerg. 1858, 288–296 (2017). PubMed
Adolphs J., Renger T., How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Biophys. J. 91, 2778–2797 (2006). PubMed PMC
Wen J., Zhang H., Gross M. L., Blankenship R. E., Membrane orientation of the FMO antenna protein from chlorobaculum tepidum as determined by mass spectrometry-based footprinting. Proc. Natl. Acad. Sci. U.S.A. 106, 6134–6139 (2009). PubMed PMC
Moix J., Wu J., Huo P., Coker D., Cao J., Efficient energy transfer in light-harvesting systems, III: The influence of the eighth bacteriochlorophyll on the dynamics and efficiency in FMO. J. Phys. Chem. Lett. 2, 3045–3052 (2011).
Olbrich C., Strümpfer J., Schulten K., Kleinekathöfer U., Theory and simulation of the environmental effects on FMO electronic transitions. J. Phys. Chem. Lett. 2, 1771–1776 (2011). PubMed PMC
Renger T., Klinger A., Steinecker F., Schmidt am Busch M., Numata J., Müh F., Normal mode analysis of the spectral density of the Fenna-Matthews-Olson Light-Harvesting protein: How the protein dissipates the excess energy of excitons. J. Phys. Chem. B 116, 14565–14580 (2012). PubMed PMC
Chandrasekan S., Aghtar M., Valleau S., Aspuru-Guzik A., Kleinekathöfer U., Influence of force fields and quantum chemistry approach on spectral density of Bchl a in solution and in FMO proteins. J. Phys. Chem. B 119, 9995–10004 (2015). PubMed
Rivera E., Montemayor D., Masia M., Coker D. F., Influence of site-dependent pigment–Protein interactions on excitation energy transfer in photosynthetic light harvesting. J. Phys. Chem. B 117, 5510–5521 (2013). PubMed
Pullerits T., Chachisvilis M., Sundström V., Exciton delocalization length in the B850 antenna of Rhodobacter sphaeroides. J. Phys. Chem. 100, 10787–10792 (1996).
Monshouwer R., Abrahamsson M., van Mourik F., van Grondelle R., Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems. J. Phys. Chem. B 37, 7241–7248 (1997).
C. Shane, An Introduction to Electromagnetic Wave Propagation and Antennas (Springer Science and Business Media, 1996).
Mančal T., Excitation energy transfer in a classical analogue of photosynthetic antennae. J. Phys. Chem. B 117, 11282–11291 (2013). PubMed
Lee S., Richter W., Vathyam S., Warren W. S., Quantum treatment of the effects of dipole-dipole interactions in liquid nuclear magnetic resonance. J. Chem. Phys. 105, 874–900 (1996).
Jeener J., Vlassenbroek A., Broekaert P., Unified derivation of the dipolar field and relaxation terms in the Bloch-Redfield equations of liquid NMR. J. Chem. Phys. 103, 1309–1332 (1995).
Sumi H., Theory on rates of excitation-energy transfer between molecular aggregates through distributed transition dipoles with application to the antenna system in bacterial photosynthesis. J. Phys. Chem. B 103, 252–260 (1999).
Bohr N., Über die serienspektra der elemente. Zeitschrift für Physik 2, 423–478 (1920).
A. Nitzan, Chemical Dynamics in the Condensed Phase (Oxford Univ. Press, 2006).
Cotton S. J., Miller W. H., The symmetrical quasi-classical model for electronically non-adiabatic processes applied to energy transfer dynamics in site-exciton models of light-harvesting complexes. J. Chem. Theory Comput. 12, 983–991 (2016). PubMed
Meyera H.-D., Miller W. H., A classical analog for electronic degrees of freedom in nonadiabatic collision processes. J. Chem. Phys. 70, 3214–3223 (1979).
Stock G., Thoss M., Semiclassical description of nonadiabatic quantum dynamics. Phys. Rev. Lett. 78, 578–581 (1997). PubMed
Thoss M., Stock G., Mapping approach to the semiclassical description of nonadiabatic quantum dynamics. Phys. Rev. A 59, 64–79 (1999).
Tempelaar R., Jansen T. L. C., Knoester J., Vibrational beatings conceal evidence of electronic coherence in the FMO light-harvesting complex. J. Phys. Chem. B 118, 12865–12872 (2014). PubMed
Makri N., Makarov D. E., Tensor propagator for iterative quantum time evolution of reduced density matrices. I. Theory. J. Chem. Phys. 102, 4600–4610 (1995).
Makri N., Makarov D. E., Tensor propagator for iterative quantum time evolution of reduced density matrices. II. Numerical methodology. J. Chem. Phys. 102, 4611–4618 (1995).
Nalbach P., Braun D., Thorwart M., Exciton transfer dynamics and quantumness of energy transfer in the Fenna-Matthews-Olson complex. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84, 041926 (2011). PubMed
Mujica-Martinez C. A., Nalbach P., Thorwart M., Quantification of non-Markovian effects in the Fenna-Matthews-Olson complex. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88, 062719 (2013). PubMed
Nalbach P., Mujica-Martinez C. A., Thorwart M., Vibronically coherent speed-up of the excitation energy transfer in the Fenna–Matthews–Olson complex. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91, 022706 (2015). PubMed
Tanimura Y., Kubo R., Time evolution of quantum system in contact with a nearly Gaussian-Markovian noise bath. J. Phys. Soc. Jpn. 58, 101–114 (1989).
Bader J. S., Berne B. J., Quantum and classical relaxation rates from classical simulations. J. Chem. Phys. 100, 8359–8366 (1994).
Egorov S. A., Rabani E., Berne B. J., Vibronic spectra in condensed matter: A comparison of exact quantum mechanical and various semiclassical treatments for harmonic baths. J. Chem. Phys. 108, 1407–1422 (1998).
Miller W. H., Perspective: Quantum or classical coherence? J. Chem. Phys. 136, 210901 (2012). PubMed
Briggs J. S., Eisfeld A., Equivalence of quantum and classical coherence in electronic energy transfer. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83, 051911 (2011). PubMed
Zimanyi E. N., Silbey R. J., Unified treatment of coherent and incoherent electronic energy transfer dynamics using classical electrodynamics. J. Chem. Phys. 133, 144107 (2010). PubMed
Mukamel S., Communications: Signature of quasiparticle entanglement in multidimensional nonlinear optical spectroscopy of aggregates. J. Chem. Phys. 132, 241105 (2010). PubMed
Reppert M., Brumer P., Quantumness in light harvesting is determined by vibrational dynamics. J. Chem. Phys. 149, 234102 (2018). PubMed
U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, ed. 3, 2008).
Feynman R. P., Vernon F. L. Jr., The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys-New York 24, 118–173 (1963).
Chin A. W., Rivas A., Huelga S. F., Plenio M. B., Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials. J. Math. Phys. 51, 092109 (2010).
Huo P., Coker D. F., Iterative linearized density matrix propagation for modeling coherent excitation energy transfer in photosynthetic light harvesting. J. Chem. Phys. 133, 184108 (2010). PubMed
Moix J. M., Ma J., Cao J., Förster reson0061nce energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation. J. Chem. Phys. 142, 094108 (2015). PubMed
Tanimura Y., Reduced hierarchy equation of motion approach with Drude plus Brownian spectral distribution: Probing electron transfer processes by means of two-dimensional correlation spectroscopy. J. Chem. Phys. 137, 22A550 (2012). PubMed
Lee H., Cheng Y.-C., Fleming G. R., Coherence dynamics in photosynthesis: protein protection of excitonic coherence. Science 316, 1462–1465 (2007). PubMed
Chin A. W., Huelga S. F., Plenio M. B., Coherence and decoherence in biological systems: Principles of noise-assisted transport and the origin of long-lived coherences. Philos. Trans. A Math Phys. Eng. Sci. 370, 3638–3657 (2012). PubMed
Rolczynski B. S., Zheng H., Singh V. P., Navotnaya P., Ginzburg A. R., Caram J. R., Ashraf K., Gardiner A. T., Yeh S.-H., Kais S., Cogdell R. J., Engel G. S., Correlated protein environments drive quantum coherence lifetimes in photosynthetic pigment-protein complexes. Chem 4, 138–149 (2018).
Brumer P., Shapiro M., Molecular response in one-photon absorption via natural thermal light vs. pulsed laser excitation. Proc. Natl. Acad. Sci. U.S.A. 109, 19575–19578 (2012). PubMed PMC
Mančal T., Valkunas L., Exciton dynamics in photosynthetic complexes: Excitation by coherent and incoherent light. New J. Phys. 12, 065044 (2010).
J. Olšina, A. G. Dijkstra, C. Wang, J. Cao, Can natural sunlight induce coherent exciton dynamics? arXiv:1408.5385 (2014).
Chan H. C. H., Gamel O. E., Fleming G. R., Whaley K. B., Single-photon absorption by single photosynthetic light-harvesting complexes. J. Phys. B At. Mol. Opt. Phys. 51, 054002 (2018).
Müh F., Plöckinger M., Renger T., Electrostatic asymmetry in the Reaction Center of Photosystem II. J. Phys. Chem. Lett. 8, 850–858 (2017). PubMed
Butkus V., Zigmantas D., Valkunas L., Abramavicius D., Vibrational vs. electronic coherences in 2D spectrum of molecular systems. Chem. Phys. Lett. 545, 40–43 (2012).
Duan H.-G., Nalbach P., Prokhorenko V. I., Mukamel S., Thorwart M., On the origin of oscillations in two-dimensional spectra of excitonically-coupled molecular systems. New J. Phys. 17, 072002 (2015).
Halpin A., Johnson P. J. M., Tempelaar R., Murphy R. S., Knoester J., Jansen T. L. C., Miller R. J. D., Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences. Nat. Chem. 6, 196–201 (2014). PubMed
Aslangul C., Kottis P., Density operator description of excitons in molecular aggregates: Optical absorption and motion. I. The dimer problem. Phys. Rev. B 10, 4364–4382 (1974).
Wang L., Allodi M. A., Engel G. S., Quantum coherences reveal excited-state dynamics in biophysical systems. Nat. Rev. Chem. 3, 477–490 (2019).
Cheng Y.-C., Fleming G. R., Coherence quantum beats in two-dimensional electronic spectroscopy. J. Phys. Chem. A 112, 4254–4260 (2008). PubMed
Nemeth A., Milota F., Mančal T., Lukeš V., Hauer J., Kauffmann H. F., Sperling J., Vibrational wave packet induced oscillations in two-dimensional electronic spectra. I. Experiments. J. Chem. Phys. 132, 184514 (2010).
Mančal T., Nemeth A., Milota F., Lukeš V., Kauffmann H. F., Sperling J., Vibrational wave packet induced oscillations in two-dimensional electronic spectra. II. Theory. J. Chem. Phys. 132, 184515 (2010).
Dostál J., Mančal T., Vácha F., Pšenčík J., Zigmantas D., Unraveling the nature of coherent beatings in chlorosomes. J. Chem. Phys. 140, 115103 (2014). PubMed
Butkus V., Zigmantas D., Abramavicius D., Valkunas L., Distinctive character of electronic and vibrational coherences in disordered molecular aggregates. Chem. Phys. Lett. 587, 93–98 (2013).
Mančal T., Christensson N., Lukeš V., Milota F., Bixner O., Kauffmann H. F., Hauer J., System-dependent signatures of electronic and vibrational coherences in electronic two-dimensional spectra. J. Phys. Chem. Lett. 3, 1497–1502 (2012). PubMed
Yue S., Wang Z., Leng X., Zhu R.-D., Chen H.-L., Weng Y.-X., Coupling of multi-vibrational modes in bacteriochlorophyll a in solution observed with 2D electronic spectroscopy. Chem. Phys. Lett. 683, 591–597 (2017).
Collini E., Wong C. Y., Wilk K. E., Curmi P. M. G., Brumer P., Scholes G. D., Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010). PubMed
Harel E., Engel G. S., Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2). Proc. Natl. Acad. Sci. U.S.A. 109, 706–711 (2012). PubMed PMC
Brixner T., Stenger J., Vaswani H. M., Cho M., Blankenship R. E., Fleming G. R., Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005). PubMed
Zigmantas D., Read E. L., Mančal T., Brixner T., Gardiner A. T., Cogdell R. J., Fleming G. R., Two-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex. Proc. Natl. Acad. Sci. U.S.A. 103, 12672–12677 (2006). PubMed PMC
Vos M. H., Lambry J. C., Robles S. J., Youvan D. C., Breton J., Martin J. L., Direct observation of vibrational coherence in bacterial reaction centers using femtosecond absorption-spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 88, 8885–8889 (1991). PubMed PMC
Vos M. H., Rappaport F., Lambry J.-C., Breton J., Martin J.-L., Visualization of coherent nuclear motion in a membrane-protein by femtosecond spectroscopy. Nature 363, 320–325 (1993).
Chachisvilis M., Pullerits T., Jones M. R., Hunter C. N., Sundström V., Vibrational dynamics in the light-harvesting complexes of the photosynthetic bacterium Rhodobacter sphaeroides. Chem. Phys. Lett. 224, 345–354 (1994).
Savikhin S., Buck D. R., Struve W. S., Oscillating anisotropies in a bacteriochlorophyll protein: Evidence for quantum beating between exciton levels. Chem. Phys. 223, 303–312 (1997).
Schlau-Cohen G. S., Ishizaki A., Calhoun T. R., Ginsberg N. S., Ballottari M., Bassi R., Fleming G. R., Elucidation of the timescales and origin of quantum electronic coherence in LHCII. Nat. Chem. 4, 389–395 (2012). PubMed
Panitchayangkoon G., Hayes D., Fransted K. A., Caram J. R., Harel E., Wen J., Blankenship R. E., Engel G. S., Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl. Acad. Sci. U.S.A. 107, 12766–12770 (2010). PubMed PMC
Paleček D., Edlund P., Westenhoff S., Zigmantas D., Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center. Sci. Adv. 3, e1603141 (2017). PubMed PMC
Duan H.-G., Prokhorenko V. I., Cogdell R. J., Ashraf K., Stevens A. L., Thorwart M., Miller R. J. D., Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer. Proc. Natl. Acad. Sci. U.S.A. 114, 8493–8498 (2017). PubMed PMC
Maiuri M., Ostroumov E. E., Saer R. G., Blankenship R. E., Scholes G. D., Coherent wavepackets in the Fenna-Matthews-Olson complex are robust to excitonic-structure perturbations caused by mutagenesis. Nat. Chem. 10, 177–183 (2018). PubMed
Thyrhaug E., Tempelaar R., Alcocer M. J. P., Žídek K., Bína D., Knoester J., Jansen T. L. C., Zigmantas D., Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex. Nat. Chem. 10, 780–786 (2018). PubMed
Policht V. R., Niedringhaus A., Ogilvie J. P., Characterization of vibrational coherence in monomeric bacteriochlorophyll a by two-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 9, 6631–6637 (2018). PubMed
Duan H.-G., Stevens A. L., Nalbach P., Thorwart M., Prokhorenko V. I., Miller R. J. D., Two-dimensional electronic spectroscopy of light-harvesting complex II at ambient temperature: A joint experimental and theoretical study. J. Phys. Chem. B 119, 12017–12027 (2015). PubMed
Duan H.-G., Prokhorenko V. I., Wientjes E., Croce R., Thorwart M., Miller R. J. D., Primary charge separation in the Photosystem II reaction center revealed by a Global Analysis of the two-dimensional electronic spectra. Sci. Rep. 7, 12347 (2017). PubMed PMC
Tiwari V., Peters W. K., Jonas D. M., Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl. Acad. Sci. U.S.A. 110, 1203–1208 (2013). PubMed PMC
Christensson N., Kauffmann H. F., Pullerits T., Mančal T., Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116, 7449–7454 (2012). PubMed PMC
Womick J. M., Moran A. M., Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes. J. Phys. Chem. B 115, 1347–1356 (2011). PubMed
Fuller F. D., Pan J., Gelzinis A., Butkus V., Senlik S. S., Wilcox D. E., Yocum C. F., Valkunas L., Abramavicius D., Ogilvie J. P., Vibronic coherence in oxygenic photosynthesis. Nat. Chem. 6, 706–711 (2014). PubMed
Romero E., Augulis R., Novoderezhkin V. I., Ferretti M., Thieme J., Zigmantas D., van Grondelle R., Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 676–682 (2014). PubMed PMC
Yeh S.-H., Hoehn R. D., Allodi M. A., Engel G. S., Kais S., Elucidation of near-resonance vibronic coherence lifetimes by nonadiabatic electronic-vibrational state character mixing. Proc. Natl. Acad. Sci. U.S.A. 116, 18263–18268 (2019). PubMed PMC
Duan H.-G., Thorwart M., Miller R. J. D., Does electronic coherence enhance anticorrelated pigment vibrations under realistic conditions? J. Chem. Phys. 151, 114115 (2019). PubMed
Jiang X.-P., Brumer P., Creation and dynamics of molecular states prepared with coherent vs partially coherent pulsed light. J. Chem. Phys. 94, 5833–5843 (1991).
Renger T., Marcus R. A., On the relation of protein dynamics and exciton relaxation in pigment-protein complexes: An estimation of the spectral density and a theory for the calculation of optical spectra. J. Chem. Phys. 116, 9997–10019 (2002).
Wendling M., Pullerits T., Przyjalgowski M. A., Vulto S. I. E., Aartsma T. J., van Grondelle R., van Amerongen H., Electron-vibrational coupling in the Fenna-Matthews-Olson complex of Prosthecochloris aestuarii determined by temperature-dependent absorption and fluorescence line-narrowing measurements. J. Phys. Chem. B 104, 5825–5831 (2000).
Tronrud D. E., Wen J., Gay L., Blankenship R. E., The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria. Photosynth. Res. 100, 79–87 (2009). PubMed
Adolphs J., Maier F., Renger T., Wavelength-dependent exciton-vibrational coupling in the water-soluble chlorophyll binding protein revealed by multilevel theory of difference fluorescence line-narrowing. J. Phys. Chem. B 122, 8891–8899 (2018). PubMed
Hein B., Kreisbeck C., Kramer T., Rodríguez M., Modelling of oscillation in two-dimensional echo-spectra of the Fenna–Matthews–Olson complex. New J. Phys. 14, 023018 (2012).
Dinh T.-C., Renger T., Towards an exact theory of linear absorbance and circular dichroism of pigment-protein complexes: Importance of non-secular contribution. J. Chem. Phys. 142, 034104 (2015). PubMed
Ma J., Cao J., Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. I. Full cumulant expansions and system-bath entanglement. J. Chem. Phys. 142, 094106 (2015). PubMed
Wendling M., Przyjalgowski M. A., Gülen D., Vulto S. I. E., Aartsma T. J., van Grondelle R., van Amerongen H., The quantitative relationship between structure and polarized spectroscopy in the FMO complex of Prosthecochloris aestuarii: Refining experiments and simulations. Photosynth. Res. 71, 99–123 (2002). PubMed
Raszewski G., Saenger W., Renger T., Theory of optical spectra of photosystem II reaction centers: Location of the triplet state and the identity of the primary electron donor. Biophys. J. 88, 986–998 (2005). PubMed PMC
Parendekar P. V., Tully J. C., Mixed quantum-classical equilibrium. J. Chem. Phys. 122, 094102 (2005). PubMed
Miller W. H., Cotton S. J., Communication: Note on detailed balance in symmetrical quasi-classical models for electronically non-adiabatic dynamics. J. Chem. Phys. 142, 131103 (2015). PubMed
Lindorfer D., Renger T., Theory of anisotropic circular dichroism of excitonically coupled systems: Application to the baseplate of green sulfur bacteria. J. Phys. Chem. B 122, 2747–2756 (2018). PubMed
Lax M., The Franck-Condon principle and its application to crystals. J. Chem. Phys. 20, 1752–1760 (1952).
Dostál J., Vácha F., Pšenčík J., Zigmantas D., 2D electronic spectroscopy reveals excitonic structure in the baseplate of a chlorosome. J. Phys. Chem. Lett. 5, 1743–1747 (2014). PubMed
Evidence of exciton-libron coupling in chirally adsorbed single molecules
Photosynthetic Light-Harvesting (Antenna) Complexes-Structures and Functions